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Abstract: Mathematical models and numerical simulations are necessary to understand the functions
of biological rhythms, to comprehend the transition from simple to complex behavior and to delineate
the conditions under which they arise. The aim of this work is to investigate the Rössler-type system.
This system could be proposed as a theoretical model for biological rhythms, generalizing this formula
for chaotic behavior. It is assumed that the Rössler-type system has a Hamilton–Poisson realization.
To semi-analytically solve this system, a Bratu-type equation was explored. The approximate closed-
form solutions are obtained using the Optimal Parametric Iteration Method (OPIM) using only one
iteration. The advantages of this analytical procedure are reflected through a comparison between
the analytical and corresponding numerical results. The obtained results are in a good agreement
with the numerical results, and they highlight that our procedure is effective, accurate and usefully
for implementation in applicationssuch as an oscillator with cubic and harmonic restoring forces, the
Thomas–Fermi equation and the Lotka–Voltera model with three species.

Keywords: optimal parametric iteration method; dynamical system; symmetries; Hamilton–Poisson
realization; periodical orbits

MSC: 37B65; 37C79; 65H20; 37J06; 37J35; 65L99

1. Introduction

Many applications in medicine, outdoor weather control applications, secure commu-
nication techniques and so on are based on the study of chaotic dynamic systems. This
work explored a Bratu-type equation [1] to semi-analytically solve a Rössler-type system [2].
Various numerical methods use the Bratu problem as a test bed, and the generalization of
this problem has led to the variety of applications in which it arises, such as radiative heat
transfer, thermal reactions, chemical reactor theory, nanotechnology and so on.

Raja et al. [3] used the genetic algorithm (GA) and the active set method (ASM) to
solve Bratu-type equations with applications in electrically conducting solids and vari-
ous other physical phenomena. Caglar et al. [4] reported the dynamic behaviors of the
solution of Bratu’s equation by computing the corresponding Lyapunov exponent, power
spectra and cobweb diagrams modeling the chaotic regimes. Jalilian [5] obtained smooth
approximate solutions using the non-polynomial spline method in comparison with those
obtained using B-spline, Laplace and decomposition methods. Kafri et al. [6] developed an
iterative algorithm combining Green’s function and fixed-point iterative schemes to solve
the nonlinear Bratu’s boundary value problem. Hichar et al. [7] reported some solutions
to this equation and its applications in electrostatics and plasma physics. Mohsen [8]
discussed different iterative schemes, such as the finite-difference method and nonstan-
dard finite-difference methods with a simple sinusoidal starting function, obtaining a
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simple solution for the Bratu problem. Wazwaz [9] applied the Adomian decomposition
method to determine exact solutions for Bratu-type equations. Syam et al. [10] numerically
solved Bratu’s equation using the Laplace–Adomain decomposition method. Boyd [11]
built an analytical solution by using a series of even Chebyshev polynomials and com-
paring them with the corresponding numerical results obtained using the collocation or
pseudospectral method. Abd et al. [12] applied some perturbation expansion methods
to analytically solve the one-dimensional Bratu problem. Abbasbandy et al. [13] solved
the Bratu equation using the Lie-group shooting method. Deniz et al. [14] proposed a
new approach, namely the Optimal Perturbation Iteration Method, for solving Bratu-type
problems. Keshavarz et al. [15] developed an efficient numerical method, namely the
Taylor wavelet method, for obtaining analytical solutions for the Bratu-type equations.
Abdelhakem et al. [16] solved some nonlinear problems using two spectral Legendre’s
derivative algorithms. Singh et al. [17] adopted an efficient technique (the Haar wavelet
method) for numerically solving Bratu-type equations. Mohsen [18] used Green’s function
for obtaining the integral solution to Bratu’s equation. Temimi et al. [19] proposed a new
computational scheme for the classical Bratu equation. Jator et al. [20] explored numerical
solutions by applying the Block Nyström Method. Behl et al. [21] presented a family of
iterative methods to solve Bratu’s equation. Tomar et al. [22] introduced an efficient ana-
lytical iterative method that obtains a semi-analytical solution for the Bratu-type problem.
Karamollahi et al. [23] used Hermite interpolation to approximate dual solutions for the
strongly nonlinear one-dimensional Bratu problem. Jator et al. [24] introduced a new numer-
ical scheme to solve Bratu’s problem. Singh et al. [25] applied the Homotopy Perturbation
Method (HPM) to solve a class of Bratu’s equations. Aydinlik et al. [26] approached the
Bratu-type equation based on the Smooth Composite Chebyshev Finite-Difference Method.
Aksoy et al. [27] and obtained different perturbation–iteration solutions to the Bratu-type
equations. Venkatesh et al. [28] used the Legendre wavelet method to solve Bratu-type
initial value problems. Ragb et al. [29] introduced a numerical scheme based on differential
quadrature methods for solving the Bratu problem. Masood et al. [30] tested Mexican
Hat Wavelet neural networks for solving Bratu-type nonlinear systems. Ahmad et al. [31]
proposed an efficient algorithm to obtain better solutions for Bratu differential equations.

Recently, Karimov et al. [32,33] proposed a novel technique by studying the synchro-
nization between a circuit modeling the Rössler chaotic system. Ding et al. [34] investigated
the existence of a Shilnikov-type homoclinic orbit of in the Rössler system and spiral chaos
using the series expressions of the solution.

The impact of complex dynamic systems/nonlinear differential equations on real-
world applications has led to the development of new mathematical methods for approach-
ing dynamical behaviors and that consider the existence of chaos caused by the influence
of several physical parameters. For example, Zhou [35] examined the asymptotic behavior
of the Nicholson model with neutral-type delays, Zhou [36] studied a four-dimensional
predator–prey chemostat model that considered the dynamical mechanism of cyclic per-
sistence and the existence of periodic solutions. The difference between a classical and
anomalous diffusion equation was analyzed by Zhao et al. [37].

Nonlinear wave dynamics, such as solitons, breathers, rogue waves and semi-rational
solutions on periodic backgrounds, which are important for many physical systems, were
investigated by Li et al. [38], who pointed out their dynamic behaviors.

In general, with chaotic systems, the exact solution can no longer be controlled,
but their dynamic properties are analyzed with specific mathematical methods, such as
bifurcation routes, Poincare maps, frequency spectra, amplitude modulation, topological
horseshoes, the existence of a heteroclinic orbit or homoclinic orbit, equilibrium, Lyapunov
exponent spectra, a dissipative system, phase portraits, bifurcation diagrams and Hopf
bifurcation. These properties characterize the chaotic behaviors of dynamical systems.

The organization of the remainder of this paper is as follows. In Section 2, a short
presentation of Bratu’s problem and the Rösller-type system is provided. Section 3 describes
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the Optimal Parametric Iteration Method and semi-analytical solutions. Section 4 contains
the numerical results, and Section 5 summarizes the concluding remarks.

2. Preliminary
2.1. Bratu’s Problem

The original one-dimensional Bratu nonlinear boundary value problem is presented
in [1]:

u′′(t) + λ eu(t) = 0, λ > 0
u(0) = 0, u(1) = 0.

(1)

The exact solution of the nonlinear problem of Equation (1) is [39]

u(t) = −2 ln
[ cosh(0.5(t − 0.5)θ)

cosh(θ/4)

]
,

where θ is the solution of the equation θ =
√

2λ cosh(θ/4), and λ is a parameter that
describes the number of possible solutions, for λ < λc and no solution for λ > λc,
λc = 3.513830719.

2.2. The Rösller-Type System

The Rösller-type system is written as follows [2]:
ẋ = −y − z
ẏ = x + a y
ż = b − cz + xz

, a, b, c ∈ R. (2)

This subsection emphasizes the approximate closed-form solution of system (2) in the
completely integrable case (a = b = c = 0) studied in [40–42]:

ẋ = −y − z
ẏ = x
ż = xz

. (3)

System (3) is a Hamiltonian mechanical system with a Hamiltonian–Poisson structure
characterized by the constants of motion given by

H(x, y, z) = 1
2 (x2 + y2) + z the Hamiltonian,

C(x, y, z) = ze−y the Casimir.
(4)

In considering the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, (5)

the exact solutions of Equations (3) and (5) are written as the intersection of the surfaces:{ 1
2 (x2 + y2) + z = 1

2 (x2
0 + y2

0) + z0
ze−y = z0e−y0

. (6)

In taking into account Equation (4), it is more convenient to consider the following
transformation: 

y − y0 = u
z = z0eu

x = u̇
, (7)

which describes the closed-form solutions of Equations (3) and (5). The unknown smooth
function u from Equation (7) is the solution of the nonlinear initial value problem
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{
ü + u + z0 eu + y0 = 0
u(0) = 0, u̇(0) = x0,

(8)

obtained from the first item of Equation (3).
The obtained problem given by Equation (8) is a Bratu-type nonlinear initial value

problem with a linear control.
Section 3 presents some semi-analytical solutions of Equation (8) obtained using the

OPIM procedure and that are denoted by ū or ūOPIM.
There are some analytical methods for solving nonlinear differential equations as

follows: the optimal iteration parametrization method (OIPM) [43], the optimal homo-
topy asymptotic method (OHAM) [44–46], the optimal homotopy perturbation method
(OHPM) [47–49] and the modified optimal parametric iteration method [50].

In taking into consideration Equation (7), a semi-analytical closed-form solutions of
Equations (3) and (5) are 

x̄ = ˙̄u
ȳ = ū + y0
z̄ = z0eū

, (9)

where ū is a semi-analytical solution of Equation (8).

3. The Optimal Parametric Iteration Method
3.1. Preliminary

Some iteration procedures for solving different nonlinear problems were developed
in [51–55].

The idea of the Optimal Parametric Iteration Method is to consider the following
second-order nonlinear differential equation:

L[u(t)] +N[t, u(t), u̇(t), ü(t)]− g(t) = 0, t ∈ I ⊂ R, (10)

subject to the initial conditions

B[u(t), u̇(t)] = 0, (11)

where L is a linear operator; N, a nonlinear operator; B, a boundary operator; g, a known
function; u, an unknown smooth function depending on the independent variable t; and
u̇(t) = du

dt .
For real values α, β and γ, by applying the well-known Taylor formula for an analytic

function F, we obtain

F(t, u + α, u̇ + β, ü + γ) = F(t, u, u̇, ü) + α
1! Fu(t, u, u̇, ü)+

+ β
1! Fu̇(t, u, u̇, ü) + γ

1! Fü(t, u, u̇, ü) + . . . ,
(12)

where Fu = ∂F
∂u . Instead of solving nonlinear differential Equation (10), one can solve

another equation, making recourse to Equation (12) and to the following scheme, namely,
the Optimal Parametric Iteration Method (OPIM), introduced by Marinca et al. [43]:

L[un+1(t)] +N[t, un, u̇n, ün] + αn(t, Ci)Nu[t, un, u̇n, ün]+
+βn(t, Cj)Nu̇[t, un, u̇n, ün] + γn(t, Ck)Nü[t, un, u̇n, ün] + · · · − g(t) = 0
B[un+1(t), u̇n+1(t)] = 0

, n ≥ 0, (13)

where αn(t, Ci), βn(t, Cj) and γn(t, Ck) are auxiliary continuous functions; NF = ∂N
∂F (ob-

tained from the Taylor series expansion of the nonlinear operator N[t, u(t), u̇(t), ü(t)]);
un+1(t) is the (n + 1)-th-order approximate solution of Equations (10) and (11), denoted by
ū(t) or ūOPIM(t); and u0(t) is the initial approximation, a solution of the following linear
differential problem:
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L[u0(t)]− g(t) = 0
B[u0(t), u̇0(t)] = 0.

(14)

The real constants Ci, Cj and Ck are unknown convergence-control parameters and
can be optimally computed.

The (n + 1)-order approximate solution of Equations (10) and (11) is well determined
if the convergence-control parameters are known.

In the OPIM, the linear operator L is arbitrarily chosen, not the physical parameters.
There are situations when the choice of physical parameters give rise to the chaotic behavior
of the dynamic system. This happens in the cases of choosing higher values for the damping
factor or exceeding the optimal resonance conditions, as well as in the case of arbitrarily
choosing the initial conditions.

If u0(t) is the initial approximation of Equation (14), the nonlinear operators
N[t, u0, u̇0, ü0],Nu[t, u0, u̇0, ü0],Nu̇[t, u0, u̇0, ü0] andNü[t, u0, u̇0, ü0] that appear in Equation (13)
have the form

∑nmax
i=1 hi(t)gi(t), (15)

where nmax is a positive integer, and hi(t) and gi(t) are known functions that depend
on u0(t).

For un+1 an (n + 1)-order approximate solution of Equations (10) and (11), the valida-
tion of this procedure is highlighted by computing the residual function given by

R(t) = L[un+1(t)] +N[t, un+1(t), u̇n+1(t), ün+1(t)]− g(t), t ∈ I ⊂ R, (16)

such that R(t) << 1 for all t ∈ I.
Using the linearly independent functions h1, h2, · · · , hm, we introduce some types of

approximate solutions of Equation (10).

Definition 1. A sequence of functions {sm(t)}m≥1 of the form

sm(t) =
m

∑
i=1

αi
m · hi(t), m ≥ 1, αi

m ∈ R, (17)

is called an OPIM sequence of Equation (10).
The functions of the OPIM sequences are called OPIM functions of Equation (10).
The OPIM sequences {sm(t)}m≥1 with the property

lim
m→∞

R(t, sm(t)) = 0

are called convergent to the solution of Equation (10), where R(t, u(t)) = L[u(t)]+
N[t, u(t), u̇(t), ü(t)]− g(t).

Definition 2. The OPIM functions F̃ satisfying the conditions∣∣∣R(t, F̃(t))
∣∣∣ < ε, B

(
F̃(t, Ci),

dF̃(t, Ci)

dt

)
= 0 (18)

are called ε-approximate OPIM solutions of Equation (10).

Definition 3. The OPIM functions F̃ satisfying the conditions

∞∫
0

R2(t, F̃(t)) dt ≤ ε, B
(

F̃(t, Ci),
dF̃(t, Ci)

dt

)
= 0 (19)

are called weak ε-approximate OPIM solutions of Equation (10) on the real interval (0, ∞).
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Remark 1. An ε-approximate OPIM solution of Equation (10) is also a weak ε-approximate OPIM
solution. It follows that the set of weak ε-approximate OPIM solutions of Equation (10) also contains
the approximate OPIM solutions of Equation (10).

The existence of weak ε-approximate OPIM solutions results from the theorem pre-
sented above.

Theorem 1. Equation (10) admits a sequence of weak ε-approximate OPIM solutions.

Proof. This is similar to the Theorem from [56].
Firstly, the OPIM sequences {sm}m≥1 are built by considering the approximate OPIM

solutions of the type

F̄(t) =
n

∑
i=1

Ci
m · hi(t), where m ≥ 1 is fixed arbitrarily. (20)

The unknown parameters Ci
m, i ∈ {1, 2, · · · , n} will be determined.

Upon introducing the approximate solutions F̄ into Equation (10), the expression
yields

R(t, Ci
m) := R(t, F̄) = L[F̄(t)] +N[t, F̄(t), ˙̄F(t), ¨̄F(t)]− g(t).

By attaching the real functional

J1(Ci
m) =

∞∫
0

R2(t, Ci
m) dt (21)

to Equation (10) and imposing the initial conditions, we can determine l ∈ N, l ≤ m such
that C1

m, C2
m, · · · , Cl

m are computed as Cl+1
m , Cl+2

m , · · · , Cn
m.

The values of C̃l+1
m , C̃l+2

m , · · · , C̃n
m are computed by replacing C1

m, C2
m, · · · , Cl

m in
Equation (21), which provide the minimum of functional (21).

By means of the initial conditions, the values C̃1
m, C̃2

m, · · · , C̃l
m as functions of C̃l+1

m ,
C̃l+2

m , · · · , C̃n
m are determined.

In using the constants C̃1
m, C̃2

m, · · · , C̃n
m thus determined, the following OPIM functions

sm(t) =
n

∑
i=1

C̃i
m · hi(t) (22)

are constructed.
The next step is to show that the above OPIM functions sm(t) are weak ε-approximate

OPIM solutions of Equation (10).
Therefore, the OPIM functions sm(t) are computed, and in taking into account that the

F̄ given by (20) are OPIM functions for Equation (10), it follows that

0 ≤
∞∫

0

R2(t, sm(t)) dt ≤
∞∫

0

R2(t, F̄(t)) dt, ∀ m ≥ 1.

Thus,

0 ≤ lim
m→∞

∞∫
0

R2(t, sm(t)) dt ≤ lim
m→∞

∞∫
0

R2(t, F̄(t)) dt.

Since F̄(t) is convergent to the solution of Equation (10), we obtain

lim
m→∞

∞∫
0

R2(t, sm(t)) dt = 0.
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It follows that for all ε > 0, there exists m0 ≥ 1 such that for all m ≥ 1 and m > m0,
the sequence sm(t) is a weak ε-approximate OPIM solution of Equation (10).

Remark 2. The proof of the above theorem provides us a way to determine a weak ε-approximate
OPIM solution of Equation (10), F̄. Moreover, in taking into account Remark 1, if |R(t, F̄)| < ε,
then F̄ is also an ε-approximate OPIM solution of the considered equation.

Remark 3. (1) The integration of Equation (13) produces secular terms of the forms t cos(ω0t),
t sin(ω0t), t2 cos(ω0t), t2 sin(ω0t), t cos(2ω0t), t sin(2ω0t) and so on. For the nonlinear
oscillator, the secular terms that appear through integration generate the resonance phenomenon.
Consequently, the secular terms have to be avoided.

(2) The OPIM method was successfully applied in the case of ODEs with boundary conditions,
see Ref. [57], such as the following:

(a) A thin film flow of a fourth-grade fluid down a vertical cylinder:

η f ′′(η) + f ′(η) + k η + 2b
[
( f ′(η))2 + 3η( f ′(η)2 f ′′(η))

]
= 0

f (1) = 0, f ′(d) = 0,
(23)

where f ′(η) = d f
dη . The linear operator is chosen as L[ f (η)] = η f ′′(η) + f ′(η) + k η.

(b) Thermal radiation on an MHD flow over a stretching porous sheet:

f ′′′(η) + f (η) f ′′(η)− f ′(η)2 − M f ′(η) = 0
θ′′(η) +

(
a − be−γη

)
θ′(η)− ce−γηθ(η) = 0

f (1) = λ, f ′(0) = 1, θ(0) = 1
f ′(η) → 0, θ(η) → 0 as η → ∞.

(24)

where the initial guess is chosen as θ0(η) = 0 and f0(η) = λ + 1
λ (1 − e−γη), with

γ = 1
2

(
λ +

√
λ2 + 4M + 4

)
.

(c) An oscillator with cubic and harmonic restoring forces:

u′′(t) + u(t) + a u3(t) + b sin u(t) = 0
u(0) = A, u′(0) = 0.

(25)

where linear operator is chosen as L[u(t)] = u′′(t) + u(t).
(d) The Thomas–Fermi equation:

y′′(x) =

√
y3(x)

x
⇔ x

[
y′′(x)

]2 − y3(x) = 0

y(0) = 1, y(x) → 0 as x → ∞.
(26)

where linear operator is chosen as L[y(x)] = y′′(x)− λ2y(x), and the nonlinear operator yields
N[y(x)] = x[y′′(x)]2 − y3(x) + y′′(x)− λ2y(x).

(e) The Lotka–Voltera model with three species:

x′(t) = x(1 − x − αy − βz)
y′(t) = y(1 − βx − y − αz)
z′(t) = z(1 − αx − βy − z)
x(0) = a, y(0) = b, z(0) = c.

(27)

where the initial approximations are chosen as x0(t) = ae−t, y0(t) = be−t and z0(t) = ce−t,
or x0(t) = ae−2t, y0(t) = b and z0(t) = ce−t, and so on.
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3.2. Semi-Analytical Solutions Using OPIM Technique

The applicability of the OPIM procedure for the nonlinear differential problems given
by Equation (8) using only one iteration is presented in details below.

L[u(t)] = ü(t) + ω2
0u(t)

N[t, u(t), u̇(t), ü(t)] =
(

1 − ω2
0

)
u(t) + z0eu(t) + y0, t > 0.

(28)

For obtaining a semi-analytical solution of Equation (8), it is more convenient to use
the approximation in series:

eu(t) =
∞

∑
i=0

1
i!

ui(t) = 1 +
1
1!

u(t) +
1
2!

u2(t) + . . . +
1

Nmax!
uNmax (t) + . . . . (29)

In taking into consideration the linear operator given by Equation (28), the initial
approximation u0(t), which is the solution of Equation (14), is

u0(t) = C̃0 sin(ω0t), (30)

with C̃0 = u̇(0)
ω0

.
In using Equation (28), a simple computation yields the following expressions:

Nu[t, u, u̇, ü] = 1 − ω2
0 + z0eu(t), Nu̇[t, u, u̇, ü] = 0, Nü[t, u, u̇, ü] = 0. (31)

In returning to Equation (13), there are a lot of possibilities to choose from for the
following auxiliary functions:

αn(t, B̃i) = B̃1 cos(ω0t) + C̃1 sin(ω0t), (32)

or αn(t, Ci) = B̃2 cos(2ω0t) + C̃2 sin(2ω0t), and so on.
In taking into account Equations (29) and (32), for Nmax = 2, a simple integration of

Equation (13), using only one iteration n = 1, yields

u1(t) =
−192y0 − 192z0 − 48z0C̃2

0 − 96C̃0C̃1z0

192ω2
0

+

+ 1
192ω2

0

(
192y0 + 192z0 + 64C̃2

0z0 + 3B̃1C̃2
0z0 + 128C̃0C̃1z0

)
cos(ω0t)+

+ 1
192ω2

0

(
−96C̃0 − 96C̃1 − 96C̃0z0 − 64B̃1C̃0z0 − 96C̃1z0 − 27C̃2

0C̃1z0 + 192x0ω0+

+96C̃0ω2
0 + 96C̃1ω2

0
)

sin(ω0t) + 1
192ω2

0

(
−16C̃2

0z0 − 32C̃0C̃1z0
)

cos(2ω0t)−

− 3B̃1C̃2
0 z0

192ω2
0

cos(3ω0t) + 32B̃1C̃0z0
192ω2

0
sin(2ω0t)− 3C̃2

0 C̃1z0
192ω2

0
sin(3ω0t) + 1

192ω2
0

(
96C̃0ω0+

+96C̃1ω0 + 96C̃0z0ω0 + 96C̃1z0ω0 + 36C̃2
0C̃1z0ω0 − 96C̃0ω3

0 − 96C̃1ω3
0
)
t cos(ω0t)+

+ 1
192ω2

0

(
−96B̃1ω0 − 96B̃1z0ω0 − 12B̃1C̃2

0z0ω0 + 96B̃1ω3
0
)
t sin(ω0t).

(33)

Neglecting secular terms yields

C̃1 =
C̃0

2
, ω0 =

√
8 + 8z0 + C̃2

0z0

2
√

2
. (34)

Therefore, for Nmax = 2, the first approximation u1(t) is a linear combination of the
function set

{1, cos(ω0t), sin(ω0t), cos(2ω0t), sin(2ω0t), cos(3ω0t), sin(3ω0t)},

u1(t) = B0 + B1 cos(ω0t) + C1 sin(ω0t) + B2 cos(2ω0t) + C2 sin(2ω0t)+

+B3 cos(3ω0t) + C3 sin(3ω0t),
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where the parameters ω0, B0, Bi, Ci and i = 1, 3 depending on the C̃0, B̃1 and C̃1 will be
optimally identified.

In taking into account Equations (29) and (32), for Nmax = 4, a simple integration of
Equation (13), using only one iteration n = 1, yields

u1(t) =
−23040y0 − 23040z0 − 5760C̃2

0z0 − 360C̃4
0z0 − 11520C̃0C̃1z0 − 1440C̃3

0C̃1z0

23040ω2
0

+

+ 1
23040ω2

0

(
23040y0 + 23040z0 + 7680C̃2

0z0 + 360B̃1C̃2
0z0 + 512C̃4

0z0 + 20B̃1C̃4
0z0+

+15360C̃0C̃1z0 + 2048C̃3
0C̃1z0

)
cos(ω0t) + 1

23040ω2
0

(
−11520C̃0 − 11520C̃1−

−11520C̃0z0 − 7680B̃1C̃0z0 − 1080C̃3
0z0 − 512B̃1C̃3

0z0 − 11520C̃1z0 − 3240C̃2
0C̃1z0−

−200C̃4
0C̃1z0 + 23040x0ω0 + 11520C̃0ω2

0 + 11520C̃1ω2
0
)

sin(ω0t) + 1
23040ω2

0

(
−1920C̃2

0z0−
−160C̃4

0z0 − 3840C̃0C̃1z0 − 640C̃3
0C̃1z0

)
cos(2ω0t) + 1

23040ω2
0

(
3840B̃1C̃0z0+

+320B̃1C̃3
0z0
)

sin(2ω0t) + 1
23040ω2

0

(
−360B̃1C̃2

0z0 − 45/2B̃1C̃4
0z0
)

cos(3ω0t)+

+ 1
23040ω2

0

(
−120C̃3

0z0 − 360C̃2
0C̃1z0 − 75/2C̃4

0C̃1z0
)

sin(3ω0t) + 1
23040ω2

0

(
8C̃4

0z0+

+32C̃3
0C̃1z0

)
cos(4ω0t)− 32B̃1C̃3

0 z0

23040ω2
0

sin(4ω0t) + 5/2B̃1C̃4
0 z0

23040ω2
0

cos(5ω0t)+

+
5/2C̃4

0 C̃1z0
23040ω2

0
sin(5ω0t) + 1

23040ω2
0

(
11520C̃0ω0 + 11520C̃1ω0 + 11520C̃0z0ω0+

+1440C̃3
0z0ω0 + 11520C̃1z0ω0 + 4320C̃2

0C̃1z0ω0 + 300C̃4
0C̃1z0ω0 − 11520C̃0ω3

0−
−11520C̃1ω3

0
)
t cos(ω0t) + 1

23040ω2
0

(
−11520B̃1ω0 − 11520B̃1z0ω0−

−1440B̃1C̃2
0z0ω0 − 60B̃1C̃4

0z0ω0 + 11520B̃1ω3
0
)
t sin(ω0t).

(35)

Neglecting secular terms yields

C̃1 =
C̃3

0

4
(
12 + C̃2

0
) , ω0 =

√
192 + 192z0 + 24C̃2

0z0 + C̃4
0z0

8
√

3
, (36)

and so on.
Therefore, for Nmax = 4, the first approximation u1(t) is a linear combination of the

function set

{1, cos(ω0t), sin(ω0t), cos(2ω0t), sin(2ω0t), . . . , cos(5ω0t), sin(5ω0t)},

u1(t) = B0 + B1 cos(ω0t) + C1 sin(ω0t) + B2 cos(2ω0t) + C2 sin(2ω0t)+

+B3 cos(3ω0t)+C3 sin(3ω0t)+ B4 cos(4ω0t)+C4 sin(4ω0t)+ B5 cos(5ω0t)+C5 sin(5ω0t),

where the parameters ω0, B0, Bi, Ci and i = 1, 5 depending on the C̃0, B̃1 and C̃1 will be
optimally identified.

Generally, for a fixed number Nmax ∈ N∗, the first approximation u1(t) is a linear
combination of the function set

{1, cos(iω0t), sin(iω0t), i = 1, 2, . . . , Nmax + 1},

u1(t) = B0 +
Nmax+1

∑
i=1

Bi cos(iω0t) + Ci sin(iω0t), (37)

where the parameters ω0, B0, Bi, Ci and i = 1, Nmax + 1 depending on the C̃0, B̃1 and C̃1
will be optimally identified.

Thus, in using only one iteration, the OPIM solution is well determined as
ūOPIM(t) = u1(t) by Equation (37).

Furthermore, using two iterations, the OPIM solution is computed as ūOPIM(t) = u2(t)
using Equation (37), and so on.
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The initial conditions given by Equation (8) yield

B0 = −
Nmax+1

∑
i=1

Bi, ω0 =
x0

Nmax+1
∑

i=1
i Ci

. (38)

4. Numerical Results and Validation

The Rössler-type system studied admits periodic solutions independently of the initial
conditions, as it was proved in [2].

The results of the numerical study are provided in this section.
Firstly, the absolute errors ϵu = |unumerical − ūOPIM| are examined for different values

of the Nmax index in Table 1 and Figure 1.

Table 1. Values of the absolute errors: ϵu = |unumerical − ūOPIM| for initial conditions x0 = 0.25,
y0 = 0.75 and z0 = 1.05 and different values of the index Nmax; ūOPIM analytic approximate solution
of Equation (8) obtained from Equations (37), (38) and (A1)–(A4).

t Nmax = 16 Nmax = 20 Nmax = 24 Nmax = 30

0 5.68434 × 10−13 8.12291 × 10−22 4.54747 × 10−13 7.10543 × 10−15

1/2 1.56141 × 10−5 8.68649 × 10−6 2.21405 × 10−6 4.85037 × 10−7

1 1.48405 × 10−5 1.41248 × 10−7 2.6783 × 10−6 5.0592 × 10−7

3/2 6.04191 × 10−5 3.44 × 10−6 1.44322 × 10−6 6.4853 × 10−7

2 3.3371 × 10−7 9.82754 × 10−6 3.82636 × 10−7 5.22813 × 10−7

5/2 6.32447 × 10−5 3.4972 × 10−6 3.48186 × 10−6 2.96143 × 10−7

3 3.62685 × 10−5 1.43278 × 10−5 7.30771 × 10−7 7.67939 × 10−7

7/2 4.35175 × 10−5 4.90013 × 10−7 7.79294 × 10−7 7.20673 × 10−7

4 4.14164 × 10−5 1.68089 × 10−5 1.48269 × 10−6 4.27381 × 10−7

9/2 3.19588 × 10−5 1.68538 × 10−5 2.11227 × 10−6 1.03521 × 10−6

5 1.32596 × 10−4 1.90962 × 10−5 2.91648 × 10−6 9.71333 × 10−7

11/2 1.90914 × 10−5 3.46814 × 10−6 1.51662 × 10−6 4.52946 × 10−7

6 1.3966 × 10−4 2.01006 × 10−5 3.01251 × 10−6 8.10717 × 10−7

13/2 3.33686 × 10−5 8.48484 × 10−7 4.2035 × 10−7 9.86731 × 10−7

7 1.15607 × 10−4 1.38123 × 10−5 8.79764 × 10−8 7.25709 × 10−7

15/2 3.18879 × 10−5 9.57228 × 10−6 2.69659 × 10−6 1.10401 × 10−6

8 5.01597 × 10−5 1.00957 × 10−5 5.19338 × 10−7 1.25896 × 10−6

17/2 6.856 × 10−5 5.66887 × 10−6 2.75871 × 10−6 9.05699 × 10−7

9 3.01073 × 10−5 5.25215 × 10−6 5.99213 × 10−7 1.1485 × 10−6

19/2 6.08924 × 10−5 1.05709 × 10−6 6.60261 × 10−7 1.42172 × 10−6

10 4.58559 × 10−5 2.81366 × 10−6 1.80462 × 10−6 1.40391 × 10−6

From Table 1, it can be observed that when the Nmax index increases, the magnitude of
the absolute errors then decreases, until 10−7.

In choosing arbitrary values for the initial conditions x0 = 0.25, y0 = 0.75 and z0 = 1.05,
the profiles of the approximate analytic solutions ūOPIM, x̄OPIM, ȳOPIM and z̄OPIM are
represented in Figures 2 and 3, highlighting the accuracy of the analytical procedure.

Comparisons between the semi-analytic closed-form solutions ūOPIM and x̄OPIM and
their corresponding numerical solutions are presented in Table 2 and Figure 2 and Table 3
and Figure 3, respectively. The precision and efficiency of the OPIM method (using just
one iteration) compared to the iterative method described in [58] (using six iterations) are
represented in Table 4 and Figure 4, respectively.

The profiles of the approximate analytic solution ūOPIM and each of x̄OPIM, ȳOPIM
and z̄OPIM have a periodic behavior, as depicted in Figures 2 and 3.

The numerical values of the convergence-control parameters for ūOPIM for different
values of the Nmax index are presented in detail in Appendix A.
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2 4 6 8 10

t

2.´10
-7

4.´10
-7

6.´10
-7

8.´10
-7

1.´10
-6

1.2´10
-6

1.4´10
-6

error

Figure 1. Profile of the absolute errors: ϵu = |unumerical − ūOPIM| for initial conditions x0 = 0.25,
y0 = 0.75, z0 = 1.05 and Nmax = 30; the ūOPIM analytic approximate solution of Equation (8)
obtained from Equations (37), (38) and (A4).

Table 2. The approximate analytic solution ūOPIM of Equation (8) given by Equations (37) and (38)
and the corresponding numerical solution for initial conditions x0 = 0.25, y0 = 0.75, z0 = 1.05 and
the index Nmax = 30 (absolute errors: ϵu = |unumerical − ūOPIM|).

t unumerical ūOPIM ϵu

0 −8.12291 × 10−22 −7.10542 × 10−15 7.10542 × 10−15

1/2 −0.1009833721 −0.1009828870 4.85037 × 10−7

1 −0.5875537666 −0.5875532607 5.05920 × 10−7

3/2 −1.2588228636 −1.2588222150 6.48530 × 10−7

2 −1.8816621245 −1.8816616017 5.22813 × 10−7

5/2 −2.2683521270 −2.2683518309 2.96142 × 10−7

3 −2.3108289294 −2.3108281614 7.67938 × 10−7

7/2 −1.9975070462 −1.9975063255 7.20673 × 10−7

4 −1.4151229407 −1.4151225133 4.27380 × 10−7

9/2 −0.7351867600 −0.7351857248 1.03520 × 10−6

5 −0.1849885987 −0.1849876273 9.71333 × 10−7

2 4 6 8 10
t

-2.0

-1.5

-1.0

-0.5

uHtL

Figure 2. Profile of the approximate analytic solution ūOPIM of Equation (8) obtained from
Equations (37), (38) and (A4) for initial conditions x0 = 0.25, y0 = 0.75, z0 = 1.05 and Nmax = 30;
OPIM solution (dotted line) and numerical solution (solid line).
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Table 3. The approximate analytic solution x̄OPIM given by Equation (9) and corresponding numerical
solution for initial conditions x0 = 0.25, y0 = 0.75, z0 = 1.05 and the index Nmax = 30 (absolute
errors: ϵx = |xnumerical − x̄OPIM|).

t xnumerical x̄OPIM ϵx

0 0.25 0.2499999249 7.50267 × 10−8

1/2 −0.6367781227 −0.6367801438 2.02113 × 10−6

1 −1.2376076804 −1.2376093968 1.71634 × 10−6

3/2 −1.3673785582 −1.3673786474 8.91577 × 10−8

2 −1.0603932046 −1.0603910929 2.11171 × 10−6

5/2 −0.4497705143 −0.4497711768 6.62540 × 10−7

3 0.2837908478 0.2837896153 1.23259 × 10−6

7/2 0.9401129558 0.9401146702 1.71439 × 10−6

4 1.3313637430 1.3313651699 1.42692 × 10−6

9/2 1.3107276683 1.3107251137 2.55464 × 10−6

5 0.8126645233 0.8126672218 2.69845 × 10−6

xHtL

zHtL

yHtL

2 4 6 8 10
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 3. Profile of the closed-form solutions x̄OPIM, ȳOPIM and z̄OPIM given by
Equations (9) and (A4) for initial conditions x0 = 0.25, y0 = 0.75, z0 = 1.05 and Nmax = 30; OPIM
solution (dotted line) and numerical solution (solid line).

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t

-1.5

-1.0

-0.5

0.5

1.0
xHtL

Figure 4. Profiles of the approximate analytical solution x̄OPIM(t) of Equation (3) given by
Equation (A4), the iterative solution xiter(t) given by Equation (41) and the corresponding numerical
solution; OPIM solution (dashed black line), iterative solution (dotted red line) and numerical solution
(solid green line).
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Table 4. Values of the approximate analytical solution x̄OPIM(t) (A4), the iterative solution xiter(t)
Equation (41) and the corresponding numerical solution.

t xnumerical x̄OPIM xiter

0 0.25 0.2499999249 0.25
0.35 −0.3847286943 −0.3847266999 −0.3823724677
0.7 −0.9282966040 −0.9282953550 −0.9683700083

1.05 −1.2724487484 −1.2724506529 −1.4370077000
1.4 −1.3794335466 −1.3794320704 −1.7324569333

1.75 −1.2616050449 −1.2616062739 −1.8234993489
2.1 −0.9572932068 −0.9572918609 −1.7129807750

2.45 −0.5195989669 −0.5196005038 −1.4472651645
2.8 −0.0116471526 −0.0116453617 −1.1256885333

3.15 0.4978649029 0.4978635857 −0.9100128968
3.5 0.9401129558 0.9401146702 −1.0338802083

OPIM Solutions versus Iterative Solutions

To emphasize the advantages of the presented method, the iterative solutions were
obtained using the iterative method [58].

If system (3) is integrated over the interval [0, t], it results in the following:

x(t) = x(0) +
t∫

0

(−y(s)− z(s)) ds

y(t) = y(0) +
t∫

0

x(s) ds

z(t) = z(0) +
t∫

0

x(s)z(s) ds

. (39)

The iterative procedure leads to the following:

x0(t) = x(0), x1(t) = N1(x0, y0, z0) =

t∫
0

(−y0(s)− z0(s)) ds,

y0(t) = y(0), y1(t) = N2(x0, y0, z0) =

t∫
0

x0(s) ds,

z0(t) = z(0), z1(t) = N3(x0, y0, z0) =

t∫
0

x0(s)z0(s) ds,

· · ·

xm(t) = N1

(
m−1

∑
i=0

xi,
m−1

∑
i=0

yi,
m−1

∑
i=0

zi

)
− N1

(
m−2

∑
i=0

xi,
m−2

∑
i=0

yi,
m−2

∑
i=0

zi

)
,

ym(t) = N2

(
m−1

∑
i=0

xi,
m−1

∑
i=0

yi,
m−1

∑
i=0

zi

)
− N2

(
m−2

∑
i=0

xi,
m−2

∑
i=0

yi,
m−2

∑
i=0

zi

)
,

zm(t) = N3

(
m−1

∑
i=0

xi,
m−1

∑
i=0

yi,
m−1

∑
i=0

zi

)
− N3

(
m−2

∑
i=0

xi,
m−2

∑
i=0

yi,
m−2

∑
i=0

zi

)
,

m ≥ 2.

(40)

The solutions of Equation (3), using the iterative algorithm, can be written as

xiter(t) =
∞

∑
m=0

xm(t), yiter(t) =
∞

∑
m=0

ym(t), ziter(t) =
∞

∑
m=0

zm(t),
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The iterative solutions xiter(t) become the following after five iterations, when consid-
ering the initial conditions x(0) = 0.25, y(0) = 0.75 and z(0) = 1.05 (presented in Table 4)
and when taking into account algorithm (40):

xiter(t) =
6

∑
m=0

xm(t) = 0.25 − 1.8t − 0.125t2 + 0.23t3 + 0.0104166666t4 − 0.015t5

yiter(t) =
6

∑
m=0

ym(t) = 0.75 + 0.25t − 0.899t2 − 0.04166t3 + 0.07499t4 + 0.0020833t5

ziter(t) =
6

∑
m=0

zm(t) = 1.05 + 0.2625t − 0.912187499t2 − 0.27726562499t3+

+0.4637021484t4 + 0.16374291992t5 − 0.1719049153t6 − 0.06765617675t7+
+0.0480402343t8 + 0.01614275537t9 − 0.0062000939t10 − 0.00178433279t11+
+0.0002424569t12 + 0.00006936427t13 + 4.047309 × 10−6t14 + 6.8359375 × 10−8t15.

(41)

Figure 4 and Table 4, respectively, present a parallel between the OPIM solutions x̄OPIM
and the corresponding iterative solutions xiter given in Equation (41). This comparative
analysis highlights the efficiency and the accuracy of the modified OPIM method using
only one iteration.

The improved precision and efficiency of the OPIM method (using just one iteration),
compared to those of the iterative method described in [58] (using six iterations), are
observed in the presented comparison.

The advantages of the OPIM method versus other methods are efficiency, convergence
control (in the sense that the residual functions are smaller than 1), the non-existence of
small parameters and the writing of the solutions in an effective form.

5. Conclusions

A new analytical approach, the OPIM, for solving second-order nonlinear differential
equations was developed, which uses only one iteration.

The analytical approximate solutions were built for a class of nonlinear dynamical
systems that possess a Hamilton–Poisson structure.

The obtained results were validated by graphically comparing them with the corre-
sponding numerical solutions.

The accuracy of the results is illustrated through graphical and tabular representations.
These comparisons prove the precision of the applied method in the sense that the

analytical solutions are approaching the exact solution.
The achieved results have high potential, and they encourage the study of dynamical

systems with similar properties.
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Appendix A

• Example 1. ūOPIM are the approximate solutions for the problem given by Equation (8)
for initial conditions x0 = 0.25, y0 = 0.75 and z0 = 1.05. The numerical values of the
convergence-control parameters for the ūOPIM obtained from Equations (37) and (38)
for different values for the index number Nmax are shown below.

Nmax = 16

B0 = 2942.3987045209, ω0 = 0.1872140950, B1 = −2277.4664984025,
B2 = 929.9666204774, B3 = −2365.8137055520, B4 = 1614.0410554637,
B5 = −1726.7267742331, B6 = −384.6305666122, B7 = 1105.7088313601,
B8 = −270.3706154636, B9 = 1563.3476193879, B10 = −876.4537609138,
B11 = 369.2469794506, B12 = −1652.6644934395, B13 = 1003.0637212331,
B14 = 296.9496454666, B15 = −323.8055351347, B16 = 51.7305569975,
B17 = 1.4782153935, C1 = −2210.8805395602, C2 = −1302.8895370105,
C3 = 1381.4500261803, C4 = −1098.9129853010, C5 = 392.1520297252,
C6 = 606.2526436151, C7 = 1005.8968120707, C8 = −271.7326148408,
C9 = 18.3930286946, C10 = −982.3334058149, C11 = −275.1740357403,
C12 = 90.1640177242, C13 = 1277.7157008872, C14 = −876.9746639823,
C15 = 79.7612463982, C16 = 49.8141978318, C17 = −7.0445665159;

(A1)

Nmax = 20

B0 = 3025.5838046308, ω0 = 0.1872140950, B1 = −2349.1419128881,
B2 = −114.6747477630, B3 = −1919.9490440436, B4 = 2319.2192731118,
B5 = −531.7989115493, B6 = −782.3287359830, B7 = 250.2753467404,
B8 = −868.2368955741, B9 = 87.7513134929, B10 = 1680.2445728889,
B11 = −371.4521824721, B12 = 242.3209211057, B13 = −942.1602939038,
B14 = 392.1395971620, B15 = −798.1684059125, B16 = 704.4024112430,
B17 = 367.1643205717, B18 = −525.5433966193, B19 = 131.0292633939,
B20 = 6.4008648607, B21 = −3.0771624930, C1 = −3021.0633505729,
C2 = −336.7749041298, C3 = 1617.1360534015, C4 = 161.9816973614,
C5 = −1234.2002675705, C6 = 257.6280048847, C7 = 27.9151428586,
C8 = 165.6675449184, C9 = 1169.9207598553, C10 = 196.5472435547,
C11 = −1339.5013121607, C12 = 181.9668618909, C13 = −586.9167278849,
C14 = 630.9934889360, C15 = −315.8770380662, C16 = 1117.5020429408,
C17 = −999.9023498282, C18 = 131.9516750849, C19 = 121.5469715846,
C20 = −35.0350007173, C21 = 1.2334379033;

(A2)
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Nmax = 24

B0 = 4485.2699687915, ω0 = 0.1872140950, B1 = −2885.7835398555,
B2 = 318.3400077264, B3 = −2328.7708884658, B4 = 168.1854960399,
B5 = −233.8383177588, B6 = −379.4467657078, B7 = 553.7698800781,
B8 = −259.7110323592, B9 = 603.9848696093, B10 = 164.2661978826,
B11 = −90.8320592630, B12 = 597.4493832746, B13 = −814.9187423438,
B14 = 434.9875966880, B15 = −726.5061317925, B16 = 399.6932514365,
B17 = −386.9720753828, B18 = 484.8341396947, B19 = −18.2043020233,
B20 = 110.0799194196, B21 = −344.5579934161, B22 = 151.1790234702,
B23 = 8.6169578441, B24 = −12.1526298956, B25 = 1.0377863087,
C1 = −4494.3134719140, C2 = −681.4983378341, C3 = 366.9787654643,
C4 = 79.0321334546, C5 = 706.8725056672, C6 = 93.4591956610,
C7 = 355.6767739119, C8 = 356.2421828202, C9 = −145.4218501630,
C10 = 100.7306402209, C11 = −258.8152054785, C12 = −196.1677615503,
C13 = −262.1918860871, C14 = −46.6443041101, C15 = 164.1315723509,
C16 = −18.2318964618, C17 = 346.1488094514, C18 = −30.5041444734,
C19 = 9.6631904207, C20 = −334.7839498880, C21 = 102.4211950696,
C22 = 127.4074306847, C23 = −66.5022126268, C24 = 5.6737744489,
C25 = 0.6682095687;

(A3)

Nmax = 30

B0 = 127.7274399971, ω0 = 0.1872140950, B1 = −187.2748949565,
B2 = 120.6708615283, B3 = −91.6937684921, B4 = 98.5562060436,
B5 = −74.9262181133, B6 = 29.5652202070, B7 = −50.2015847799,
B8 = 23.5764369421, B9 = −25.1038330743, B10 = 28.3727928858,
B11 = 2.6970666195, B12 = −28.2663164848, B13 = 39.8700234731,
B14 = −43.3902328841, B15 = 46.6864351250, B16 = −10.0717749491,
B17 = 10.0163781237, B18 = 3.6958482985, B19 = −26.8139301812,
B20 = 15.3505281629, B21 = −29.9376576614, B22 = 23.6188835466,
B23 = −23.2746632115, B24 = 27.6232154691, B25 = −4.8330457165,
B26 = 15.2403399561, B27 = −29.9469820973, B28 = 12.5358233887,
B29 = 0.9977333132, B30 = −1.1705188494, B31 = 0.1041883709,
C1 = −44.2286359665, C2 = −3.9606410061, C3 = 40.2176874971,
C4 = −48.6886086678, C5 = −5.0917740697, C6 = −5.4407927352,
C7 = −0.5803367342, C8 = 18.2417598635, C9 = 10.2416050566,
C10 = 3.3726095273, C11 = −3.3847475243, C12 = −5.9340745261,
C13 = 17.2391632248, C14 = −7.9968815319, C15 = 16.4978751754,
C16 = −7.3688792214, C17 = −18.0191271632, C18 = 0.8474674746,
C19 = −15.3634532205, C20 = 8.2595866463, C21 = 5.3270126941,
C22 = −1.6101794033, C23 = 17.3908490316, C24 = −5.3557297651,
C25 = 8.0653511277, C26 = −25.7697069658, C27 = 5.3389515391,
C28 = 12.0335922084, C29 = −6.0744694380, C30 = 0.5311077240,
C31 = 0.0658807727.

(A4)
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