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Abstract: In non-Markovian tandem queueing networks the output process of one site, which is the
input process to the next site, is not renewal. Consequently, the correlation analysis of that output
processes is essential when studying such networks. A correlation analysis in the M/G/1 queue has
been studied in the literature via derivation of the joint Laplace-Stieltjes transform (LST) of the sum
of two consecutive inter-departure times. That LST is obtained by considering all possible cases at
departure epochs. However, those epochs are expressed via dependent variables. In this paper, we
first extend the analysis to the more general PH/G/1 queue, and investigate various queues, such
as E2/G/1 and C2/C2/1. Then, we consider the lag-n correlation, which requires derivation of the
joint LST of sum of n + 1 consecutive inter-departure times. Yet, deriving this LST by the common
approach becomes impractical for n + 1 ≥ 3, as the number of all possible cases at departure epochs
increases significantly. To overcome this obstacle, we derive a corresponding single-parameter LST,
which expresses the sum of n + 1 consecutive inter-departure times via the (n + 1)-st departure epoch
only. Consequently, the latter LST is expressed via a much fewer number of possible cases, and
not less important, as a function of independent variables only, eliminating the need to derive the
corresponding joint density. Considering the M/G/1 and the E2/G/1 queues, we demonstrate that
the joint LST can be reconstructed directly via the corresponding single-parameter LST when n + 1 = 2.
We further conjecture that the multi-parameter joint LST can be reconstructed from the corresponding
single-parameter LST in more general queues and for values of n + 1 > 2. The conjecture is validated
for various PH/G/1 queues and proved for n + 1 = 3 in the M/G/1 case. The new approach facilitates
the calculation of lag-n correlation of the departure process from PH/G/1 queue for n + 1 ≥ 3. Our
analysis illuminates the cases when using renewal approximation of the output process provides a
proper approximation when studying non-Markovian stochastic networks.

Keywords: departure process; Laplace–Stieltjes transform; lag-n correlation; PH/G/1 queue

MSC: 60K25

1. Introduction

Continuous-time queueing networks are rapidly growing in prevalence in modern
life. Manufacturing lines, service centers, communication networks, transport systems,
supply chains, etc., are just a few examples of such networks. Those networks have several
connected single-site queueing systems, where jobs propagate through a network over
various routes. Efficient control of such complex networks cannot be achieved without a
proper probabilistic analysis. Nevertheless, except for some special cases, such as Tandem
Jackson Networks [1] or Asymmetric Inclusion Process (ASIP) networks [2–4] that assume
Markovian properties, exact expressions for the steady-state distribution of the queue
lengths and performance measures of non-Markovian networks are hardly available. The
Markovian property of Tandem Jackson Networks leads to a product-form solution of the
joint probability-generating function of the queue lengths, as well as of the corresponding
joint probability mass function. However, even under Markovian assumptions, in the ASIP
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model, only the joint probability-generating function of the queue workloads exhibits a
product-form.

The reason that Tandem Jackson Networks have exact expressions is rooted in the
fact that the departure process from each queue is also Markovian. However, in many
real-life networks, inter-arrival times and service durations do not necessarily follow
exponential distributions. Consequently, the inter-departure times involve correlations
and the departure process becomes a complex non-renewal, requiring a further deep
probabilistic analysis. Thus, the study of the departure process from single-site non-
Markovian queues is primarily motivated by the quest of analyzing sequential queueing
networks. Methods of queueing network analysis such as decomposition approximations
usually ignore dependencies between inter-departure times and act as if the inflow from
one queue to the next is a renewal process. Indeed, taking these dependencies into account
has the potential for improving approximations such as in [5–9]. The study of the departure
process from non-Markovian queues can also be applied to extend the analysis of queueing
networks such as those studied in [10–15]. For example, considering the latter paper,
the study of networks where products’ quality deteriorates over time can be extended to
non-Markovian networks.

The steady-state probabilistic characterization of the departure instants can be ex-
pressed by the Laplace–Stieltjes transform (LST) of the inter-departure time distribution
and by their correlation structure. The well-known M/G/1 queue is thoroughly studied
by [16], who represents the LST of inter-departure times along with its correlation. Bitran
and Dasu (1994) [17] studied the ΣPHi/PH/1 queue and presented a formula to calcu-
late the second moment of inter-departure times. Yeh and Chang (2000) [18] studied an
M/G/1-type queue, calculated the LST of the stationary distribution of inter-departure
times and provided a recursive formula for the corresponding lag-n correlation. Ferng and
Chang (2001) [19] studied the lag-n correlation in a BMAP/G/1 queue. Shioda (2003) [20]
derived the LST of inter-departure times, as well as their correlation, for a queue with a
Markovian Arrival Process (MAP) and semi-Markovian (SM) service process. Similarly,
Lim et al. (2006) [21] derived it for a queue with a Markov renewal arrival process and
general service durations. Lee and Luh (2006) [22] provided the LST of inter-departure
times in a PH/G/1 queue, but, due to computational complexity, restricted their numerical
examples only to Em/Ek/1 queues. Horváth et al. (2010) [23] presented the LST of inter-
departure times and the stationary joint moments of two consecutive inter-departure times
in an MAP/MAP/1 queue. Sagron et al. (2019) [24] provided an efficient way to express
the LST of inter-departure times in a PH/G/1 queue with generalization to an ME/G/1
queue, in which the inter-arrival times follow a Matrix-Exponential (ME) distribution.

In this paper, we extend the analysis of inter-departure times from PH/G/1 queues,
concentrating on the correlation aspect, as it is key for the analysis of tandem queueing
networks with general service times. We focus on Phase-type (PH) distribution since it
constitutes a very versatile class of distributions and can represent any ME distribution as
well (see e.g., [25]). In addition, PH distributions are dense in the class of all distributions
of all non-negative continuous distribution functions with any required degree of accu-
racy [26]. For that reason, the PH/G/1 queue covers a wide variety of systems that arise in
different applications.

The correlation between two consecutive inter-departure times is derived from the
joint Laplace–Stieltjes transform of the sum of two consecutive inter-departure times. The
derivation of the latter joint LST for the M/G/1 queue has been already investigated in
the literature by considering all possible cases at departure epochs. Those epochs are
expressed via dependent variables. In this paper, we first extend this approach to derive
the joint LST of two consecutive inter-departure times in the more general PH/G/1 queue.
Consequently, we investigate the correlation between two consecutive inter-departure
times for different levels of the squared coefficient of variation (SCV) of inter-arrival times
and service duration distributions.
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Then, we consider the lag-n correlation, which requires the derivation of the joint LST
of the sum of n + 1 consecutive inter-departure times. Deriving this LST by the common
approach becomes impractical for values of n + 1 ≥ 3, as the number of all possible
cases at departure epochs increases significantly. To overcome this obstacle, we derive a
corresponding single-parameter LST, which expresses the sum of n + 1 consecutive inter-
departure times via the (n + 1)-st departure epoch only. This approach has two significant
advantages with respect to the derivation of the latter LST: (i) it enables its derivation via
much fewer possible cases, and (ii) it allows us to express it as function of independent
variables only, which eliminates the need to derive the corresponding joint density, as well.
We exhibit an interesting property in which the joint LST can be reconstructed directly
via the corresponding single-parameter LST. This finding facilitates the derivation of the
multi-parameter joint LST of the sum of n + 1 consecutive inter-departure times. For
n + 1 = 2, we prove the existence of this property in M/G/1 and E2/G/1 queues and
validate it for various cases of the more general C2/C2/1 queue. We further conjecture
that the results can be extended to the sum of n + 1 consecutive inter-departure times. To
enhance this conjecture, we prove it for n + 1 = 3 in the M/G/1 queue.

Our results are directed towards a deeper analysis of non-Markovian queueing net-
works. In particular, calculating correlation between departure instants reveals the range in
which the renewal assumption can serve as a good approximation for performance of the
next site’s queue.

Also, it can possibly serve as a stepping stone to derive a better approximation in the
cases where the renewal assumption fails.

The rest of the paper is as follows. For completeness, In Section 2, we give a con-
cise description of a PH distribution. In Section 3, we derive the LST of the sum of
two consecutive inter-departure times from a PH/G/1 queue, calculate the correlation
between them in various queues and discuss the consequences. In Section 4, we propose
a new and simpler way to express this LST for n + 1 ≥ 3 epochs. Section 5 summarizes
the paper.

2. Phase-Type Distribution

For completeness, we give a short description of PH distribution as follows. A PH
distribution, first introduced by [27], is the distribution of the time until absorption to state
m + 1 in an (m + 1)-state continuous-time Markov chain (CTMC). In what follows, vectors
and matrixes are presented by bold letters.

Let Y(t) denote the state of the CTMC at time t with the following (m + 1) × (m + 1)
generator matrix Q:

Q =

(
U U0

0 0

)
.

U is an m × m nonsingular matrix with negative diagonal and non-negative off-
diagonal entries and U0 is a non-negative column vector that satisfies U0 = −Ue, where e is
a column vector of ones. States 1 through m are transient, such that absorption into state
m + 1 from any initial state is certain. Further, let the process have an initial probability of
starting in any of the m states given by the initial probability vector α = (α1, α2, . . ., αm),
where αe = 1. Namely, P(Y(0) = i) = αi.

Let U denote the time until the process reaches the absorbing state m + 1 when
starting at time t = 0 according to the m-dimensional probability vector α. That is, after
starting at state i with probability αi, the process alternates between the m transient states
represented by the matrix U until finally being absorbed at state m + 1, i.e., given that Y(0) = i,
U = inf {t > 0|Y(t) = m + 1}. U is said to be PH-distributed, which is denoted by PH(α,U)
and called a PH representation. The cumulative distribution function (cdf) of U, FU(u),
defined for u ≥ 0 is provided by

Fu(u) = 1 − α·exp(Uu)e. (1)
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The corresponding probability density function (pdf), fU(u), defined for u > 0, is
provided by

fu(u) = α·exp(Uu)U0, (2)

and Ũ(θ), the corresponding LST defined for θ ≥ 0, is provided by

Ũ(θ) =

∞∫
0

e−θu fU(u)du = α(θIm − U)−1U0, (3)

where Im is a unit matrix with dimension m. The nth moment of U is provided by the
following (see [28]):

E(Un) = n!α(−U−1)ne, n = 1, 2, . . . (4)

The following theorem about PH properties, originally shown for discrete PH ran-
dom variables but holding for continuous PH random variables as well, is provided in
Theorem 2.6.1 in [28]:

Let Z and Y be two independent random variables. Assume that Z is PH-distributed
having representation PH(α,Z) with m phases and Y is PH-distributed having representa-
tion PH(β,Y) with k phases. Then, their sum X + Y is PH-distributed having representation
PH(γ,C) with m + k phases, where

(γ, C) =

α, 0, . . . , 0︸ ︷︷ ︸
k

 ,
(

Z Z0β

0 Y

) (5)

3. Correlation between Two Consecutive Inter-Departure Times from a PH/G/1 Queue

In this section, we analyze the correlation between two consecutive inter-departure
times from a PH/G/1 queue. This is achieved by first deriving the LST of the sum of
two consecutive inter-departure times and then calculating the correlation between them.

A PH/G/1 queue is a single-server infinite-buffer queue, characterized by i.i.d. PH
inter-arrival times, T1, T2,. . ., all distributed as T, and by i.i.d. general service durations,
X1, X2,. . ., all distributed as X. T is PH-distributed, having PH(α,T) representation with
m transient phases, and LST T̃(θ); X follows a general distribution function with LST
X̃(θ). It is assumed that the queue is stable, i.e., E(T) = α(−T−1)e > E(X) (see [29]), namely,
ρ ≡ E(X)/E(T) < 1. Let τn denote the departure epoch of the nth departing unit, and let
Dn = τn − τn−1 denote the inter-departure time between the (n − 1)st and the nth departing
unit. In addition, denote by An the instant when the nth unit enters service; by Ln the
number of units left behind the nth departing unit; by Yn the arrival phase of the next
arriving unit at the departure instant of the nth departing unit; and by Tri

n the remaining
inter-arrival time given Yn = i. For ease of exposition, we count the nth departure as the
0th one.

Next, we consider a stable queue and define πl,i to be the probability that right after
a departure instant there are l units in the system, and the next arriving unit is at its i-th
phase, i = 1, . . ., m. The algorithm to calculate these probabilities is presented in [30].

3.1. Joint LST of the Sum of Two Consecutive Inter-Departure Times

Assume that three successive departures occur at instants τ0, τ1, τ2, and consider
D1 = τ1 − τ0 and D2 = τ2 − τ1. The sum of two inter-departure times is D1 + D2 = τ2 (τ0 = 0).
The joint pdf fτ2(d1, d2) for D1 and D2 is denoted by (see [16])

fτ2(d1, d2)∆d1∆d2 = P(d1 ≤ D1 < d1 + ∆d1 , d2 ≤ D2 < d2 + ∆d2), (6)
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and the corresponding joint LST, τ̃2(θ1, θ2), is defined by

τ̃2(θ1, θ2) = E(e−(θ1D1+θ2D2)) =

∞∫
d1=0

∞∫
d2=0

e−θ1d1 e−θ2d2 fτ2(d1, d2)∆d1∆d2. (7)

Given that a departure occurs at time τ0, two successive departures can occur following
one of three cases, where two of them split into two sub-cases. A departure occurring at
time τ0 leaves behind it either of the following:

(i) No other units (L0 = 0);
(ii) A single unit (L0 = 1);
(iii) L0 ≥ 2 units.

In cases (i) and (ii), the next departing unit, occurring at time τ1, leads to one of
two sub-cases:

(a) It leaves no other units in the system (L1 = 0), i.e., during its service duration no other
units arrived;

(b) It leaves L1 ≥ 1 units behind it, i.e., during its service duration at least one unit
has arrived.

Figure 1 summarizes all cases for realizations τ1 = d1, τ2 = d2.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 26 
 

 

 

Figure 1. All cases of two successive departures given a departure at time τ0. 














≥+
=≤≥==+≤

==>====++>
=≤≥==+≤+

==>====++>+

=

=+=

2,
,...,1)|1(,1,)(|

,...,1,,...,1)|,0(,1,)(|
,...,1)|1(,,0,)(|

,...,1,,...,1)|,0(,,0,)(|

021

121002121

12110022121

1210021211

121100221211

212

LXX
miXTrLandiYLXXTrX

mjmiXTrjYLandiYLXTrXTrX
miXTLandiYLXXTXTr

mjmiXTjYLandiYLXTrXTXTr

DD

ii

jji

i

ji

τ  

(8)

In case (1), the first inter-departure time, D1, is the sum of a remaining inter-arrival 
time until the next unit arrives ( iTr1 ) augmented by its own service duration (X1), given 
that the latter unit completes its service before the next unit arrives (T2 > X1). Namely, the 
first unit leaves no units behind it (L1 = 0). Then, the next successive inter-departure time, 
D2, is the sum of the remaining inter-arrival time until the second unit arrives ( iTr1 ), aug-
mented by its own service duration (X2). In case (2), the first inter-departure time, D1, is 
the sum of the remaining inter-arrival time until the next unit arrives ( iTr1 ) augmented 
by its own service duration (X1), given that the latter unit completes its service before the 
next unit arrives (T2 ≤ X1). Namely, the first unit leaves L1 ≥ 1 units behind it. Then, the next 
successive inter-departure time, D2, is the full service duration of the second departing 
unit (X2). In Case (3), the first inter-departure time, D1, is the full service duration of the 

L1 ≥ 1 • Case (iii):   L0 ≥ 2 

τ2 = d2 τ0 τ1 = d1 

D1= X1 D2= X2 

• Case (i):      L0 = 0 

τ2 = d2 τ0 = 0 τ1 = d1 

D1 = Tr1
i + X1 

• Case (ii):     L0 = 1 

τ2 = d2 τ0 = 0 τ1 = d1 

D1 = X1 

Figure 1. All cases of two successive departures given a departure at time τ0.

For better clarity, we refine the number of cases into five:

(1) Case (i), sub-case (a)—each of the two consecutive departures, occurring at times τ0
and τ1, leaves no other units behind it.
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(2) Case (i), sub-case (b)—a departure occurring at time τ0 leaves no other units behind
it, but a departure occurring at time τ1 leaves L1 ≥ 1 units behind it.

(3) Case (ii), sub-case (a)—a departure occurring at time τ0 leaves a single unit behind it,
but a departure occurring at time τ1 leaves no other units behind it.

(4) Case (ii), sub-case (b)—a departure occurring at time τ0 leaves a single unit behind it,
but a departure occurring at time τ1 leaves L1 ≥ 1 units behind it.

(5) Case (iii), a departure occurring at time τ0 leaves L0 ≥ 2 units behind it.

Thus, the sum of two inter-departure times between τ0 and τ2 can be represented by
two instants of successive departures, as provided in Equation (8) below:

τ2 = D1 + D2 =

=



Tri
1 + X1

∣∣∣(T2 > X1) + Trj
2 + X2 , L0 = 0, Y0 = i , and (L1 = 0 , Y1 = j|T2 > X1) i = 1, . . . , m , j = 1, . . . , m

Tri
1 + X1

∣∣∣(T2 ≤ X1) + X2 , L0 = 0, Y0 = i, and (L1 ≥ 1|T2 ≤ X1) i = 1, . . . , m

X1

∣∣∣(Tri
2 > X1) + Trj

2 + X2 , L0 = 1, Y0 = i and (L1 = 0, Y1 = j
∣∣∣Trj

2 > X1) i = 1, . . . , m , j = 1, . . . , m

X1

∣∣∣(Tri
2 ≤ X1) + X2 , L0 = 1, Y0 = i and (L1 ≥ 1

∣∣∣Tri
2 ≤ X1) i = 1, . . . , m

X1 + X2 , L0 ≥ 2

(8)

In case (1), the first inter-departure time, D1, is the sum of a remaining inter-arrival
time until the next unit arrives (Tri

1) augmented by its own service duration (X1), given
that the latter unit completes its service before the next unit arrives (T2 > X1). Namely,
the first unit leaves no units behind it (L1 = 0). Then, the next successive inter-departure
time, D2, is the sum of the remaining inter-arrival time until the second unit arrives (Tri

1),
augmented by its own service duration (X2). In case (2), the first inter-departure time, D1,
is the sum of the remaining inter-arrival time until the next unit arrives (Tri

1) augmented by
its own service duration (X1), given that the latter unit completes its service before the next
unit arrives (T2 ≤ X1). Namely, the first unit leaves L1 ≥ 1 units behind it. Then, the next
successive inter-departure time, D2, is the full service duration of the second departing unit
(X2). In Case (3), the first inter-departure time, D1, is the full service duration of the first
departing unit (X1), given that it leaves no units behind it (L1 = 0, Trj

2 > X1). Then, the next
successive inter-departure time, D2, is the sum of the remaining inter-arrival time until the
second unit arrives (Trj

2), followed by its own service duration (X2). In Case (4), the first
inter-departure time, D1, is the full service duration of the first departing unit (X1), given
that it leaves L0 ≥ 1 units behind it (Trj

2 ≤ X1). Then, the next successive inter-departure
time, D2, is only the service duration of the second departing unit (X2). In Case (5), the
sum of two consecutive inter-departure times, D1 + D2, is the sum of two service durations
(X1 + X2). Note that the random variable τ2 as defined in (8) is expressed in terms of
2m2 + 2m + 1 random variables, not all independent. Owing to the dependencies between
variables in Equation (8), we formulate the joint LST of τ2,τ̃2(θ1, θ2) via the joint pdf
fτ2(d1, d2).

We now consider the contributions of Cases (1)–(5) to fτ2(d1, d2) as follows:
Case (1): The probability that at the departure time τ0 = 0 the system is empty and

the arrival phase of the next unit is i is provided by π0,i. During the time until the next
departure at d1, a unit arrives between u and u + ∆u with probability fTri (u)∆u, so the
server starts serving at time u. It completes the service between d1 and d1 + ∆d1, with
probability fX (d1 − u)∆d1. The next arriving unit starts its arrival process at time u in phase
l with probability αl. Then, the probability that during d1 − u there are no arrivals and
that the arriving unit is in its j-th arrival phase at time τ1 = d1 is exp(T(d1 − u))lj (see [28],
p. 41). Similarly to d1, the length of time until the next departure at d2 consists of (i) the
remaining time until arrival, occurring between v and v + ∆v with probability fTri (v)∆v,
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and (ii) a full service duration, starting at time v and completed between d2 and d2 + ∆d2
with probability fX(d2 − v)∆d2. Thus, the contribution of Case (1) to fτ2(d1, d2) is

m

∑
i=1

π0,i

m

∑
l=1

m

∑
j=1

d1∫
u=0

fTri (u) fX(d1 − u) αl exp (T (d1 − u))l j∆u ·
d2∫

v=0

fTrj(v) fX(d2 − v)∆v.

Case (2): The probability that at the departure time τ0 = 0 the system is empty and
the arrival phase of the next unit is i is provided by π0,i. During d1, the next unit arrives
between u and u + ∆u with probability fTri (u)∆u, so, the server starts serving at time u.
It completes the service between d1 and d1 + ∆d1, with probability fX(d1 − u)∆d1. The
probability that at least one unit arrives during the service duration d1 − u is FT(d1 − u). In
such a case, the server immediately starts serving the next unit at time d1, since there are
L1 ≥ 1 units at the system. It completes the service between d2 and d2 + ∆d2 with probability
fX(d2)∆d2. Thus, the contribution of Case (2) to fτ2(d1, d2) is

m

∑
i=1

π0,i

d1∫
u=0

fTri (u) fX(d1 − u)FT(d1 − u)∆u · fX(d2)

Case (3): The probability that at the departure time τ0 = 0 there is a single unit at the
system and the next arriving unit is in its i-th arrival phase is provided by πi,i. Since there
is a single unit at the system at time τ0, the server immediately starts serving this unit. It
completes the service between d1 and d1 + ∆d1 with probability fX(d1)∆d1. The probability
that during d1 there are no arrivals and the next unit is in its j-th arrival phase at time
τ1 = d1 is given by exp(Td1)ij. During d2, the next unit arrives between v and v + ∆v with
probability fTri (v)∆v. The server that starts at time v completes the service between d2 and
d2 + ∆d2, with probability fX(d2 − v)∆d2. Thus, the contribution of Case (3) to fτ2(d1, d2) is

m

∑
i=1

π1,i fX(d1)
m

∑
j=1

exp (T · d1)i j ·
d2∫

v=0

fTrj(v) fX(d2 − v)∆v

Case (4): The probability that at the departure time τ0 = 0 there is a single unit at
the system and the next arriving unit is in its i-th arrival phase is provided by π1,i. The
time until its arrival is Tr

i. Since there is a single unit at the system at time τ0, the server
immediately starts serving this unit. It completes the service between d1 and d1 + ∆d1 with
probability fX(d1)∆d1. The probability that at least one unit arrives during d1 is FTri (d1).
The server starts immediately serving the next unit at time d1, since there are L1 ≥ 1 units
at the system. It completes the service between d2 and d2 + ∆d2 with probability fX(d2)∆d2.
Thus, the contribution of case (4) to fτ2(d1, d2) is

m

∑
i=1

π1,i fX(d1) FTri (d1) · fX(d2)

Case (5): The probability that at the departure time τ0 = 0 there are at least two units

in the system is provided by
∞
∑

l=2

m
∑

i=1
πl,i. Then, the server starts immediately servicing

two units consecutively. It completes the first service between d1 and d1 + ∆d1 with proba-
bility fX(d1)∆d1 and the second unit between d2 and d2 + ∆d2 with probability fX(d2)∆d2.
Thus, the contribution of Case (5) to fτ2(d1, d2) is

∞

∑
l=2

m

∑
i=1

πl,i fX(d1) fX(d2)

Collecting all the contributions of Cases (1)–(5), we obtain
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fτ2(d1, d2) =
m
∑

i=1

m
∑

l=1

m
∑

j=1
π0,i ·

d1∫
u=0

fTri (u) fX(d1 − u)αl exp (T(d1 − u))l j∆u
d2∫

v=0
fTrj(v) fX(d2 − v)∆v

+
m
∑

i=1
π0,i

d1∫
u=0

fTri (u) fX(d1 − u) FT(d1 − u)∆u · fX(d2)

+
m
∑

i=1

m
∑

j=1
π1,i fX(d1) exp (T · d1)i j ·

d2∫
v=0

fTrj(v) fX(d2 − v)∆v

+
m
∑

i=1
π1,i fX(d1) FTri (d1) · fX(d2) +

∞
∑

l=2

m
∑

i=1
πl,i fX(d1) fX(d2)

(9)

Finally, the joint LST of the sum of two consecutive inter-departure times, τ̃2(θ1, θ2), is
obtained by substituting Equation (9) in Equation (7).

This result generalizes Takagi’s formula for the M/G/1 queue to the PH/G/1 queue.
Indeed, for exponential inter-arrival times with mean 1/λ, when substituting T = −λ and
FT (u) = FTr1(u) = λe−λu in Equation (9), and then substituting Equation (9) in Equation (7),
Takagi’s (1991) [16] result is obtained:

τ̃2(θ1, θ2) = π0

[
λ2 X̃(λ+θ1)

λ+θ1

X̃(θ2)
λ+θ2

+ λ
[X̃(θ1)−X̃(θ1+λ)]

λ+θ1
X̃(θ2)

]
+ π1

[
λ

X̃(λ+θ1)X̃(θ2)
λ+θ2

+
[

X̃(θ1)− X̃(θ1 + λ)
]

X̃(θ2)
]
+

∞
∑

l=2
πl X̃(θ1)X̃(θ2)

(10)

Note that in this case
m
∑

i=1
πl,i shrinks to πl.

As another example, consider the E2/G/1 queue. Inter-arrival times are two-stage
Erlang-distributed, each stage having mean 1/λ, and service durations are generally

distributed. In this case, Tr1~T~Er(2,λ) and Tr2~Exp (λ). Substituting T =

(
−λ λ
0 −λ

)
,

FT (u) = FTr1(u) = λ2ue−λu and FTr2(u) = λe−λu in (9) and then substituting (9) in (7) leads
to Equation (11) below:

τ̃2(θ1, θ2) =

π0,1

[(
λ

λ+θ1

)2
X̃(λ + θ1)

(
λ

λ+θ2

)2
− λ

∂X̃(λ)
∂λ

λ
λ+θ2

+
(

λ
λ+θ1

)2 [
X̃(θ1)− X̃(λ + θ1) + λ

∂X̃(λ+θ1)
∂(λ+θ1)

]]
X̃(θ2)

+ π0,2

[
λ

λ+θ1
X̃(λ + θ1)

(
λ

λ+θ2

)2
− λ

λ+θ1

∂X̃(λ+θ1)
∂(λ+θ1)

λ
λ+θ2

+ λ
λ+θ1

[
X̃(θ1)− X̃(λ + θ1) + λ

∂X̃(λ+θ1)
∂(λ+θ1)

]]
X̃(θ2)

+π1,1

[
X̃(λ + θ1)

(
λ

λ+θ2

)2
− λ

∂X̃(λ+θ1)
∂(λ+θ1)

λ
λ+θ2

+ X̃(λ)− X̃(λ + θ1) + λ
∂X̃(λ+θ1)
∂(λ+θ1)

]
X̃(θ2)

+π1,2

[
X̃(λ)− X̃(λ + θ1)

]
X̃(θ2) +

∞
∑

l=2
πl X̃(θ1)X̃(θ2)

(11)

To further validate Equation (11), we compare it with the joint LST for various PH
service distributions, estimated by simulation. In all cases studied, the analytical result
is well within the confidence interval of the simulation result. Appendix A presents the
simulated validation for the E2/E2/1 queue.

3.2. Correlations between Two Consecutive Inter-Departure Times

In this section, we analyze the correlation between two consecutive inter-departure
times in the M/G/1, E2/G/1 and C2/G/1 queues in order to study the impact of different
levels of inflow variability on the departure process.

Since E(D1) = E(D2) and Var(D1) = Var(D2), the correlation between D1 and D2 is
provided by

corr(D1, D2) =
E(D1D2)− E2(D1)

var(D1)
, (12)

where E(D1D2) =
∂2τ̃2(θ1,θ2)

∂θ1∂θ2

∣∣∣
θ1=θ2=0

and τ̃2(θ1, θ2) is obtained by substituting Equation (9) in (7).
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E2 represents a two-stage Erlang distribution, having low variability, namely,
SCV = 0.5 for any parameter (specifically, we chose mean 1 at each stage). C2 repre-
sents a two-stage Coxian distribution, the variability of which depends on the distribution
parameters. In order to examine the impact of high arrival variability on the departure
process, we chose the following parameters: λ1 = 4.309 for the first stage and λ2 = 1 for the
second, with p = 0.5 for the probability of moving from the first stage to the second. This
implies that the arrival’s SCV in this case is SCV = 1.5. For general distribution (G), we
chose the C2 distribution with different values of SCV (less than or greater than 1). Figure 2
depicts the correlation values at each queue for the range ρ ϵ [0, 1].
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Figure 2. The correlation values between two consecutive inter-departure times at each one of
three queue types: M/G/1, E2/G/1 and C2/G/1, for the range ρ ϵ [0, 1]. Different cases of SCV of
the service distribution G are examined: SCV = 0.5 is depicted by the blue line; SCV = 1 (exponential
distribution) is depicted by the red line; SCV = 1.5 (SCV > 1 in C2/G/1 queue) is depicted by the
orange line; while SCV = 4 (SCV >> 1 in C2/G/1 queue) is depicted by the purple line.

Note that in the C2/G/1 queue it is not possible to set the value of the service’s SCV
within the range ρ ϵ [0, 1], since the SCV also determines the value of ρ. Therefore, in this
queue, the orange line depicts a case where the SCV is greater than 1 (and not exactly 1.5)
and the purple line depicts a case where the SCV is significantly greater than 1 (and not
exactly 4).
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Several insights can be drawn from Figure 3:

o When the system is nearly empty (ρ→0), the departure process tends to imitate the
arrival process, hence the correlation tends to zero. When the system is almost fully utilized
(ρ→1), the departure process tends to imitate the service process, hence the correlation
tends to zero, as well.
o The sign of the correlation in the range ρ ϵ (0, 1) is mainly determined by the arrival
process: it is negative when the arrival variability is low, and positive when it is high. This
can be seen in Figure 3. In the E2/G/1 queue with arrival’s SCV = 0.5, the correlation is
negative for all examined service distributions. The negative value implies that when the
inter-arrival times have relatively low variability, the departure following a short inter-
departure time will be stochastically long, and vice versa. Similarly, in the C2/G/1 queue
with arrival’s SCV = 1.5, the correlation is positive for all examined service distributions.
The positive value implies that when the inter-arrival times have relatively high variability,
the departure following a short (long) inter-departure time will be stochastically short
(long), as well.
o In the M/G/1 queue, i.e., when the arrival’s SCV is 1, the service process has opposite
impacts on the correlation sign: service distribution with SCV = 0.5 provides a positive
correlation, while service distribution with SCV = 1.5 provides a negative correlation. The
correlation in the case of SCV = 1 is zero since the departure from the M/M/1 queue is a
renewal process.
o Correlation analysis can help in assessing how justified the renewal assumption is as
an approximation when studying the performance of queueing networks. When the
correlation tends to zero, the performance calculations are more accurate, and vice versa.
Interestingly, Figure 3 shows that when the service’s SCV increases, the absolute correlation
value tends to zero for high utilization. Thus, the renewal assumption in these cases (high
utilization with high service variability) will provide an appropriate approximation in
predicting the performance of two-site tandem networks.
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expresses the corresponding single-parameter LST via the (n + 1)-st departure epoch (blue line).

4. A New Approach to Obtain the Joint LST of the Sum of n + 1 Consecutive
Inter-Departure Times

A higher level of correlation analysis is used by calculating the lag-n correlation, which
is defined as the correlation between D1 and Dn+1 (n = 1, 2, 3. . .). For this calculation, it
is required to calculate the multi-parameter joint LST of the sum of n + 1 consecutive
inter-departure times. It can be achieved by considering all possible scenarios expressed
by dependent variables, in light of [16] and Section 3 above. However, this approach
becomes very impractical as n increases. For example, when the number of phases in the
arrival process is m, the corresponding joint LST, where n + 1 = 2, is expressed in terms of
2m2 + 2m + 1 random variables, and where n + 1 = 3, it is expressed in terms of
2m3 + 4m2 + 6m + 1 random variables.
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In this section, we reveal an interesting property of the joint LST of the sum of
n + 1 consecutive inter-departure times. We show that this LST can be directly reconstructed
through its corresponding single-parameter LST, which is derived via much fewer possible
cases and as a function of independent variables only. For example, the single-parameter
LST of n + 1 = 2 is expressed in terms of 4m + 1 independent random variables, and that of
n + 1 = 3 is expressed in terms of 2(4m + 1) + 2m + 1 variables. Figure 3 illustrates the number
of possible cases at each approach in the cases where n + 1 = 2 and n + 1 = 3, respectively.

In this section, we reveal this property, prove its validity for some queues and validate
it for various cases. First, we present an expression of the sum of two consecutive inter-
departure times directly, via the departure epoch of the second departure, based only
on independent variables. This leads to a direct derivation of a single-parameter LST of
the aforementioned sum without calculating its joint density. Then, we show that the
corresponding joint LST can be readily reconstructed through its single-parameter LST in
M/G/1 and E2/G/1 queues. We conjecture that this reconstruction property holds in more
general cases. To enhance the conjecture, we validate it for various cases of the more general
C2/C2/1 queue for n + 1 = 2, and prove it in the M/G/1 queue for n + 1 = 3. In light of this
conjecture, we propose an expression of the sum of n + 1 consecutive inter-departure times
directly via the (n + 1)-st departure epoch, which is based on independent variables only
and leads to a direct derivation of a single-parameter LST of that sum. The reconstruction
through the single-parameter LST provides the sought after multi-parameter joint LST.

4.1. Single-Parameter LST of Sum of Two Consecutive Inter-Departure Times

Although Equation (8) defines the random variable τ2 in the PH/G/1 queue well, it
is possible to express τ2 directly via the departure epoch of the second unit and not via
the sum of two consecutive inter-departure times as expressed in Equation (8). Namely,
the sum of two inter-departure times can be expressed as τ2 = A2 + X2, where A2 is the
length of time from τ0 = 0 until the instant when the second unit starts service and X2 is
the latter’s service duration. This approach is much simpler than Takagi’s approach since
the corresponding LST consists of fewer variables which are all independent.

The following equation defines τ2 only as a function of the initial system states at time τ0:

τ2 = A2 + X2 =



Tri
1 + (T2

∣∣T2 > X1) + X2 , L0 = 0, Y0 = i, T2 > X1 i = 1, . . . , m
Tri

1 + (T2 + (X1 − T2)
∣∣T2 ≤ X1) + X2 , L0 = 0, Y0 = i, T2 ≤ X1 i = 1, . . . , m

(Trj
2

∣∣∣Trj
2 > X1) + X2 , L0 = 1, Y0 = j, T2 > X1 j = 1, . . . , m

(Trj
2 + (X1 − Trj

2)
∣∣∣Trj

2 ≤ X1) + X2 , L0 = 1, Y0 = j, T2 ≤ X1 j = 1, . . . , m
X1 + X2 , L0 ≥ 2

. (13)

The explanation is as follows: When L0 = 0, the instant A2 is a sum of the remaining
inter-arrival time until the first unit arrives, Tri

1, plus one of two possibilities: either a
full inter-arrival time of the second unit, T2, given that the first unit completes its service
before the latter unit arrives (case 1), or the sum of a full inter-arrival time of the second
unit, T2, plus (X1 − T2), which is the waiting time until the first unit completes its service,
given that the first unit completes its service after the second unit arrives (case 2). When
L0 = 1, the instant A2 is one of two possibilities: either a remaining inter-arrival time of the
second unit, Trj

2, given that the first unit completes its service before the next unit arrives

(case 3), or the sum of a remaining inter-arrival time of the second unit, Trj
2, plus (X1 − Trj

2)
which is the waiting time until the first unit completes its service, given that the first unit
completes its service after the second unit arrives (case 4). When L0 ≥ 2, the instant A2 is
only X1 (case 5).

Then, (13) becomes the following (the variables T2 and Tr2 in the second and
forth lines in are omitted):
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τ2 = A2 + X2 =


Tri

1 + (T2
∣∣T2 > X1) + X2 , L0 = 0, Y0 = i, T2 > X1 i = 1, . . . , m

Tri
1 + (X1

∣∣T2 ≤ X1) + X2 , L0 = 0, Y0 = i, T2 ≤ X1 i = 1, . . . , m
(Tri

2

∣∣Tri
2 > X1) + X2 , L0 = 1, Y0 = j, T2 > X1 j = 1, . . . , m

(X1
∣∣Tri

2 ≤ X1) + X2 , L0 = 1, Y0 = i, T2 ≤ X1 j = 1, . . . , m
X1 + X2 , L0 ≥ 2

. (14)

In fact, Equation (14) resembles Equation (8) but the dependencies between the vari-
ables in cases 1 and 3 in Equation (8) are replaced by independent variables in
Equation (14). Furthermore, Equation (14) can be written as

τ2 = A2 + X2 =


Tri

1 + max (T2, X1) + X2 , L0 = 0, Y0 = i i = 1, . . . , m
max (Tri

2, X1) + X2 , L0 = 1, Y0 = i i = 1, . . . , m
X1 + X2 , L0 ≥ 2

. (15)

It should be noticed that τ2 as defined in Equation (15) is expressed in terms of
4m + 1 independent random variables, whereas in Equation (8) it is expressed in terms of
2m2 + 2m + 1 random variables, not all independent. Thus, Equation (15) facilitates a direct
derivation of a single-parameter LST by a proper partitioning of possible events as follows:

τ̃2(θ) =
m
∑

i=1
π0,i

[
E(e−θTri

1)
(
E(e−θ T2 ; T2 > X1) + E(e−θX1 ; T2 ≤ X1)

)
E(e−θX2)

]
+

m
∑

j=1
π1,j
[(

E(e−θ T2 ; T2 > X1) + E(e−θX1 ; T2 ≤ X1)
)
E(e−θX2)

]
+

∞
∑

l=2

m
∑

i=1
πl,iE(e−θX1)E(e−θX2)

, (16)

In other words, (16) is written as

τ̃2(θ) =
m
∑

i=1
π0,i

[
E(e−θTri

1)

(
∞∫
0

(
fX1(x)

∞∫
x

e−θ·t fT2(t)dt
)

dx +
∞∫
0

(
fT2(t)

∞∫
t

e−θ·x fX1(x)dx

)
dt

)
E(e−θX2)

]

+
m
∑

j=1
π1,j

[(
∞∫
0

(
fX1(x)

∞∫
x

e−θ·t f
Trj

2
(t)dt

)
dx +

∞∫
0

(
f
Trj

2
(t)

∞∫
t

e−θ·x fX1(x)dx

)
dt

)
E(e−θX2)

]
+

∞
∑

l=2

m
∑

i=1
πl,iE(e−θX1)E(e−θX2)

. (17)

In the case of M/G/1 queue, Equation (17) becomes

τ̃2(θ) = π0

[
T̃1(θ)

(
T̃2(θ)X̃1(λ + θ) + X̃1(θ)− X̃1(λ + θ)

)
X̃2(θ)

]
+ π1

[(
T̃2(θ)X̃1(λ + θ) + X̃1(θ)− X̃1(λ + θ)

)
X̃2(θ)

]
+

∞
∑

l=2
πl X̃1(θ)X̃2(θ)

. (18)

When θ1 = θ2 = θ, the single-parameter LST of the sum of two consecutive inter-
departure times, Equation (18), coincides with the joint LST of the sum of two consecutive
inter-departure times, Equation (10)—Takagi’s (1991) [16] result.

In the case of E2/G/1 queue, Equation (17) becomes

τ̃2(θ) =

= π0,1

[
T̃1(θ)X̃(λ + θ)T̃2(θ)− λ

∂X̃(λ)
∂λ T̃r1(θ) + T̃r1(θ)

[
X̃(θ)− X̃(λ + θ) + λ

∂X̃(λ+θ)
∂(λ+θ)

]]
X̃2(θ)

+ π0,2

[
T̃r1(θ)X̃(λ + θ)T̃2(θ)− T̃r1(θ)

∂X̃(λ+θ)
∂(λ+θ)

T̃r2(θ) + T̃r1(θ)
[

X̃(θ)− X̃(λ + θ) + λ
∂X̃(λ+θ)
∂(λ+θ)

]]
X̃2(θ)

+ π1,1

[
X̃(λ + θ)T̃2(θ)− λ

∂X̃(λ+θ)
∂(λ+θ)

T̃r2(θ) + X̃(λ)− X̃(λ + θ) + λ
∂X̃(λ+θ)
∂(λ+θ)

]
X̃2(θ)

+ π1,2

[
X̃(λ)− X̃(λ + θ)

]
X̃2(θ) +

∞
∑

l=2
πl X̃1(θ)X̃2(θ)

. (19)

The importance of (18) and (19) is that the joint LSTs—(10) and (11), respectively—can
be reconstructed by substituting θi in (18) and in (19) instead of θ, as follows: T̃i(θ) is
replaced by T̃i(θi), T̃ri(θ) is replaced by T̃ri(θi), X̃i(θ) is replaced by X̃i(θi) and Xi(λ + θ)
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is replaced by X̃i(λ + θi). Thus, the joint LST of the sum of two consecutive inter-departure
times in M/G/1 queue can be constructed from (18) as follows:

τ̃2(θ1, θ2) =

= π0

[
T̃1(θ1)

(
T̃2(θ2)X̃1(λ + θ1) + X̃1(θ1)− X̃1(λ + θ1)

)
X̃2(θ2)

]
+ π1

[(
T̃2(θ2)X̃1(λ + θ1) + X̃1(θ1)− X̃1(λ + θ1)

)
X̃2(θ2)

]
+

∞
∑

l=2
πl X̃1(θ1)X̃2(θ2)

, (20)

which coincides with Equation (10) (note that T̃i(θi) = λ
λ+θi

; X̃i(λ + θ1) = X̃(λ + θ1);

and X̃i(θi) = X̃(θi) for i = 1, 2). Similarly, the joint LST of the sum of two consecutive
inter-departure times in the E2/G/1 queue can be constructed from (18) as follows:

τ̃2(θ1, θ2) =

π0,1

[
T̃1(θ1)X̃(λ + θ1)T̃2(θ2)− λ

∂X̃(λ)
∂λ T̃r1(θ1) + T̃r1(θ1)

[
X̃(θ1)− X̃(λ + θ1) + λ

∂X̃(λ+θ1)
∂(λ+θ1)

]]
X̃2(θ2)

+ π0,2

[
T̃r1(θ1)X̃(λ + θ1)T̃2(θ2)− T̃r1(θ1)

∂X̃(λ+θ1)
∂(λ+θ1)

T̃r2(θ2) + T̃r1(θ1)
[

X̃(θ1)− X̃(λ + θ1) + λ
∂X̃(λ+θ1)
∂(λ+θ1)

]]
X̃2(θ2)

+ π1,1

[
X̃(λ + θ1)T̃2(θ2)− λ

∂X̃(λ+θ1)
∂(λ+θ1)

T̃r2(θ2) + X̃(λ)− X̃(λ + θ1) + λ
∂X̃(λ+θ1)
∂(λ+θ1)

]
X̃2(θ2)

+π1,2

[
X̃(λ)− X̃(λ + θ1)

]
X̃2(θ2) +

∞
∑

l=2
πl X̃1(θ1)X̃2(θ2)

, (21)

which coincides with Equation (11) (here, T̃i(θi) =
(

λ
λ+θi

)2
; T̃ri(θi) = λ

λ+θi
;

X̃i(λ + θ1) = X̃(λ + θ1); and X̃i(θi) = X̃(θi) for i = 1, 2).
We conjecture that the same reconstruction can be used in other PH/G/1 queues, as

well. For that purpose, we validate this reconstruction in the case of the C2/C2/1 queue for
various parameters, as the Coxian distribution can represent any PH distribution [31] with
much fewer parameters [32]. We compare the reconstructed joint LST obtained by Equation
(19) vs. the joint LST estimated by simulation. In all cases examined, the reconstructed
joint LST is well within the confidence interval of the joint LST estimated by simulation.
Figure 4 presents the case of a C2/C2/1 queue where the inter-arrival times and service
durations are two-stage Coxian-distributed. The parameters of inter-arrival times are as
follows: λ1 = 1 for the first stage and λ2 = 2 for the second, with p = 1 for the probability
of moving from the first stage to the second. The parameters of service durations are as
follows: µ1 = 1 for the first stage and µ2 = 2 for the second, with p = 1 for the probability of
moving from the first stage to the second. Each simulation run is 106 departing units after
a warm-up period of 5 × 104 units. For a given θ1 and θ2, the joint LST is estimated by

˜̂τ2(θ1, θ2) =

106

∑
i=1

e−(θ1τi+θ2τi+!)

106 , (22)

where τi is an i-th inter-departure time obtained by simulation. To show the results in
a two-dimensional graphical exposition, we exhibit two examples: (i) θ1= θ2 = θ and
(ii) θ1 = θ, θ2 = 0. Note that the latter is exactly the marginal LST of τ1. The corresponding
graphs are depicted in Figure 4.
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4.2. Sum of n + 1 Consecutive Inter-Departure Times in a PH/G/1 Queue

The LST of the sum of n + 1 consecutive inter-departure times is constructed via the
joint pdf, fτn+1(d1, . . . , dn+1) for D1, . . ., Dn + 1, which is defined by

fτn+1(d1, . . . , dn+1)∆d1 . . . ∆dn+1 = P(d1 < D1 < d1 + ∆d1 , . . . , dn+1 < Dn+1 < dn+1 + ∆dn+1). (23)

Then, the corresponding joint LST is

τ̃n+1(θ1, . . . , θn+1) = E(e
−

n+1
∑

i=1
θi Di

) =

∞∫
d1=0

. . .
∞∫

dn+1=0

e
−

n+1
∑

i=1
θidi

fτn+1 dn+1)∆d1 . . . ∆dn+1 , (24)

The joint pdf, Equation (22), can be obtained by extending Equation (9) to the case
of n + 1 ≥ 3, but the amount of possible cases which involve dependent variables swells
as n increases as demonstrated in Figure 3 and in Appendix B. Therefore, this procedure
becomes impractical. However, the sum of n + 1 consecutive inter departure times, τn+1,
can be expressed directly via the departure epoch of the (n + 1)-st departing unit (n + 1 > 2),
as follows:
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τn+1 = An+1 + Xn+1 =



Tri
1 + max

(
n+1
∑

l=2
Tl , Ai,0,n

)
+ Xn+1 , L0 = 0 , Y0 = i i = 1, . . . , m

... ,
...

...

max

(
Tri

j+1 +
n+1
∑

l=j+2
Tl , Ai,j,n

)
+ Xn+1 , L0 = j , Y0 = i i = 1, . . . , m, j = 1, . . . , n

... ,
...

...
n+1
∑

l=1
Xl , L0 ≥ n + 1

, (25)

where Ai,j,n, representing the length of time from τ0 = 0 until the instant when the nth unit
starts service, is defined recursively (Ai,j,1 = 0, X0 = 0):

Ai,j,n =



max
(

n
∑

l=2
Tl , Ai,j,n−1

)
+ Xn , j = 0

max

(
Tri

j+1 +
n
∑

l=j+2
Tl , Ai,j,n−1

)
+ Xn , 0 < j < n

n−1
∑

l=1
Xl , j = n

. (26)

Thus, τ̃n(θ) can be obtained directly by a proper partitioning of all possible events as
a function of independent variables, as demonstrated in Equation (17). We note that τ̃n(θ)
holds for any service time X, while the computational effort increases with n.

To derive the corresponding joint LST, τ̃n(θ1, . . . , θn), we conjecture the following, in
light of the results presented in Section 4.1.

Conjecture 1. The joint LST of the sum of n + 1 consecutive inter-departure times in the PH/G/1
queue,τ̃n(θ1, . . . , θn), can be reconstructed via its single-parameter LST, τ̃n(θ), by substituting in
τ̃n(θ): (i) T̃i(θi) instead of T̃i(θ), and (ii) X̃i(θi) instead of X̃i(θ), i = 1, 2,. . ., n.

For example, consider the case n + 1 = 3. First, we present τ3 directly via the departure
epoch of the third departing unit, so the single-parameter LST is expressed in terms of
2(4m + 1) + 2m + 1 independent random variables. Then, we obtain its joint LST with no
need for the derivation of the three-dimensional joint pdf. The proof of the conjecture for
the joint LST of n + 1 = 3 consecutive inter-departure times in the M/G/1 queue appears in
Appendix C.

From Equation (25) we express τ3 = A3 + X3 as follows:

τ3 = A3 + X3 =


Tri

1 + max(T2 + T3, max(T2, X1) + X2) + X3 , L0 = 0, Y0 = i i = 1, . . . , m
max(Tri

2 + T3, max(Tri
2, X1) + X2) + X3 , L0 = 1, Y0 = i i = 1, . . . , m

max(Tri
3, X1 + X2) + X3 , L0 = 2, Y0 = i i = 1, . . . , m

X1 + X2 + X3 , L0 ≥ 3

. (27)

This representation depends only on the initial states, which, by proper partitioning of
possible events, eliminates the need to derive the joint pdf and facilitates a direct derivation
of a single-parameter LST as follows:

τ̃3(θ) =

m
∑

i=1
π0,i

E(e−θ Tri
1 )

 E(e−θ T2 ; T2 > X1)
(
E(e−θ X2 ; T3 ≤ X2) + E(e−θ T3 ; T3 > X2)

)
+

E(e−θ( X1+X2); T3 ≤ X2, T2 ≤ X1) + E(e−θ( T2+T3); T3 ≤ X2, T2 ≤ X1, T2 + T3 > X1 + X2)+

E(e−θ( X1+X2); T3 ≤ X2, T2 ≤ X1, T2 + T3 ≤ X1 + X2)

E(e−θX3 )


+

m
∑

i=1
π1,i


 E(e−θ Tri

2 ; Tri
2 > X1)

(
E(e−θ( X2 ; T3 ≤ X2) + E(e−θ(T3 ; T3 > X2)

)
+

E(e−θ( X1+X2); T3 ≤ X2, Tri
2 ≤ X1) + E(e−θ( T2+T3); T3 ≤ X2, T2 > X1, Tri

2 + T3 > X1 + X2)

E(e−θ( X1+X2); T3 ≤ X2, T2 > X1, Tri
2 + T3 ≤ X1 + X2)

E(e−θX3 )


+

m
∑

i=1
π2,i

[(
E(e−θ Tri

3 ; Tri
3 > X1 + X2) + E(e−θ (X1+X2); Tri

3 ≤ X1 + X2)
)

E(e−θX3 )
]
+

∞
∑

l=2

m
∑

i=1
πl,iE(e−θX1 )E(e−θX2 )E(e−θX3 )

. (28)
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By applying the conjecture, one can reconstruct the joint LST of three consecutive
inter-departure times via Equation (28).

For example, in case of the M/G/1 queue, Equation (28) is reduced to

τ̃3(θ) =

π0

T̃1(θ1)


T̃2(θ)X̃1(λ + θ)

(
X̃2(θ)− X̃2(λ + θ) + T̃3(θ)X̃2(λ + θ)

)
+(

X̃1(θ)− X̃1(λ + θ)
)(

X̃2(θ)− X̃2(λ + θ)
)
+

T̃3(θ)λX̃2(λ + θ) ∂X̃1(λ+θ)
∂(λ+θ)

+

X̃1(θ)X̃2(λ + θ)− X̃1(λ + θ)X̃2(λ + θ)− λX̃2(λ + θ) ∂X̃1(λ+θ)
∂(λ+θ)

X̃3(θ)



+ π1




T̃2(θ)X̃1(λ + θ)

(
X̃2(θ)− X̃2(λ + θ) + T̃3(θ)X̃2(λ + θ)

)
+(

X̃1(θ)− X̃1(λ + θ)
)(

X̃(θ)− X̃2(λ + θ)
)
+

T̃3(θ)λX̃2(λ + θ) ∂X̃1(λ+θ)
∂(λ+θ)

+

X̃1(θ)X̃2(λ + θ)− X̃1(λ + θ)X̃2(λ + θ)− λX̃2(λ + θ) ∂X̃1(λ+θ)
∂(λ+θ)

X̃3(θ)


+π2

[(
T̃3(θ)X̃1(λ + θ)X̃2(λ + θ) +

(
X̃1(θ)− X̃1(λ + θ)

)(
X̃2(θ)− X̃2(λ + θ)

))
X̃3(θ)

]
+

∞
∑

l=3
πl X̃1(θ)X̃2(θ)X̃3(θ)

. (29)

According to the Conjecture, the joint LST, τ̃3(θ1, θ2, θ3), can be reconstructed via
Equation (29), by substituting the following: (i) T̃i(θi) instead of T̃i(θ); (ii) X̃i(θi) instead of
X̃i(θ); and (iii) X̃1(λ + θ1) instead of X̃1(λ + θ). Thus, the joint LST τ̃3(θ1, θ2, θ3) is derived
from Equation (21) as follows:

τ̃3(θ1, θ2, θ3) =

π0

T̃1(θ1)


T̃2(θ1)X̃1(λ + θ1)

(
X̃2(θ2)− X̃2(λ + θ2) + T̃3(θ3)X̃2(λ + θ2)

)
+(

X̃1(θ1)− X̃1(λ + θ1)
)(

X̃2(θ2)− X̃2(λ + θ2)
)
+

T̃3(θ3)λX̃2(λ + θ2)
∂X̃1(λ+θ1)

∂(λ+θ1)
+

X̃1(θ1)X̃2(λ + θ2)− X̃1(λ + θ1)X̃2(λ + θ2)− λX̃2(λ + θ2)
∂X̃1(λ+θ1)

∂(λ+θ1)

X̃3(θ3)



+ π1




T̃2(θ2)X̃1(λ + θ1)

(
X̃2(θ2)− X̃2(λ + θ2) + T̃3(θ3)X̃2(λ + θ2)

)
+(

X̃1(θ1)− X̃1(λ + θ1)
)(

X̃2(θ)− X̃2(λ + θ2)
)
+

T̃3(θ3)λX̃2(λ + θ2)
∂X̃1(λ+θ1)

∂(λ+θ1)
+

X̃1(θ1)X̃2(λ + θ2)− X̃1(λ + θ1)X̃2(λ + θ2)− λX̃2(λ + θ2)
∂X̃1(λ+θ1)

∂(λ+θ1)

X̃3(θ3)


+π2

[(
T̃3(θ3)X̃1(λ + θ1)X̃2(λ + θ2) +

(
X̃1(θ1)− X̃1(λ + θ1)

)(
X̃2(θ2)− X̃2(λ + θ2)

))
X̃3(θ3)

]
+

∞
∑

l=3
πl X̃1(θ1)X̃2(θ2)X̃3(θ3)

. (30)

The proof of the conjecture in this case appears in Appendix C.

5. Summary

This paper concentrates on the analysis of inter-departure time correlations from the
PH/G/1 queue. This analysis is aimed at enabling a more accurate investigation of the
performance of non-Markovian tandem queues, where the output process from one site is
the input process to the next. We first derive the joint LST of the sum of two inter-departure
times of the PH/G/1 queue by considering all possible cases at departure epochs in light
of [16] approach for the M/G/1 queue. Consequently, the correlation between two consec-
utive inter-departure times for various queues is calculated and investigated. This investi-
gation indicates cases when using the renewal assumption of the output process provides
a proper approximation when studying the performance of tandem queueing networks.
Since the derivation of the joint LST by the abovementioned common approach becomes
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impractical for n + 1 ≥ 3, a new approach is proposed by which the multi-parameter
joint LST of the sum of n + 1 consecutive inter-departure times is reconstructed via the
corresponding single-parameter LST. This approach is based on much fewer possible cases,
all expressed in terms of independent variables. Consequently, the lag-n correlation can be
calculated and used for the investigation of performance assessment in non-Markovian
tandem queueing networks.
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version of the manuscript.

Funding: This research is supported by the Israel Science Foundation, grant number 1968/23.
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Appendix A

Figure A1 presents the case of the E2/E2/1 queue, where inter-arrival times are two-
stage Erlang-distributed, each stage having rate 1, while service durations are
two-stage Erlang-distributed, each stage having rate 1.5. Each simulation run consists
of 106 departing units after a warm-up period of 5 × 104 units. For a given θ1 and θ2, the
joint LST is estimated by (22). To show the results in a clearer graphical exposition, we
exhibit in Figure A1 two examples: (i) θ1= θ2 = θ and (ii) θ1 = θ, θ2 = 0. Note that the latter
is exactly the marginal LST of inter-departure times τ1.
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Figure A1. Joint LST of the sum of two inter-departure times in the E2/E2/1 queue: exact joint
LST—Equation (11) (solid orange line) vs. joint LST estimated by simulation via Equation (22) (blue
circles). The figure shows a complete agreement.

Appendix B

To demonstrate the cumbersome procedure to derive the joint LST in light of Takagi
(1991)’s [16] approach, we extent the development of the sum of n + 1 = 3 consecutive
inter-departure times similarly to Section 3.1. Given that a departure occurs at time τ0,
the sum of three inter-departure times between τ0 and τ3 can be represented by three
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instants of successive departures, including 2m3 + 4m2 + 6m + 1 random variables, not all
independent, as follows:

τ3 =



Tri
1 + X1

∣∣∣(T2 > X1) + Trj
2 + X2

∣∣∣(T3 > X2) + Trl
3 + X3 , L0 = 0, Y0 = i , (L1 = 0 , Y1 = j|T2 > X1), (L2 = 0 , Y2 = l|T3 > X2)

Tri
1 + X1

∣∣∣(T2 > X1) + Trj
2 + X2

∣∣∣(T3 ≤ X2) + X3 , L0 = 0, Y0 = i , (L1 = 0 , Y1 = j|T2 > X1), (L2 ≥ 1 |T3 ≤ X2)

Tri
1 + X1

∣∣(T2 ≤ X1) + X2
∣∣(T3 > X2) + Trl

3 + X3 , L0 = 0, Y0 = i , (L1 = 1|T2 ≤ X1), (L2 = 0 , Y2 = l|T3 > X2)
Tri

1 + X1
∣∣(T2 ≤ X1) + X2

∣∣(T3 ≤ X2) + X3 , L0 = 0, Y0 = i , (L1 = 1|T2 ≤ X1), (L2 ≥ 1 |T3 ≤ X2)
Tri

1 + X1
∣∣(T2 + T3 ≤ X1) + X2 + X3 , L0 = 0, Y0 = i , (L1 ≥ 2|T2 + T3 > X1)

X1

∣∣∣(Tri
2 > X1) + Trj

2 + X2

∣∣∣(T3 > X2) + Trl
3 + X3 , L0 = 1, Y0 = i , (L1 = 0 , Y1 = j|T2 > X1), (L2 = 0 , Y2 = l|T3 > X2)

X1

∣∣∣(T2 > X1) + Trj
2 + X2

∣∣∣(T3 ≤ X2) + X3 , L0 = 1, Y0 = i , (L1 = 0 , Y1 = j|T2 > X1), (L2 ≥ 1 |T3 ≤ X2)

X1
∣∣(T2 ≤ X1) + X2

∣∣(T3 > X2) + Trl
3 + X3 , L0 = 1, Y0 = i , (L1 = 1|T2 ≤ X1), (L2 = 0 , Y2 = l|T3 > X2)

X1|(T2 ≤ X1) + X2|(T3 ≤ X2) + X3 , L0 = 1, Y0 = i , (L1 = 1|T2 ≤ X1), (L2 ≥ 1 |T3 ≤ X2)
X1|(T2 + T3 ≤ X1) + X2 + X3 , L0 = 1, Y0 = i , (L1 ≥ 2|T2 + T3 > X1)
X1 + X2 + Trl

3 + X3
∣∣Trl

3 > X1 , L0 = 2, Y0 = i, (L2 = 0
∣∣Tri

3 > X1)
X1 + X2 + X3

∣∣Trl
3 ≤ X1 , L0 = 2, Y0 = i , Tri

3 ≤ X1
X1 + X2 + X3 , L0 ≥ 3

(A1)

To exhibit Equation (A1), Figure A1 draws all cases for realizations τ1 = d1, τ2 = d2,
τ3 = d3. The three-dimensional pdf fτ3(d1, d2, d3) of the sum of three consecutive inter-
departure times is as follows:

fτ3 (d1,d2, d3) =

m
∑

i=1

m
∑

j=1

m
∑

l=1

m
∑

s=1

m
∑

r=1
π0,i

d1∫
u=0

fTri (u) fX(d1 − u) αl exp (T(d1 − u))l j∆u ·
d2∫

u=0
fTrj (v) fX(d2 − v) αs exp (T(d2 − v))s r∆v

d3∫
z=0

fTrr (z) fX(d3 − z)∆z

+
m
∑

i=1

m
∑

j=1

m
∑

l=1
π0,i

d1∫
u=0

fTri (u) fX(d1 − u) αl exp (T(d1 − u))l j∆u ·
d2∫

v=0
fTrj (v) fX(d2 − v)FTrj (d2 − v))∆v fX(d3)

+
m
∑

i=1

2m
∑

j=m+1

m
∑

l=1

m
∑

s=1
π0,i

d1∫
u=0

fTri (u) fX(d1 − u) αl exp (T2(d1 − u))l j∆u · fX(d2) exp (T · d2)(j−m)s

d3∫
z=0

fTrs (z) fX(d3 − z)∆z

+
m
∑

i=1

2m
∑

j=m+1
π0,i

d1∫
u=0

fTri (u) fX(d1 − u) αl exp (T2(d1 − u))l j∆u · fX(d2)FTrj (d2) fX(d3)

+
m
∑

i=1
π0,i

d1∫
u=0

fTri (u) fX(d1 − u)F2Tri (d1 − u)∆u · fX(d2) fX(d3)

+
m
∑

i=1

m
∑

j=1

m
∑

l=1

m
∑

s=1
π1,i fX(d1) exp (T · d1)i j ·

d2∫
v=0

fTrj (v) fX(d2 − v) αl exp (T(d2 − v))l s∆v
d3∫

z=0
fTrsl (z) fX(d3 − z)∆z

+
m
∑

i=1

m
∑

j=1
π1,i fX(d1) exp (T · d1)i j ·

d2∫
v=0

fTrj (v) fX(d2 − v)FTrj (d2 − v)∆v fX(d3)

+
m
∑

i=1

2m
∑

j=m+1

m
∑

l=1
π1,i fX(d1) exp (T2 · d1)i j · fX(d2) exp (T · d2)(j−m) l

d3∫
z=0

fTrl (z) fX(d3 − z)∆z

+
m
∑

i=1

2m
∑

j=m+1
π1,i fX(d1) exp (T2 · d1)i j · fX(d2)FTrj (d2) fX(d3)

+
m
∑

i=1
π1,i fX(d1)F2Tri (d1) · fX(d2) fX(d3)

+
m
∑

i=1

m
∑

l=1
π2,i fX(d1) · fX(d2) exp(T · (d1 + d2)il

d3∫
z=0

fTrl (z) fX(d3 − z)∆z

+
m
∑

i=1
π2,i fX(d1) · fX(d2)FTri (d1 + d2) fX(d3)

+
∞
∑

l=3

m
∑

i=1
πl,i fX(d1) · fX(d2) fX(d3)



(A2)

where T2 is a transition matrix representing the sum of two inter-arrival times, each
one PH(α,T)-distributed. By Theorem 2.6.1 in [28], this sum is also PH-distributed having
representation PH(γ,T2) (see Equation (10)), as follows:

(γ, T2) =

α, 0, . . . , 0︸ ︷︷ ︸
m

 ,
(

T T0α

0 T

)
Consequently (see Equation (1)),

F2T(u) = 1 − γ ·exp(2Tu)e.

The corresponding three-dimensional LST, τ̃3(θ1, θ2, θ3), is obtained by substituting
Equation (A2) in Equation (23).
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Appendix C

To prove the conjecture for the joint LST of sum of three consecutive inter-departure times
in the M/G/1 queue, we derive the joint LST via the corresponding joint pdf, fτ3(d1, d2, d3),
and show that the result coincides with Equation (29). In this case, Equation (A2) is reduced to
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fτ3 (d1,d2, d3) =



π0



d1∫
u=0

λe−λu fX(d1 − u)e−λ(d1−u)∆u ·
d2∫

v=0
λe−λv fX(d2 − v)e−λ(d1−v)∆v

d3∫
z=0

λe−λz fX(d3 − z)∆z

+
d1∫

u=0
λe−λu fX(d1 − u)e−λ(d1−u)∆u ·

d2∫
v=0

λe−λv fX(d2 − v)(1 − e−λ(d1−v))∆v fX(d3)

+
d1∫

u=0
λe−λu fX(d1 − u)e−λ(d1−u)λ(d1 − u)∆u · fX(d2)e−λd2

d3∫
z=0

λe−λz fX(d3 − z)∆z

+
d1∫

u=0
λe−λu fX(d1 − u)e−λ(d1−u)λ(d1 − u)∆u · fX(d2)(1 − e−λd2 ) fX(d3)

+
d1∫

u=0
λe−λu fX(d1 − u)(1 − e−λ(d1−u) − e−λ(d1−u)λ(d1 − u))∆u · fX(d2) fX(d3)



+π1



fX(d1)e−λd1
d2∫

v=0
λe−λv fX(d2 − v)e−λ(d1−v)∆v

d3∫
z=0

λe−λz fX(d3 − z)∆z

+ fX(d1)e−λd1 ·
d2∫

v=0
λe−λv fX(d2 − v)(1 − e−λ(d1−v))∆v fX(d3)

+ fX(d1)e−λd1 λd1 fX(d2)e−λd1
d3∫

z=0
λe−λz fX(d3 − z)∆z

+ fX(d1)e−λd1 λd1 fX(d2)(1 − e−λd1 ) fX(d3)

+ fX(d1)(1 − e−λd1 − e−λd1 λd1) fX(d2) fX(d3)


+π2

 fX(d1) fX(d2)e−λ(d1+d1)
d3∫

z=0
λe−λz fX(d3 − z)∆z

+ fX(d1) fX(d2)(1 − e−λ(d1+d1)) fX(d3)


+

∞
∑

l=3
πl fX(d1) fX(d2) fX(d3)



(A3)

Substituting Equation (A3) in Equation (24), the corresponding three-dimensional LST,
τ̃3(θ1, θ2, θ3), is derived as follows

τ̃3(θ1, θ2, θ3) = π0



λ3 X̃(λ+θ1)
λ+θ1

X̃(λ+θ2)
λ+θ2

X̃(θ3)
λ+θ3

+λ2 X̃(λ+θ1)
λ+θ1

[X̃(θ2)−X̃(λ+θ2)]
λ+θ2

X̃(θ3)

+λ3
∞∫

d1=0

d1∫
u=0

(d1 − u)e−(λ+θ1) d1 f‘x‘(d1 − u)∆u∆d1 X̃(λ + θ2)
X̃(θ3)
λ+θ3

+λ2
∞∫

d1=0

d1∫
u=0

(d1 − u)e−(λ+θ1) d1 f‘x‘(d1 − u)∆u∆d1

[
X̃(θ2)− X̃(λ + θ2)

]
X̃(θ3)

+λ

[
X̃(θ1)−X̃(θ1+λ)

λ+θ1
− λ

∞∫
d1=0

d1∫
u=0

(d1 − u)e−(λ+θ1)d1 f‘x‘(d1 − u)∆u∆d1

]
X̃(θ2)X̃(θ3)



+π1



λ2X̃(λ + θ1)
X̃(λ+θ2)

λ+θ2

X̃(θ3)
λ+θ3

+λX̃(λ + θ1)
[X̃(θ2)−X̃(λ+θ2)]

λ+θ2
X̃(θ3)

+λ2
∞∫

d1=0
d1 e−(λ+θ1)d1 fX(d1)∆d1X̃(λ + θ2)

X̃(θ3)
λ+θ3

+

λ
∞∫

d1=0
d1 e−(λ+θ1)d1 fX(d1)∆d1

[
X̃(θ2)− X̃(θ2 + λ)

]
X̃(θ3)

+

[
X̃(θ1)− X̃(θ1 + λ)− λ

∞∫
d1=0

d1 e−(λ+θ)d1 fX(d1)∆d1

]
X̃(θ2)X̃(θ3)


+π2

[
λX̃(λ + θ1)X̃(λ + θ2)

X̃(θ3)
λ+θ3

+
[

X̃(θ1)− X̃(λ + θ1)
] [

X̃(θ2)− X̃(λ + θ2)
]

X̃(θ3)
]

+
∞
∑

l=3
πl X̃(θ1)X̃(θ2)X̃(θ3)

. (A4)
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Note that
∞∫
0

e−(λ+di)θi
di∫
0

fX(di − u)∆u ∆di = X̃(λ+θi)
λ+θi

,

∞∫
0

e−diθi
di∫
0

e−λu fX(di − u)∆u∆di = X̃(θi)
λ+θi

∞∫
d1=0

d1e−(λ+θ1) d1 fx(d1)∆d1 = − ∂X̃(λ+θ1)
∂(λ+θ1)

and
∞∫

d1=0

d1∫
u=0

(d1 − u)e−(λ+θ1) d1 fx(d1 − u)∆u∆d1 = − 1
λ+θ1

∂X̃(λ+θ1)
∂(λ+θ1)

.

Hence, (A4) can be written as

τ̃3(θ1, θ2, θ3) = π0



λ3 X̃(λ+θ1)
λ+θ1

X̃(λ+θ2)
λ+θ2

X̃(θ3)
λ+θ3

+λ2 X̃(λ+θ1)
λ+θ1

[X̃(θ2)−X̃(λ+θ2)]
λ+θ2

X̃(θ3)

− λ3

λ+θ1

∂X̃(λ+θ1)
∂(λ+θ1)

X̃(λ + θ2)
X̃(θ3)
λ+θ3

− λ2

λ+θ1

∂X̃(λ+θ1)
∂(λ+θ1)

[
X̃(θ2)− X̃(λ + θ2)

]
X̃(θ3)

+λ
[

X̃(θ1)−X̃(θ1+λ)
λ+θ1

+ λ
λ+θ1

∂X̃(λ+θ1)
∂(λ+θ1)

]
X̃(θ2)X̃(θ3)



+ π1



λ2X̃(λ + θ1)
X̃(λ+θ2)

λ+θ2

X̃(θ3)
λ+θ3

+λX̃(λ + θ1)
[X̃(θ2)−X̃(λ+θ2)]

λ+θ2
X̃(θ3)

−λ2 ∂X̃(λ+θ1)
∂(λ+θ1)

X̃(λ + θ2)
X̃(θ3)
λ+θ3

−λ
∂X̃(λ+θ1)
∂(λ+θ1)

[
X̃(θ2)− X̃(θ2 + λ)

]
X̃(θ3)

+
[

X̃(θ1)− X̃(θ1 + λ) + λ
∂X̃(λ+θ1)
∂(λ+θ1)

]
X̃(θ2)X̃(θ3)


+π2

[
λX̃(λ + θ1)X̃(λ + θ2)

X̃(θ3)
λ+θ3

+
[

X̃(θ1)− X̃(λ + θ1)
] [

X̃(θ2)− X̃(λ + θ2)
]

X̃(θ3)
]

+
∞
∑

l=3
πl X̃(θ1)X̃(θ2)X̃(θ3)

(A5)

Since T̃i(θi) =
λ

λ+θi
and X̃i(·) = X̃(·) for i = 1, 2, 3, (A5) coincides with (19). Thus, the

conjecture is proved for n + 1 = 3 in the M/G/1 queue.
To obtain the complete expression in Equation (A5), one has to calculate π0, π1, π2

and
∞
∑

l=2
πl .

For the M/G/1 queue, the probability-generating function GL(z) of the queue length
is provided by the well-known K-P formula:

GL(z) = π0
(1 − z)X̃(λ(1 − z))

X̃(λ(1 − z))− z

where π0 =1 − λE(X).
By differentiation GL(z), one obtains

π1 =
d
dz

GL(z)|z=0 = π0
(1 − X̃(λ))

X̃(λ)
and π2 =

1
2

d2

dz2 GL(z)|z=0 = π0
(1 − X̃(λ)− X̃ ′(λ))

X̃2(λ)

Clearly,
∞
∑

l=3
πl = 1 − π0 − π1 − π2.
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τ̃2(θ1, θ2) =

∞∫
0

e−θ1d1

∞∫
0

e−θ2d2



π0,1


d1∫

u=0
λ2ue−λu fX(d1 − u)e−λ(d1−u)∆u ·

d2∫
v=0

λ2ue−λu fX(d2 − v)∆v

+
d1∫

u=0
λ2ue−λu fX(d1 − u)λ(d1 − u)e−λ(d1−u)∆u ·

d2∫
v=0

λe−λv fX(d2 − v)∆v



+π0,2


d1∫

u=0
λe−λu fX(d1 − u)e−λ(d1−u)∆u ·

d2∫
v=0

λ2ve−λv fX(d2 − v)∆v

+
d1∫

u=0
λ2ue−λu fX(d1 − u)λ(d1 − u)e−λ(d1−u)∆u ·

d2∫
v=0

λe−λv fX(d2 − v)∆v


+π0,1

d1∫
u=0

λ2ue−λu fX(d1 − u)(1 − e−λ(d1−u) − λ(d1 − u)e−λ(d1−u))
d2∫

v=0
fX(d2)∆v

+π0,2

d1∫
u=0

λe−λu fX(d1 − u)(1 − e−λ(d1−u))
d2∫

v=0
fX(d2)∆v

+π1,1

[
fX(d1)e−λd1 ·

d2∫
v=0

λ2ve−λv fX(d2 − v)∆v + fX(d1)λd1e−λd1 ·
d2∫

v=0
λe−λv fX(d2 − v)∆v

]

+π1,2 fX(d1)e−λd1 ·
d2∫

v=0
λe−λv fX(d2 − v)∆v

+π1,1 fX(d1) (1 − e−λd1 − λd1e−λd1 ) fX(d2)

+π1,2, fX(d1) (1 − e−λd1 ) fX(d2) +
∞
∑

l=2

m
∑

i=1
πl,i fX(d1) fX(d2)



∆d2∆d1
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