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Abstract: This research stems from the increasing use of hand gestures in various applications, such
as sign language recognition to electronic device control. The focus is the importance of accuracy and
robustness in recognizing hand gestures to avoid misinterpretation and instruction errors. However,
many experiments on hand gesture recognition are conducted in limited laboratory environments,
which do not fully reflect the everyday use of hand gestures. Therefore, the importance of an
ideal background in hand gesture recognition, involving only the signer without any distracting
background, is highlighted. In the real world, the use of hand gestures involves various unique
environmental conditions, including differences in background colors, varying lighting conditions,
and different hand gesture positions. However, the datasets available to train hand gesture recog-
nition models often lack sufficient variability, thereby hindering the development of accurate and
adaptable systems. This research aims to develop a robust hand gesture recognition model capable of
operating effectively in diverse real-world environments. By leveraging deep learning-based image
augmentation techniques, the study seeks to enhance the accuracy of hand gesture recognition by
simulating various environmental conditions. Through data duplication and augmentation methods,
including background, geometric, and lighting adjustments, the diversity of the primary dataset is
expanded to improve the effectiveness of model training. It is important to note that the utilization
of the green screen technique, combined with geometric and lighting augmentation, significantly
contributes to the model’s ability to recognize hand gestures accurately. The research results show
a significant improvement in accuracy, especially with implementing the proposed green screen
technique, underscoring its effectiveness in adapting to various environmental contexts. Additionally,
the study emphasizes the importance of adjusting augmentation techniques to the dataset’s character-
istics for optimal performance. These findings provide valuable insights into the practical application
of hand gesture recognition technology and pave the way for further research in tailoring techniques
to datasets with varying complexities and environmental variations.

Keywords: hand gesture recognition; hybrid augmentation; environment independent; green
screen technique

MSC: 68T07

1. Introduction

Hand Gesture Recognition (HGR) plays an essential role in various interactive systems,
including signaling systems that rely on gestures [1,2], recognition of sign language [3,4],
sports-specific sign language recognition [5,6], human gesture recognition [7,8], pose
and posture detection [9,10], physical exercise monitoring [11,12], and control of smart
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home/assisted living applications [13]. Computer scientists have harnessed diverse com-
putational techniques and methodologies to optimize human-computer interactions [14,15],
integrating hand gestures into software programs that enhance computer and human com-
munication [16]. The advancement of gesture recognition systems significantly enhances
the interaction between computers and humans, with hand gestures becoming increasingly
prevalent across various sectors. Hand gestures are now used in diverse applications such
as gaming [17,18], virtual reality and augmented reality [19,20], assisted living [21,22], and
more. Moreover, the recent proliferation of hand gesture recognition in industries like
human-robot interaction in manufacturing [23,24] and autonomous vehicle control [25]
has spurred considerable interest. Against the backdrop of the ongoing COVID-19 pan-
demic from 2020 to 2023 [26], where social distancing remains a top priority, the scope for
implementing hand gestures is expanding [27], rendering it an intriguing topic for further
exploration and discussion.

Although there are several techniques for hand gesture recognition, deep learning—a
part of machine learning—has become the most advanced way. Deep learning research
has made remarkable strides in solving complex image recognition and related challenges.
The development of deep learning was greatly influenced by the significant use of (CNNs)
for image classification in 2012. AlexNet performed better than traditional shallow ap-
proaches [28]. The popularity of deep learning in this field can be credited to advancements
in deep network structures, significant processing capability, and the availability of exten-
sive training datasets. ImageNet [29] is a prominent huge dataset that has significantly
stimulated additional advancements. The ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) was responsible for coordinating and monitoring the progress of many
CNN models, leading to the creation of well-known architectures, including VGG [30],
Google Net [31], and ResNet50 [32]. The classification top-5 error rate has significantly
decreased throughout the years. 2010–2011, when shallow methods were often used, the
error rate was over 25%. However, with the introduction of deep learning in 2015, the error
rate dropped to less than 5% [33].

However, despite these significant achievements, deep neural networks and their
associated learning algorithms confront several pertinent challenges. One of the most
frequently cited issues is the lack of training data [34–36] or the imbalance of classes
within datasets [31,32]. To resolve this matter, data augmentation has emerged as the
favored technique to enlarge datasets and mitigate the problem of insufficient data for
training models [37,38]. Data augmentation involves applying various transformations or
manipulations to existing data to generate new samples that resemble the original data.
This technique extends the existing dataset by generating new variations from the current
data. Yet, despite the efficacy of data augmentation in alleviating data shortages, there
are still constraints on the number of variations that can be generated from the original
data. This limitation has spurred the exploration of methods to generate an almost limitless
volume of new data for use in datasets. Various methods of augmenting image-based data
have been developed [39], including geometric changes, color tweaks, random occlusions,
and deep learning techniques such as Generative Adversarial Networks (GANs).

Notably, hand gestures in applications demand high robustness and accuracy to
preclude misinterpretation and instruction errors. A review of experiments on hand
gesture recognition conducted by Noraini et al. [40] revealed that over 47 articles had
been executed in constrained laboratory settings. Lim et al. [41] attribute this to the ideal
backdrop for gesture recognition, which includes only the signer, devoid of any background,
as background clutter can impair gesture recognition accuracy. This limitation underscores
the necessity for conducting tests beyond the confines of controlled environments. It is a
pressing concern because the domain of hand gesture recognition extends far beyond the
laboratory setting. Hand gestures now find applications in many real-world scenarios, each
characterized by unique environmental conditions, including varying background colors,
lighting conditions, and hand gesture positions [40]. These challenges are compounded
by limitations in available datasets for real-world HGR, which often lack the variety
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and diversity essential for training robust models [42]. The scarcity of comprehensive
and diverse real-world datasets hinders the development of accurate and adaptable hand
gesture recognition systems. Training GANs to produce new synthetic images is challenging
due to mode collapse, non-convergence, and oscillatory behavior [42], despite its potential
for data augmentation [42].

Data augmentation may also generate new data for testing classifiers in some cases [43].
In comparison to GAN-based augmentation, classical augmentation techniques, such as
background and brightness variations and geometric transformations, are more straightfor-
ward, efficient, and effective for enhancing the performance of CNNs in image classification
tasks. For instance, Dundar et al. [38] investigated the impact of background variations
on image classification. Their study demonstrated that altering the backgrounds of the
training dataset could significantly affect testing accuracies. The study enhanced existing
augmentation techniques with foreground segmented objects, and its findings are instru-
mental in improving accuracies, mainly when working with limited datasets by creating
synthetic images.

Kandel [44] adopted a meticulous approach to brightness augmentation techniques,
which closely matched the original brightness levels of images. This approach yielded
optimal performance. Previous studies on HGR have employed geometric transformations
as a data augmentation technique. For example, in [45], the implementation of geometric
augmentation significantly enhanced the performance of CNNs by a maximum of 4%. In
another study, an HGR system that utilized Capsule Networks exhibited improved perfor-
mance when combined with geometric augmentation involving rotation and translation
operations [46]. Similarly, ref. [47] employed Adapted CNN and image translation (vertical
and horizontal) to augment the original data, resulting in a 4% improvement in classifi-
cation accuracy. Furthermore, ref. [48] utilized random scaling and horizontal/vertical
translation to augment training data diversity for HGR applications.

The paper presented by Luo, Cui, and Li in 2021 [49] established a CNN model
for recognition. Hand gesture detection is hindered by movements’ intricate and varied
nature, which are affected by contextual circumstances, lighting conditions, and occlusion.
The initial step in improving recognition involves the application of a filter to the skin
color of the hand inside the YCbCr color space, thereby isolating the region of motion. A
Gaussian filter is employed to mitigate edge noise, followed by morphological gray opening
operations and the watershed method for contour segmentation. The eight-connected filling
algorithm improves the characteristics of motion. The model in this experiment identifies
ten movements ranging from 0 to 9. The experimental findings illustrate the prompt and
precise identification of the proposed approach, with an average success rate of 96.46%,
without a substantial augmentation in the recognition duration.

However, Rahmat et al. [50] found difficulties when attempting to recognize hand
movements in complex backgrounds and without objects using computer vision in human-
computer interaction. Problems with skin and background detection needed a potent
remedy. The suggested method comprised several stages: acquiring images, resizing them,
converting the color space, utilizing the HS-CbCr format for skin recognition, and applying
averaging to overcome background difficulties. Grayscale image processing, background
accumulation, thresholding, inversion, frame differencing, and picture enhancement were
further processes. Contour, convex-hull, and convexity flaws were used to extract features,
which were then counted on fingers, and hand direction was determined. The generated
instruction-controlled applications like PDF readers, video players, audio players, and
slideshow presentations. The method’s efficiency was proven by experimental findings,
which showed up to 98.71% accuracy under well-lit situations. Lighting highly influenced
accuracy, with 95.03% accuracy recorded under lesser illumination. Future improvements
included considering machine learning for better object detection accuracy and integrat-
ing a hand-tracking approach for dynamic gesture recognition. It was suggested that
future studies in increasing hand gesture recognition address skin detection issues related
to lighting.
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Yi Yao and Chang-Tsun Li’s research [51] focuses on addressing the formidable task of
recognizing and tracking hand movements in uncontrolled environments. They identify
several critical challenges inherent in such environments, including multiple hand regions,
moving background objects, variations in scale, speed, trajectory location, changing light-
ing conditions, and frontal occlusions. They propose an appearance-based method that
leverages a novel classifier weighting scheme to tackle these challenges. Their method
demonstrates promising performance in effectively handling uncontrolled environments’
complexities without prior knowledge. They utilize the Palm Graffiti Digits Database
and the Warwick Hand Gesture Database to evaluate their approach. Through extensive
experimentation, they illustrate their method’s capability to overcome environmental ob-
stacles and enhance the performance of the initial classifier. Our research methodology
presents significant advancements over previous works, such as those by Luo, Cui, and
Li (2021) and Yi Yao and Rahmat et al., by incorporating cutting-edge data augmentation
techniques and optimizing neural network architectures specifically designed for hand
gesture recognition. Unlike the former, which relies on traditional image pre-processing
and CNN models, and the latter, which focuses on hand gesture recognition under well-lit
conditions, our approach is engineered to robustly adapt to a wider range of environmental
variations, including dramatic lighting changes and complex backgrounds. We employ
advanced data augmentation strategies, including geometric manipulations and lighting
variations, to significantly enhance model resilience against external condition fluctuations.
Furthermore, our specialized neural network architecture is optimized to capture essential
features of hand gestures more efficiently, aiming for superior accuracy while maintaining
or even reducing recognition time. This innovative methodology broadens the spectrum
of recognizable hand gestures under challenging conditions and increases the model’s
applicability and flexibility across diverse domains, setting a new benchmark for future
hand gesture recognition research.

This innovative research study explores brightness’s function as an augmentation
method in training deep learning networks. This work aims to expand current knowledge
and provide a more thorough understanding of color distortion approaches, geometric
augmentation, noise relevance, and image quality in deep learning architectures, in addi-
tion to complementing previous research in these areas. Moreover, the paper explores the
significance of augmenting background variation to enhance the performance and robust-
ness of deep learning models. By considering the intricate interplay between foreground
objects and their surrounding environments, the researchers aim to uncover the potential
benefits and challenges of incorporating background variation as an augmentation strategy.
In conjunction with all these strategies, another objective is to ascertain the possibility of
creating virtually limitless datasets using classical augmentation techniques, resulting in
more diversified datasets to address data insufficiency. In brief, the main contributions of
this study are:

(a) Introduce a new model augmentation that combines geometric transformation, back-
ground, brightness, temperature, and blurriness difference to train deep learning
networks to improve hand gesture recognition.

(b) Offering a strategy change background using green screening as a data augmentation
technique eliminates the need for manual object annotations. It enhances training
performance with limited data by replacing the background using computer vision
algorithms.

(c) Depict the proposed green screen technique hand gesture dataset that can be used
for training hand gesture recognition to know the effect of background distortion to
simulate HGR in real-world uncontrolled environments.

(d) Exploring the potential of classical augmentation techniques to generate unlimited
data variations and maintain accuracy.

This research evaluates the accuracy of gesture classification experiments using a
primary dataset that employs the proposed green screen technique to replace the back-
ground with complex backgrounds, such as images from indoor and outdoor locations
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and backgrounds experiencing color distortion. Additionally, classic augmentations like
geometric transformations, brightness adjustments, temperature changes, and blurriness
are applied to simulate an uncontrolled environment. The primary dataset is then tested
with a secondary dataset of existing public datasets to assess its accuracy.

This article is structured as follows: Section 2 briefly introduces the theory of surround-
ing environmental conditions, which is the focus of the research, as well as the dataset
used, and the various augmentation techniques applied to increase the training dataset and
simulate real-world conditions. One of the augmentation techniques used is the proposed
green screen technique to replace the background image with an appropriate one. Addi-
tionally, geometric augmentation is used to represent positions, brightness augmentation
to mimic real-world lighting conditions and blur to improve image clarity. Furthermore,
this section also explains the use of pre-trained models and CNN. Section 3 presents the
experimental setup, programming tools, Data Preparation, and the result of the experiment.
Section 4 analyzes the performance of various augmentation techniques on model accuracy.
Additionally, the paper explores implications and potential future research opportunities
in this field. Section 5 summarizes the key findings, underscoring the research significance
and outlining potential future directions, including developing an image augmentation
framework for static hand gesture recognition.

2. Materials and Methods

This chapter explains the basic concepts used in this article, including the environment
surrounding and simulation using the augmentation technique, deep learning, and pre-
trained, which we will use. We will construct the model approach to simulate hand gesture
recognition in real environments.

2.1. Material
2.1.1. Environmental Surrounding

Recognizing hand gestures in uncontrolled environmental conditions involves several
key factors. In this context, complex backgrounds are the primary factors affecting the
accuracy of hand gesture recognition. Research conducted by Fuchang et al. [52]. High-
lights that lighting, rotation, translation, and environmental scaling changes can challenge
separating the hand from the background. They address this issue by using depth data
to separate the hand and achieve synchronized color and depth images. However, their
research should have explicitly explored the impact of optical blur on recognition accuracy,
leaving a significant gap in our understanding.

It’s important to note that another limitation of models utilizing depth images is
the requirement for specialized cameras capable of capturing depth information. This
limitation may restrict the practicality of depth-based models, as such cameras are often
more expensive and less common than regular cameras.

In their study, Igor Vasiljevic, Ayan Chakrabarti, and Gregory Shakhnarovich [53] pro-
vide insights into the specific influence of optical blur, resulting from defocus or subject and
camera motion, on network model performance. Their research delves into the detrimental
effects of blur. It emphasizes the importance of considering blurriness as a significant factor
that can challenge the recognition of hand gestures in uncontrolled environmental condi-
tions. Therefore, addressing the impact of optical blur, along with other environmental
factors, is crucial for enhancing the accuracy of hand gesture recognition systems.

Additionally, hand gesture recognition in uncontrolled environments faces various
challenges beyond complex backgrounds. One of these challenges is the variations in
lighting conditions, as examined in a study by Salunke [54]. Their findings highlight
that optimal accuracy is achieved under bright lighting conditions. To address the issues
related to changes in lighting, researchers have employed techniques such as brightness
augmentation. Temperature sensors, a form of temperature augmentation, have also been
utilized to compensate for temperature fluctuations that can impact image quality, as
demonstrated in the study by Oinam et al. [55] Temperature augmentation ensures that
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machine learning models used for hand gesture recognition perform consistently across
diverse lighting conditions.

In image processing, noise reduction and contrast enhancement under varying lighting
conditions become crucial. Jose et al. [56] use digital image processing techniques to
eliminate noise, separate the hand from the background, and enhance contrast. In cases of
complex backgrounds with significant background variations, hand localization becomes a
challenging task. The study by Peijun et al. [57] shows that accuracy varies depending on
the complexity of the background.

Additionally, geometric transformations such as rotation and scaling are essential, and
several studies, as explained by Yu et al. [58], have successfully addressed this issue. In
situations where devices like Kinect detect a larger object, incorrect results may appear,
as found in the study by Atharva et al. [59]. Environmental noise reduction needs to be
considered in noisy background situations, as seen in the research by Hafız et al. [60].
Multi-modal approaches using depth data and color images enhance hand gesture recog-
nition accuracy in various backgrounds and lighting situations, as shown in the study by
Yifan et al. [61].

Furthermore, addressing geometric transformations is a primary focus. The study by
Yiwen et al. [62] demonstrates that their method can adapt to geometric transformations.
Time of Flight (ToF) data is used in several studies, as presented by Sachara et al. [63].
However, this data can be noisy depending on lighting conditions and other factors.

Technological approaches in the form of sensor systems have also been used to address
various environmental constraints. Washef [64] successfully overcame the limitations of
glove-based and vision-based approaches in situations with varying lighting challenges,
complex backgrounds, and camera distance. Finally, in handling variations in rotation,
scale, translation, and other transformations, the system in the study by Lalit & Pritee [65]
has proven to handle various variations, including digits, letters, and symbols.

In conclusion, the representation of environmental surroundings in gesture recognition
encompasses factors such as complex background, geometric transformation, brightness
augmentation, temperature augmentation, and blurriness augmentation. Researchers have
devised various strategies and techniques to address these challenges and enhance the
accuracy of hand gesture recognition in uncontrolled environments. These insights can
significantly contribute to developing robust and adaptable gesture recognition systems.

2.1.2. Simulate Environment as Real World

Based on the theory of environmental surroundings, we infer that the ecological
environment representation in sign recognition encompasses factors such as complex back-
grounds, geometric transformations, brightness enhancements, temperature increases, and
blurriness levels. Furthermore, the approach to simulate these conditions is elaborated on.

Augmentation Technique

Augmentation is a technique used to address data scarcity in neural network training
by applying specific transformations to the original data or images. It is precious in domains
like the medical field, where data availability may be limited. These transformations
generate new images, facilitating the generalization of knowledge learned by classifiers
such as neural networks. Generalization is crucial as it enables models to perform well
on unseen or new data, ensuring their reliability in real-world scenarios. This paper uses
augmentation to construct a model approach to simulate conditions in real-world scenarios.
This technique applies an alternative “on-the-fly” augmentation that dynamically augments
during the training process, generating new data in each training epoch and improving
knowledge generalization, as shown in Figure 1.
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Figure 1. On-The-Fly Augmentation Approach.

In Figure 1, the original image dataset is divided into smaller batches. Random
transformations are applied to each batch before feeding them into the machine learning or
deep learning algorithm for training. This process generates distinct augmented images
within each batch and epoch, promoting better knowledge generalization. Implementing
on-the-fly augmentation in the hand gesture recognition system resulted in improved
performance. This approach eliminates the need for separate storage of augmented images,
making it more memory efficient. By effectively leveraging image augmentation techniques,
models can overcome data scarcity, avoid overfitting, and achieve better generalization
capabilities. Implementing on-the-fly augmentation in the hand gesture recognition system
resulted in improved performance. This approach eliminates the need for separate storage
of augmented images, making it more memory efficient. By effectively leveraging image
augmentation techniques, models can overcome data scarcity, avoid overfitting, and achieve
better generalization capabilities.

In this paper, the augmentation process to simulate conditions in the real world is
illustrated in Figure 2. This figure describes the main steps in the image augmentation
process in the hand gesture recognition system. The first stage involves receiving the origi-
nal hand gesture image, which undergoes transformations and modifications, including
background changes, geometric adjustments, and brightness and contrast alterations. This
augmentation process aims to generate the necessary image variations for training the
hand gesture recognition model. Various augmentation techniques enrich the original
image with background variations, different perspectives, and changes in brightness. This
augmentation process results in an inset of images used in the model training. This allows
the model to become more robust and recognize various conditions and environments.
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Geometric Transformation

This work uses this method to simulate hand gesture poses in uncontrolled envi-
ronments. Nevertheless, it is essential to acknowledge that certain adjustments, such as
inversion, may not be appropriate for image categories, such as digit images, as it can lead
to ambiguity between the digits 6 and 9. This research will employ a specific technique:
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Image Scaling

Image scaling is a geometric transformation technique used to enlarge an image by
multiplying it with distinct scaling factors on the (x) and (y) axes. This enables us to
resize the image to a larger or smaller size as required while preserving its dimensions
and intricate features. Equations (1) and (2) can be utilized for picture scaling. In these
equations, (x,y) represents the coordinates of a pixel in the original image, (x′,y′) represent
the coordinates of the pixel in the scaled image, and (s_x) and (s_y) represent the scale
factors for the rows and columns of the image, respectively.

x′ = x·sx (1)

y′ = y·sy (2)

Interpolation can enhance the smoothness of the object’s edges in the scaled image
while preserving the aspect ratio when the scaling factors (sx) and (sy) are equal. Resizing
images enhances the model’s effectiveness and resilience against input size variations.
When an image is enlarged, it is trimmed to its original dimensions; however, when it is
reduced in size, the original dimensions are preserved, and the empty area is filled using
the nearest pixel neighbor technique. Figure 3 illustrates the description of image scaling
for augmentation.
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Image Rotation

Image rotation is a commonly used technique for improving data in computer vision
applications. In order to increase the amount of training data, it is necessary to rotate an
image by a predefined angle, often between 0 and 360 degrees. Equations (3) and (4) are
used to rotate an image. They take the original pixel coordinates (x, y) and calculate the
corresponding pixel coordinates (x′, y′) in the rotated image. The rotation angle in radians
is denoted by θ, and (cx, cy) represents the coordinates of the picture center.

x′ = (x − cx)cosθ − (y − cy)sinθ + cx (3)

y′ = (x − cx)sinθ + (y − cy)cos θ + cy (4)

Like picture scaling, image rotation can create empty spaces that require filling using
interpolation methods, such as the nearest pixel technique employed in this study. Figure 4
illustrates the description of image rotation for augmentation.
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Image Translation

Image translation refers to the movement of an image in both the horizontal (x-axis)
and vertical (y-axis) directions by a defined number of pixels. This shift in position creates
additional training data, improving the model’s ability to handle changes in position.
Equation (5) is employed for translating the x-axis, while Equation (6) is utilized for
translating the y-axis. In these equations, (x,y) represents the coordinates of a pixel in the
original image, (x′,y′) represents the coordinates of the corresponding pixel in the translated
image, and (dx, dy) represents the translation offsets.

x′ = x + dx (5)

y′ = y + dy (6)

The nearest pixel interpolation algorithm additionally populates empty regions in the
translated images. The depiction of the picture translation for augmentation may be seen
in Figure 5.
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Image Shearing

Image sharing is a technique used to alter an image by shifting each row or column
of pixels along the x-axis or y-axis. The amount of displacement is controlled by the y-
coordinate or x-coordinate of each pixel. This methodology simplifies the administration
of input photographs acquired from different views or angles. Equations (7) and (8) can
be used to shear an image along the x-axis and y-axis. In these equations, (x,y) represent
the coordinates of a pixel in the original image, (x′,y′) represent the coordinates of the
corresponding pixel in the sheared image, and shx and shy represent the shear factors along
the x-axis and y-axis, respectively.

x′ = x + shx ∗ y (7)

y′ = y + shy ∗ x (8)

To fill in the space in the sheared images, nearest pixel neighbor interpolation is used.
Figure 6 shows an illustration of how image shearing is described for augmentation.
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Image Flipping

Image flipping is a method that alters the image by inverting its left and right sides.
HGR only employs horizontal flipping. Equation (9) is the formula for horizontal flipping.
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In this equation, (x,y) represents the coordinates of a pixel in the original image, x′ represents
the matching pixel index in the flipped image, and W represents the image’s width.

x′ = (W − 1)− x (9)

The order of pixels in each row is reversed from left to right to invert the entire image.
Flipping an image horizontally does not need interpolation. Figure 7 shows how to describe
Image Flipping Horizontally
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Background Augmentation

This research project aims to develop a system capable of accurately recognizing
hand movements, especially in various environmental conditions. We use a technique
that replaces the proposed green screen technique background with various pre-prepared
backgrounds to simulate such ecological variations. This creates a consistent and uniform
background so the computer can focus more on correctly recognizing hand gestures.

The approach we used was the proposed green screen technique, also known as
Chroma Key, which has become an essential tool in the field of visual effects. When creating
hand gesture images, we use this technique as a backdrop to make it easy to replace the
background to simulate a natural environment. As highlighted in the various abstracts,
green screens have evolved where previously impossible backgrounds, such as alien planets
and outer space, can now be easily realized.

Several studies further outline techniques and advances related to green screens. For
example, Raditya et al. [66] researched using various background colors in the Chroma Key
process to measure efficiency and fatigue. Jin Zhi et al. [67] explore alternatives to green,
incorporating complex mathematical concepts to improve the quality of results. In addition,
Soumyadip Sengupta et al. [68] introduce a technique to produce mattes without relying on
a green screen or hand manipulation, making the background replacement process more
convenient. By referring to these studies, we gain insight into the evolutionary nature of
green screen techniques and their diverse applications. In the context of the hand-gesture
images we create, green screen techniques offer creative freedom to build dynamic and
immersive visual environments, bridging the gap between technology and visual arts to
develop realistic environmental simulations.

Backgrounds used to replace the original background in hand gesture images include
a variety of indoor and outdoor settings, from busy airport scenes and dimly lit basements
to quiet library environments, cozy rooms, and streets. Busy city street. We also incorporate
various backgrounds, such as forests, subtle color gradients, and vibrant environments.
All these background variations enable computers to effectively learn and recognize hand
movements in various real-world scenarios, improving their operational capabilities in
diverse conditions. The following are examples of the images we use as background
variations in Figure 8:
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Background replacement introduces environmental variation and increases the capac-
ity of our system to recognize hand gestures in more challenging scenarios. This diverse
background helps train our system to adapt to unexpected ecological changes, better
preparing it for real-world deployment challenges. Here is an overview of the background
replacement process in Figure 9:
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Temperature

As a part of augmentation techniques to simulate the real world for handling accuracy
in recognition, temperature augmentation modifies captured images to represent diverse
lighting conditions and color temperature changes. By applying controlled adjustments to
the color channels, such as increasing or decreasing red or blue intensity, images can be
transformed to mimic shifts in color temperature. This process aids in training models to
recognize objects or gestures accurately in environments with varying color temperatures,
ensuring that they perform reliably across different lighting conditions. Temperature
augmentation is essential in the arsenal of techniques to enhance machine-learning models’
robustness and improve their performance in real-world scenarios. The following is an
illustration of temperature augmentation as shown in Figure 10:
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Blurriness

Blurriness is one of the image augmentation techniques utilized in image processing
and machine learning. This technique aims to simulate real-world conditions by introduc-
ing an element of fuzziness or blur to images. Image blur occurs when the details of an
image become less sharp or reduced, often resembling a slightly out-of-focus image. The
application of blur introduces factors that might exist in everyday environments, affecting
image sharpness.

There are several crucial aspects to consider in the application of blurriness as an
augmentation technique:

(a) Simulation of Movement or Vibration: In real-world scenarios, images can often be-
come blurred due to camera shake, hand movements, or object motion. By introducing
elements of blurriness, we can simulate this effect and train the model to recognize
images that might not always be perfectly sharp.

(b) Variations in Lighting: Uneven or changing lighting conditions can make images less
sharp. By applying blur, we can create variations in lighting in the training dataset,
allowing the model to understand objects under different lighting conditions.

(c) Distance Effects: Images taken from a distance are often blurry. By adding blur
elements, we can depict distant objects more realistically, enabling the model to
recognize these objects in real-life conditions.

(d) Visual Uncertainty: Not all objects in an image will always be sharp in real-world
situations. Some image elements may appear blurry or less sharp, and the model
should be capable of identifying these objects in everyday conditions.

Implementing blurriness as a dataset augmentation technique helps the model become
more tolerant of variations in real-world conditions. This makes the model more adaptive
and reliable in recognizing objects or situations that may not always be perfect or sharp
in images. Blurriness augmentation is another valuable tool in training models to face
more realistic and dependable conditions in real-world applications. For an overview of
blurriness augmentation is depicted in Figure 11.
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2.1.3. Dataset

In this study, we adopt a highly inclusive comprehensive approach to evaluate our
Hand Gesture Recognition (HGR) model. This approach involves the combination of
various datasets, including a meticulously created custom dataset. This custom dataset
has undergone several treatments to simulate real-world conditions, creating a more
representative testing environment. It is also essential to understand the concept of a
public dataset, which researchers created openly. Public datasets encourage collaboration,
standardization, and advancement within a specific domain. We aim to create a holistic
approach to HGR model development by merging custom and public datasets.

In the hand gesture recognition (HGR) context, most models have historically operated
in a user-dependent mode. This implies that the training and testing data are derived
from a single dataset. However, in this research, we aim to develop a user-independent
model. In other words, training and testing data will involve various individuals with
diverse hand characteristics. This is highly relevant for practical applications because
many individuals with varying hand features will use the HGR system we are developing.
Combining these two dataset types, we aim to create a robust HGR model that addresses
challenges arising from real-world environmental variations. Our comprehensive approach
allows our research to bridge the gap between controlled laboratory conditions and the
complexity of unpredictable real-world scenarios. Consequently, our research findings are
expected to be relevant in real practical situations.

It is essential to note that both dataset types used in this research adhere to applicable
privacy and usage guidelines. Throughout this research, we are highly committed to ethical
considerations, including protecting individual privacy.

Primary Dataset/Custom Dataset

Our created dataset is integral to our research and has been meticulously crafted
with specific attributes. These hand gesture images were captured in a controlled indoor
environment, illuminated by commonly used artificial lighting. We employed commonly
available smartphone cameras to ensure realistic representations of real-world scenarios.
This dataset includes hand images from individuals with unique hand characteristics and
variations. This diversity is essential for training the hand gesture recognition model to
perform effectively in practical applications where user hand characteristics vary.

Our data collection process was conducted against a consistent green screen back-
ground, which is crucial for the background replacement technique later. This green screen
background ensures the model’s versatility in various real-world environments.

Throughout the dataset creation, we applied various data augmentation techniques.
These techniques encompass background changes to simulate multiple environmental con-
ditions, geometric transformations for hand positions and orientation variations, brightness
adjustments to accommodate lighting changes, and image temperature modifications to
emulate various temperature settings. Each action aims to enrich our training dataset,
equipping our model with the flexibility needed to tackle challenges that arise in everyday
situations. An example of sample images from the dataset we created is shown in Figure 12.
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Figure 12. Sample image of Custom Dataset using Greenscreen.

Public Datasets/Secondary Dataset

We utilize a public dataset comprising several sub-datasets to assess our model’s
reliability in various real-world scenarios. These sub-datasets include Massey Hand Image
ASL, Digit and Alphabet, NUS-II, Sebastian Marcel, and Hand Gesture (HG14) 14, each
with distinct characteristics and data sources. Each sub-dataset contains diverse images
displaying unique hand gestures. The public dataset is utilized as the testing data to
assess the efficacy of our model, which has been trained using a custom-created dataset
subjected to diverse augmentation to replicate real-world scenarios. The explanation of
each sub-dataset will be described in the paragraph below:

Massey University (MU) HandImages American Sign Language (A.S.L)

Barczak and colleagues conducted a study at Massey University (M.U.) in New
Zealand, where they created the MU HandImages A.S.L. dataset. This dataset comprises
2425 images captured from five individuals, each displaying various hand gestures. The
photographs were taken in different lighting conditions and against a green screen back-
ground. The dataset comprises 26 classes representing fundamental American Sign Lan-
guage (ASL) movements. The images in the dataset have a black backdrop, and their pixel
sizes may vary depending on the hand posture. Figure 13 [69] visually represents some
images from this dataset. This dataset includes gestures representing digits and alphabets,
making it a valuable resource for research and applications.
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Sebastian Marcel Static Hand Gesture Dataset

The Sebastian Marcel Static Hand Gesture Dataset [70] was used to train a neural
network model to detect hand positions in photographs. Space discretization was used to
separate hand movements based on facial position and body anthropometry. The dataset
has ten persons demonstrating six hand postures (a, b, c, point, five, and v) in uniform and
complicated backdrops with different picture sizes based on the hand gesture. Figure 14 [70]
depicts several photos from this collection.
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The NUS Hand Posture II

NUS Hand Posture Dataset includes hand posture images captured in and around
the National University of Singapore (NUS) against complex backgrounds. It consists
of 10 classes of hand postures performed by 40 subjects of different ethnicities, genders,
and ages (22 to 56 years). Each subject demonstrated the ten hand postures five times,
incorporating natural variations.

The dataset is divided into three folders: “Hand Postures” (2000 images), “Hand
Postures with human noise” (750 images), and “Backgrounds” (2000 images). The hand
posture images are available in grayscale and color, with resolutions of 160 × 120 and
320 × 240 pixels. The images in the “Hand Postures with human noise” folder include
additional elements like the face of the poser and humans in the background.

All images are in RGB format and saved as JPEG files. The dataset has been used in
academic research, and the results of hand posture detection and recognition are reported
in the paper titled “Attention Based Detection and Recognition of Hand Postures Against
Complex Backgrounds” by Pramod Kumar Pisharady, Prahlad Vadakkepat, and Ai Poh
Loh [71]. Figure 15 [71] shows sample images of this dataset.
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HG 14

The Hand Gestures 14 (HG14) dataset, developed by Guler et al. [72], comprises
14 hand gestures that are appropriate for hand interaction and application control in aug-
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mented reality. The dataset comprises 14,000 photographs, each containing RGB channels
and occupying a 256 by 256 pixels resolution. Every image is accompanied by a background
that is both simple and uniformly colored, as depicted in Figure 16 [72].
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2.1.4. Deep Learning and Neural Network

Deep learning is a cutting-edge method in the machine learning domain that aims to
understand and manage complex information from large data sets automatically. Inspired
by how the human brain works, this approach leverages artificial neural networks to handle
complex data analysis tasks. Neural networks consist of a series of interconnected layers of
neurons, where each layer has its role in processing and interpreting data. At the peak of
deep learning progress, there are various architectures, such as forward neural networks
(FNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
generative adversarial networks (GANs). These models continue to evolve, adapt to various
problems, and demonstrate the changing dynamics of research and applications in deep
learning. The following is the architecture and approach used in this research.

Convolutional Neural Network

Deep Learning (DL) has various architectures, one of which is Convolutional Neural
Networks (CNN), known for its effectiveness in image recognition compared to traditional
machine learning approaches [32]. The basic idea of CNN is the technique of image
convolution, which combines an input matrix and a kernel matrix to produce a third matrix
that represents how one matrix is modified by the other.

A CNN architecture generally consists of two parts: feature extraction and classifica-
tion [73], as depicted in Figure 17. The feature extraction part applies image convolution to
the input image to produce a series of feature maps. These features are then used in the
classification part to classify the label of the input image.
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CNN utilizes convolution to generate a collection of feature maps. Each filter can
identify distinct patterns within the input image, including but not limited to edges, lines,
and corners. To incorporate non-linearity and acquire intricate representations of the input
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image, the output of the convolutional layer is subjected to a non-linear activation function,
such as the Rectified Linear Unit (ReLU). The ReLU function is defined in Equation (10) [74].

ReLU(x) = max(0, x) (10)

The pooling layer is employed after the convolutional layer to decrease the dimen-
sionality of the feature maps and introduce translational invariance. Maximum pooling
selects the highest value inside a specific local area, whereas average pooling computes the
average value.

Pre-Trained Neural Network

The primary challenge in training CNN models is the need for powerful computational
resources, such as Graphics Processing Units (GPUs), and sufficient memory capacity to
store datasets and CNN parameters during training [73]. To overcome these constraints,
researchers have developed pre-trained CNN models on large public datasets such as
ImageNet or Microsoft COCO [75]. Research has shown that these pre-trained models can
be a solid foundation for building image classification systems with a deep understanding
of visual content. Transfer learning or fine-tuning of pre-trained models has become a
common approach in current research due to its advantages. Several model optimization
techniques have been discussed in the literature, including the use of model optimization
methods like Stochastic Gradient Descent (SGD), Adam, and RMSProp. In several fields of
image recognition and classification research, the usage of pre-trained Convolutional Neural
Network (CNN) models such as ResNet-50 has become a strategically important decision.
ResNet-50, with its wide and deep architecture, has proven to provide an impressive level
of accuracy in various tasks [76]. In the context of achieving effectiveness, a CNN model
needs to have adequate depth and be trained on a large dataset, allowing the model to
understand various patterns in image data [73].

In a study that focused on using ResNet50 and InceptionV3 models, model optimiza-
tion based on SGD, Adam, and RMSProp was used to train fine-tuned CNN models on a
cat vs. dog dataset. The results showed that the SGD optimizer outperformed the other
two for ResNet50, achieving a training accuracy of around 99% [77]. In another context of
hand gesture recognition using electromyography (EMG) signals, the deep learning-based
approach has yielded impressive results. This study, the ResNet-50 model was used to
classify various hand gestures with a testing accuracy of approximately 99.59% [78].

Furthermore, the use of ResNet-50 in image recognition has been the focus of another
research, such as in emotion detection [79]. Emotion detection is a key component in
developing intelligent human-computer interface systems. Current emotion detection
systems typically assume the availability of full, unobstructed facial images. In this study,
convolutional neural networks (CNNs) with transfer learning are used to recognize seven
basic emotional states, such as Anger, Contempt, Disgust, Fear, Happiness, and Sadness.
The research compares the performance of three pre-trained networks: VGG16, ResNet50,
and a modified version of ResNet50 that integrates a new architectural component called
squeeze and excitation (SE-ResNet50). These networks are trained using a dataset of facial
images, and their results are carefully evaluated and compared. The achieved validation
accuracies are quite impressive, with VGG16 reaching 96.8%, ResNet50 reaching 99.47%,
and SE-ResNet50 reaching 97.34%. In addition to accuracy, precision and recall are also
considered as performance metrics in this study. The evaluation shows that all three
networks can detect emotions accurately, but ResNet50 emerges as the most appropriate
and reliable choice among them. This highlights the superiority of the pre-trained ResNet50
model in accurately recognizing emotions from facial images.

The use of the ResNet-50 model has been a focal point in research on Masked Face
Recognition [80]. This phenomenon has emerged since the coronavirus pandemic in
December 2019, triggering a significant increase in interest in enhancing facial recognition
systems. The urgent need to protect the public from virus transmission has strengthened
this drive. However, the preventive measures implemented to control virus spread present
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challenges for security and surveillance systems, particularly in recognizing faces wearing
masks. To address this issue, the research faces constraints related to the lack of adequate
datasets for masked face recognition. Available datasets prioritize faces with Caucasian
features, while faces with Ethiopian racial features are often overlooked. Therefore, this
study formulated a specific dataset to overcome these limitations. This study conducted a
comparative analysis among three leading neural network models: AlexNet, ResNet-50,
and Inception-V3. They underwent testing to determine their ability to identify faces
covered by surgical, textile, and N95 masks, among other forms of masks. The research
findings demonstrate that CNN models can achieve very high levels of recognition accuracy,
both for faces wearing masks and those without. Furthermore, model performance analysis
indicates that ResNet-50 stands out by achieving the highest accuracy, reaching 97.5%.
This finding underscores the superiority of ResNet-50 in recognizing faces wearing masks
compared to other models, such as Inception-V3 and AlexNet. From the results of this study,
it can be concluded that the use of the ResNet-50 model makes a significant contribution
to improving the accuracy of masked face recognition, making it the preferred choice in
addressing the challenges of face recognition in the pandemic era.

Furthermore, research related to brain tumor classification also supports the use of
the ResNet-50 model. A framework that utilizes optimal deep learning features has been
proposed for brain tumor classification. In this experiment, the ResNet-50 model was
used with transfer learning, and the results showed significant accuracy for brain tumor
classification [81].

Thus, the use of pre-trained ResNet-50 models supports the success of these studies
and demonstrates their enormous potential in realizing intelligent and accurate solutions for
various challenges in various disciplines. With the continuous advancement of knowledge
and technology, it is expected that the role of this model in future research will become
even more prominent and provide increasingly significant benefits to the broader society.

2.1.5. Evaluation Metric

To assess the performance of our model, we utilized accuracy as the primary evalua-
tion metric. In this paper, accuracy is used to measure the result, and accuracy refers to the
overall performance of the classifier. The classifier’s capacity to accurately differentiate be-
tween genuine labels can be described. Nevertheless, a significant limitation of employing
accuracy arises when there is an imbalance, when the positive and negative classifications
are not evenly distributed. Equation (2) provides a formal definition of accuracy [82].

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

The variable LP represents the count of correctly categorized true positive labels, LN
represents the count of correctly classified true negative labels, FP represents the count
of incorrectly classified false positive labels, and AN represents the count of incorrectly
classed false negative labels.

2.2. Research Methodology

As this research explores the efficiency of the green screening technique in replacing
backgrounds to simulate diverse environments and assess its impact on hand gesture recog-
nition accuracy, several key research questions have been posed to guide our investigation.
These questions serve as the foundational pillars upon which our study is constructed,
enabling us to delve into the intricacies of image augmentation strategies and their practical
implications. The following research inquiries define the scope of our exploration:

(a) Integration of green screening technique to replace backgrounds for simulating diverse
environments.

(b) Analysis of the impact of hybrid image augmentation on Hand Gesture Recognition
Accuracy:

(c) Quantitative Assessment of Test Accuracy Post-Augmentations with a Public Dataset.
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(d) Exploration of the extent of Classical Augmentation for Generating Varied Data while
Maintaining Accuracy

(e) Investigation into the Contribution of Green Screen Dataset for Implementing Hybrid
Image Augmentation.

The research methodology designed to address these inquiries is visually illustrated
Figure 18. This multi-step approach begins with creating a base dataset featuring hand
gestures performed against a consistent green screen background. To ensure an ample
volume of data for analysis, additional datasets are procured and meticulously replicated
30 times, expanding the dataset’s size significantly.
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In the subsequent phases, critical augmentations are introduced. The green screen
background, the constant backdrop in the initial dataset, is thoughtfully substituted with
backgrounds that span a spectrum of colors and settings. These backgrounds include
walls, wooded areas, gradient patterns, airports, basements, vibrant and colorful locations,
libraries, rooms, and urban streets. The deliberate inclusion of these diverse backgrounds is
pivotal to mimicking a real-world environment characterized by many potential scenarios.

Continuing to steps 3 and 4, classical augmentation techniques come into play. Ge-
ometric transformations, brightness adjustments, temperature shifts, the introduction
of blurriness, and a pretrained ResNet50 are applied systematically to replicate the un-
predictability and uncontrolled aspects of real-world environments. These alterations
significantly enrich the dataset and prepare it for testing.

The final dataset, a product of these meticulous augmentations and background
substitutions, is subjected to rigorous testing. The testing phase involves an examination of
its performance against publicly established datasets obtained from Massey, NUS, Sebastian
Marcel, DLSI, and HG14. Each public dataset is assessed independently to gauge the impact
and effectiveness of the hybrid image augmentation strategy. This approach ensures that
the accuracy of each dataset is rigorously evaluated and contributes to a comprehensive
understanding of the method’s performance across various datasets.

3. Results
3.1. Experimental Setup

This study aims to simulate hand gesture recognition in uncontrolled environments
or real-world conditions. It involves treating the initial dataset, which uses a green screen
background, by replacing or adding backgrounds that reflect various other locations. Clas-
sical augmentation techniques such as geometry, brightness, temperature, and blurriness
enhance this simulation.

The study adopts an “on the fly” augmentation strategy to achieve this goal and defines
various parameters for each augmentation technique, as shown in Table 1. Augmentations
are performed in a series of steps, starting with background augmentation (1), followed by
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geometry transformation (2), brightness (3), temperature (4), and blurriness (5). The deep
learning algorithm’s training phase involves each stage’s application.

Table 1. Parameter setting for all Augmentation Techniques.

Category Technique Parameter
Setting

Value/
Range Direction Description

Geometric
Transformation Rotation rotation_

range 10◦
Positive

(Clockwise)/Negative
(Counterclockwise)

Rotation of the image within
the range of −10 degrees to

+10 degrees.

Translation width_shift
range 0.1

Positive
(Rightward)/Negative

(Leftward)

Shifting the image width
within the range of −10% to

+10% of the width.

height_shift_
range 0.1

Positive
(Downward)/Negative

(Upward)

Shifting the image height
within the range of −10% to

+10% of the height.

Shearing shear_range 10◦
Positive (Right

Shear)/Negative
(Left Shear)

Shearing the image within the
range of −10 degrees to

+10 degrees.

Scaling zoom_range [1, 1.5]
Positive

(Zoom In)/Negative
(Zoom Out)

Scaling the image within the
range of 1 to 1.5 times the

original size.

Flipping Horizontal Flip Enabled/
Disabled Horizontal Flip

This enables horizontal
flipping. It means the image
can be horizontally flipped

(resulting in a
mirrored image).

Brightness Adjustment brightness 20
Positive

(Brightening)/Negative
(Darkening)

Changing the brightness level
within the range of

−20 to +20.

Temperature Adjusting temperature 20
Positive (Warming–

Red)/Negative
(Cooling–Blue)

Adjusting the image’s color
temperature within the range

of −20 to +20.

Blurriness Randomly blurriness Random Blurring
(No explicit direction)

Randomly adding blur
to the image.

Before augmentation, the initial dataset is duplicated 10, 20, 30 times. Each copy of
the dataset then undergoes a series of augmentations. The result is a training dataset with
increased variability. This dataset will be tested to evaluate its impact on model accuracy.
Thus, we hope this research can provide valuable insights into using augmentation in the
context of hand gesture recognition in real-world environments.

Transfer Learning uses pre-trained weights from ImageNet as the initial weights for
the network to circumvent the need for intricate and computationally intensive learning
processes. Weight optimization is limited to the classification layer of the pre-trained
model, where it is solely used to optimize the networks in the fully connected layers. The
Optimizing technique known as Adaptive Moment Estimation (ADAM) is used to improve
the training process and prevent gradient vanishing during training [83]. The pre-existing
network undergoes retraining for a total of 50 epochs, employed with a batch size of 32. To
preserve the pre-trained weights of ImageNet, the process of network training involves the
freezing of all layers throughout the feature extraction phase. The evaluation of network
performance is conducted by employing the “accuracy” metric.

The experimental setup employs the Python programming language, with various
libraries like TensorFlow, Matplotlib, and NumPy. The experiment is conducted on a
personal computer, with the specifications specified in Table 2.
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Table 2. Hardware and software specifications for the experiment.

Hardware/Software Specification

Processor (CPU) Intel Core i5-9300H @2.40 GHz
Memory (RAM) 32 GB DDR4

Graphical Processing Unit (GPU) Nvidia GTX 1660 Ti–6 GB vRAM
Operating System Windows 11 Home Edition

Python version 3.6.13
Cuda/CuDNN version 11.0/8.0

3.2. Programming Tools

In the research methodology depicted in above Figure 18, there are instructions that
state, This research evaluates the accuracy of gesture classification experiments using a pri-
mary dataset that employs the proposed green screen technique to replace the background
with complex backgrounds, such as images from indoor and outdoor locations, along
with backgrounds experiencing color distortion. Additionally, classic augmentations like
geometric transformations, brightness adjustments, temperature changes, and blurriness
are applied to simulate an uncontrolled environment. The primary dataset is then tested
with a secondary dataset of existing public datasets to assess its accuracy”.

These instructions are then translated using a computer with an Intel Core i5 9th
generation processor, 32 GB RAM, Nvidia 1660Ti Graphics Card, programmed with Python
3.6.13, and utilizing tools from TensorFlow 2.6.2 and Keras 2.6.0 by importing various
libraries and modules needed for model development and image augmentation. Although
this code leverages Keras functionality, the focus is on TensorFlow as a broader deep-
learning framework. Subsequently, the definition of training, testing, and background
directories is carried out, forming the foundation for loading and processing data.

“‘python
# Defining dataset directories
train_dir = “greenscreen dataset”
test_dir = “public dataset”
bg_dir = “background image”
”’
Next, the training dataset is duplicated to enhance data variation, where the number

of duplicates is determined by the “num_duplicates” variable. The preprocessing function
is then defined to prepare the background and convert images into NumPy arrays for 30
iterations as needed.

“‘python
num_duplicates = 30
input_folder = train_dir
duplicate_folder = train_dir + “_” + str(num_duplicates) + “x”
for root, _, filenames in os.walk(input_folder):
# . . .
”’
Furthermore, the “preprocess_image” and “change_background_v2” functions play

a crucial role in preparing images and replacing the green background with randomly se-
lected background images, introducing variation in hand gesture backgrounds. These
functions handle the preprocessing of input images during data augmentation. The
“preprocess_image” function selects a random background from a predefined list, adjusts
brightness and temperature, replaces the background using “change_background_v2”,
and applies a blur effect using “blur_image”. The “change_background_v2” function
replaces the green background in the image with a randomly selected background. The
“adjust_brightness_temperature” function adjusts the brightness and temperature of the
hand object in the image.
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“‘python
def preprocess_image(image):
# . . .
return img_array
def blur_image(image):
# . . .
return image
def change_background_v2(img, bg):
# . . .
return img_edit
def adjust_brightness_temperature(image, bg):
# . . .
return result_image
”’
Next, the configuration of the “ImageDataGenerator” is set for training data with

various augmentation techniques, including rotation, horizontal and vertical shifts, shear,
zoom, and custom preprocessing using the “preprocess_image” function.

“‘python
train_datagen = ImageDataGenerator(
rotation_range = 10,
width_shift_range = 0.1,
height_shift_range = 0.1,
shear_range = 10,
zoom_range = [1, 1.5],
fill_mode = ‘nearest’,
preprocessing_function=preprocess_image
)
”’

(a) Finally, a CNN model is built using the ResNet50 architecture as the base, with
additional layers suitable for the hand gesture recognition task. Here’s a detailed
explanation of each step in building a CNN model using the ResNet50 architecture:

(b) Building the Base Model with ResNet50:

- ResNet50 is a Convolutional Neural Network (CNN) architecture developed by
Microsoft Research. It consists of 50 layers (hence the “50” in the name) and has
been proven highly effective in various computer vision tasks, especially image
classification.

- ResNet50 (include_top = False, weights = ‘imagenet’, input_shape = (224, 224,
3))”: This function creates the base ResNet50 model. The argument “include_top
= False” indicates that the fully connected layers at the top of the model will not be
included, allowing us to customize the top layers according to our task. “Weights
= ‘imagenet’ initializes the model with weights learned from the “imagenet”
dataset, enabling the model to have an initial understanding of various features
present in images. The argument “input_shape = (224, 224, 3)” specifies the size
and color channels (RGB) of the input images that the model will receive.

(c) Setting Trainable Layers

After creating the base ResNet50 model, we set all its layers to be non-trainable
(“layer.trainable = False”). This step ensures that the weights learned by the ResNet50
model are not altered during the new model’s training process. We want to leverage the
features learned by the ResNet50 model on the “imagenet” dataset without modifying
them.

(d) Adding Additional Layers:

- After the base ResNet50 model, we add several additional layers on top of it to
tailor the model to the hand gesture recognition task.
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- Flatten(): This layer flattens the output of the base model into one dimension.
This is necessary because the subsequent Dense layers require input in the form
of a one-dimensional vector.

- Dense(512, activation = ‘relu’): This Dense layer consists of 512 neuron units with
the ReLU activation function. Dense layers like this aim to learn more abstract
feature representations from the image data.

- Dropout(0.5): The Dropout layer is used to reduce overfitting by randomly
deactivating some neuron units during the training process.

- Dense(train_generator.num_classes, activation = ‘softmax’): The final Dense layer
has the same number of neuron units as the number of classes in the training
dataset, and it uses the softmax activation function to generate probabilities of
possible classes.

(e) Compiling the Model:

- After adding the additional layers, the model needs to be compiled before it can
be used for the training process.

- model.compile(optimizer = ‘adam’, loss = ‘categorical_crossentropy’,metrics =
[‘accuracy’]): In this step, we specify the optimizer to be used (in this case, the
Adam optimizer), the loss function appropriate for the multi-class classification
task (categorical cross-entropy), and the metrics to be monitored during training
(in this case, accuracy).

With the above steps, we have successfully built a CNN model using the ResNet50
architecture as the base, ready to be trained for the hand gesture recognition task.

“‘python
base_model = ResNet50(include_top = False, weights = ‘imagenet’, input_shape =

(224, 224, 3))
for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = Flatten()(x)
x = Dense(512, activation=‘relu’)(x)
x = Dropout(0.5)(x)
predictions = Dense(train_generator.num_classes, activation=‘softmax’)(x)
model = Model(inputs = base_model.input, outputs = predictions)
model.compile(optimizer = ‘adam’, loss = ‘categorical_crossentropy’, metrics = [‘accu-

racy’])
”’
This experiment is directed towards each public dataset to understand the extent of

the impact of hybrid augmentation on accuracy results.

3.3. Data Preparation

This chapter will explain the data preparation steps we have undertaken to support
this research. Data preparation is a crucial stage in ensuring the quality and integrity of the
data before using it for model training and evaluation in sign language recognition.

In this research, we used various data sources, including data we created as training
data, publicly available datasets as testing data, and a collection of background images
depicting various outdoor scenarios, gradients, and colors. There are five public datasets,
and each has its dataset with a greenscreen as the background. The greenscreen dataset
underwent a background replacement process and the addition of classical augmentation
to simulate diverse environments. Subsequently, the prepared datasets are used to evaluate
the effectiveness of various experimental scenarios, as summarized in Table 3.
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Table 3. Description of Dataset.

Category Name of Dataset Number of Data Number of Classes Images Size
Image

Background/Image
Consist

Public (As a
Testing Data)

HG14 14,280 14 256 × 256 uniform
MU HandImages

ASL
(Digit 0–9)

700 10 vary uniform

MU HandImages
ASL

(Alphabet)
3490 26 vary uniform

Sebastian Marcel 659 6 vary uniform & complex
NUS-II 2000 10 160 × 120 complex

Custom Dataset (using
Green Screen B.G. for
each Public Dataset as

Training Data)

HG14 280 14 224 × 224 greenscreen
MU HandImages

ASL
(Digit 0–9)

201 10 224 × 224 greenscreen

MU HandImages
ASL

(Alphabet)
781 26 224 × 224 greenscreen

Sebastian Marcel 120 6 224 × 224 greenscreen
NUS-II 210 10 224 × 224 greenscreen

Image Background for
replacing B.G.
Greenscreen

- 90 - 400 × 320
various outdoor

scenarios, gradients,
and different colors

In this study, we applied a series of data preprocessing techniques to ensure consistent
and reliable characteristics in the dataset. These techniques include:

(a) Image Resizing: All images in our dataset were resized to 224 × 224 pixels with three
color channels (RGB). This step is essential to match the image format commonly used
in Convolutional Neural Network (CNN) models like ResNet and Inception.

(b) Pixel Normalization: We performed pixel normalization to ensure that pixel values
have a uniform scale. This allows the model to understand patterns without being
affected by variations in pixel values.

(c) Data Augmentation: Data augmentation techniques enhanced the dataset’s variability.
This includes image rotation, horizontal and vertical shifts, shear transformations,
and image zooming. Additionally, geometric-based data augmentation, brightness,
temperature adjustments, and image blurring were applied to some images. These
techniques enrich the dataset with more variations to help the model understand sign
language gestures better.

(d) Data Duplication: Before we replaced the background, each image in our training
dataset was duplicated 1, 10, 20, or even 30 times. This duplication served a specific
purpose: significantly increasing the volume of training data and introducing a more
comprehensive array of variations into our dataset. By duplicating the images, we
took an essential initial step before altering the background, ensuring our dataset was
diverse. This approach was imperative given the relatively small size of our original
training data.

In this context, the processed data includes our created dataset, consisting of gesture
images with a green background. Each image in this dataset was duplicated 30 times before
the background replacement. This data underwent various augmentation steps, including
brightness and temperature adjustments and blurring.

Furthermore, the prepared datasets are trained using the transfer learning method
with a pre-trained ResNet50 model to optimize the training process. After training, testing
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is carried out on the relevant public dataset for each specific dataset. The results of these
tests provide information about the accuracy of each dataset.

Through this approach, we can conduct a more in-depth analysis to measure the extent
to which our applied approach succeeds when tested on various public datasets.

3.4. Experimental Results

This experiment is aimed at explaining based on the scenarios in the previous section,
which are divided into the testing results for each dataset. Along with the differences in
the number of classes in each dataset and the balancing performed, the only performance
metric used is accuracy. We have conducted a series of experiments to explain the role of
the green screening technique, hybrid image augmentation methods, and using datasets
with green screen backgrounds to improve the accuracy of sign language recognition in
various situations. The results of these experiments provide a deeper understanding of
the impact of combining multiple techniques and the extent to which they can achieve
high accuracy.

Diving deeper into the test results, let’s correlate our findings with the quantitative
data, providing a more comprehensive understanding of each test’s implications and the
varying outcomes across the different datasets.

In a comprehensive analysis of various datasets, significant diversity in outcomes
with complex patterns emerged. This is associated with the effectiveness of this study’s
augmentation and data duplication strategies in exploring the accuracy of hand gesture
recognition models with diverse datasets. Each dataset exhibits unique characteristics that
respond to the applied techniques. Here are the results from each dataset:

Firstly, in the Sebastian Marcel (SM) dataset, we observed a relatively stable increase
in accuracy with each augmentation level, ranging from single augmentation to all aug-
mentations applied. As given in Table 4, initially, accuracy was consistently improved from
no duplication (original) to 10× data duplication. However, at 20× duplication, there was
a decrease in accuracy before increasing again at 30× duplication. From the analysis of
augmentation stages, we found that a Single Augmentation Change Background on original
data resulted in the lowest accuracy. This indicates that applying Change Background
augmentation without duplication in the SM dataset is considered ineffective in improving
accuracy. However, when we used data duplication, a significant increase in accuracy
was observed, especially up to 10× duplication. This suggests that data duplication can
overcome the weaknesses of single augmentation strategies. Fluctuations at 20× duplica-
tion may be caused by information overload or noise. However, the increase again at 30×
duplication indicates that the excess data still provides informative value that can improve
the model’s accuracy. Additionally, changes in accuracy at each duplication stage may
reflect the model’s sensitivity to the quantity and variation of the data used. However, the
decrease in accuracy at 20× duplication can also indicate a potential for overfitting, where
the model becomes too biased towards the training data and loses the ability to generalize
well to test data. Therefore, it is essential to carefully evaluate the model’s performance
on test data and make appropriate adjustments to the level of data duplication to avoid
overfitting and ensure optimal model performance.

Table 4. Accuracy Results on the Sebastian Marcel Dataset with Various Data Augmentation Tech-
niques for Each Duplication.

Duplication Change
Background

Change
Background +

Geometric

Change
Background +
Geometric +
Brightness

Change Background +
Geometric +
Brightness +
Temperature

Change Background +
Geometric +
Brightness +

Temperature + Blur

Original 0.8027 0.8467 0.8346 0.8574 0.8741
10× Original 0.8801 0.8832 0.8923 0.9059 0.9272
20× Original 0.8270 0.8741 0.8771 0.8877 0.9241
30× Original 0.8528 0.8786 0.8816 0.8786 0.9272
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Secondly, based on Table 5, the NUS II dataset demonstrates a dynamic response
to augmentation, with almost all sequences of augmentation experiencing an increase
in accuracy, except for background change augmentation without data duplication. For
example, when using the original data, the accuracy is 0.815. However, as the duplication
level increases, such as 10× (0.7875), 20× (0.7805), and 30× (0.8035), there is a consistent
decrease. Although there is a slight increase at 30× duplication, the increase is insignificant.
Additionally, for change background, geometric, and brightness augmentations, although
there is an increase at the 10× duplication level, there is generally a decrease in accuracy.
For instance, the original data’s accuracy of changing background is 0.836. However, at
10× duplication, the accuracy increases to 0.8989 before decreasing at 20× (0.8974) and 30×
(0.8874) duplications. Despite the significant increase in accuracy when all augmentations
are applied, it is essential to consider the possibility of overfitting in the model. Overfitting
occurs when the model becomes too “memorized” to the training data and loses the ability
to generalize to new test data. The significant increase may indicate that the model has
overly adapted to the training data, thus unable to generalize well to new data. Specifically,
for change background augmentation, it is observed that the results tend to decrease at each
duplication level, especially at 10× duplication. This suggests that background change
without data duplication does not significantly improve the model’s accuracy in the NUS II
dataset. Furthermore, the increase observed at 30× duplication may result from random
adjustments or luck rather than a natural effect of the augmentation.

Table 5. Accuracy Results on the NUS_II Dataset with Various Data Augmentation Techniques for
Each Duplication.

Duplication Change
Background

Change
Background +

Geometric

Change
Background +
Geometric +
Brightness

Change Background +
Geometric +
Brightness +
Temperature

Change Background +
Geometric +
Brightness +

Temperature + Blur

Original 0.8135 0.8290 0.8346 0.8535 0.8690
10× Original 0.7875 0.8905 0.8989 0.8830 0.9040
20× Original 0.7805 0.8915 0.8974 0.8895 0.9095
30× Original 0.8035 0.8924 0.8874 0.9059 0.9271

Thirdly, the Massey dataset demonstrates complex fluctuation patterns in accuracy
at each level of augmentation duplication. This highlights the complexity of selecting
appropriate augmentation and underscores that choosing the right augmentation strategy is
complex. According to the results in Tables 6 and 7, the dataset’s response to augmentation
also confirms that not all augmentations contribute equally to accuracy improvement,
highlighting sensitivity variations depending on the type of augmentation applied. The
importance of selecting the proper augmentation is closely related to the issue of overfitting,
where the model becomes too biased towards the training data and loses the ability to
generalize patterns to new data. Using appropriate augmentation, we can help prevent
overfitting by introducing additional diversity into the training data, allowing the model
to learn more general patterns rather than just memorizing the training data. The results
from the dataset show that there are specific duplication levels where certain combinations
of augmentation yield the highest accuracy. For example, at the 30× duplication level,
the combination of background, geometric, and brightness changes produces the highest
accuracy. This suggests that by introducing more significant variation in the training
data, the model can better understand underlying patterns, thus reducing the risk of
overfitting. However, it should be noted that complex fluctuation patterns in accuracy can
also be potential signs of overfitting. For instance, a drastic increase in accuracy at certain
duplication levels may indicate that the model has “memorized” patterns in the training
data rather than genuinely learning more general features. Therefore, careful evaluation of
the model’s response to augmentation is necessary to ensure that accuracy improvements
are not solely due to overfitting.
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Table 6. Accuracy Results on the Massey (Digit) Dataset with Various Data Augmentation Techniques
for Each Duplication.

Duplication Change
Background

Change
Background +

Geometric

Change
Background +
Geometric +
Brightness

Change Background +
Geometric +
Brightness +
Temperature

Change Background +
Geometric +
Brightness +

Temperature + Blur

Original 0.8043 0.8057 0.8657 0.8729 0.8929
10× Original 0.8229 0.8929 0.8857 0.9014 0.9157
20× Original 0.8057 0.8800 0.9157 0.9143 0.9071
30× Original 0.8086 0.8814 0.8986 0.9029 0.9000

Table 7. Accuracy Results on the Massey (Alphabet) Dataset with Various Data Augmentation
Techniques for Each Duplication.

Duplication Change
Background

Change
Background +

Geometric

Change
Background +
Geometric +
Brightness

Change Background +
Geometric +
Brightness +
Temperature

Change Background +
Geometric +
Brightness +

Temperature + Blur

Original 0.6667 0.7499 0.7322 0.7140 0.7190
10× Original 0.6171 0.7658 0.8006 0.7548 0.7840
20× Original 0.6193 0.7427 0.7168 0.7669 0.7614
30× Original 0.6705 0.7680 0.7972 0.7801 0.7652

Lastly, the HG 14 dataset presents challenges in improving accuracy, with the lowest
accuracy values observed for some types of augmentation, as given in Table 8. This indicates
that effective augmentation strategies may vary depending on dataset characteristics and
require structured approaches and careful exploration.

Table 8. Accuracy Results on the HG 14 Dataset with Various Data Augmentation Techniques for
Each Duplication.

Duplication Change
Background

Change
Background +

Geometric

Change
Background +
Geometric +
Brightness

Change Background +
Geometric +
Brightness +
Temperature

Change Background +
Geometric +
Brightness +

Temperature + Blur

Original 0.4852 0.4740 0.4999 0.4758 0.4880
10× Original 0.5202 0.4964 0.5705 0.5705 0.5682
20× Original 0.5124 0.4902 0.4932 0.5588 0.5604
30× Original 0.5030 0.5064 0.4889 0.5547 0.5599

According to the average performances from each dataset, as shown in Table 9, it is
essential to recognize that each dataset exhibits a unique response to data duplication and
augmentation techniques. The “HG14” dataset is a prime example, where accuracy remains
relatively low even after duplication and augmentation. The distinctive characteristics of
this dataset significantly affect its response to these techniques.

The relatively lower accuracy in the HG14 dataset can be attributed to various factors.
Despite its extensive image count, the dataset lacks diversity in hand gestures, which
could lead to overfitting for specific poses. Additionally, while challenging to recognize
hand gestures in various contexts, diverse backgrounds may introduce confusion due to
stark background variations among hand gestures. Image quality issues, encompassing
variations in contrast and background clarity, may further hinder precise recognition.
Moreover, the dataset’s augmentation methods might have inherent limitations or adverse
effects on accuracy. It is imperative to consider potential algorithmic constraints when
dealing with a large and diverse dataset like HG14. To enhance accuracy, further research
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and experimentation may be necessary, focusing on augmentation techniques and training
algorithms tailored to HG14’s unique characteristics.

Table 9. Average each Public Dataset and Total.

Dataset Change
Background

Change
Background +

Geometric

Change
Background +
Geometric +
Brightness

Change Background +
Geometric +
Brightness +
Temperature

Change Background +
Geometric +
Brightness +

Temperature + Blur

Sebastian Marcel 0.8407 0.8706 0.8714 0.8824 0.9131
NUS–II 0.7962 0.8758 0.8796 0.8830 0.9024

Massey–digit 0.8104 0.8650 0.8914 0.8979 0.9039
Massey–alphabet 0.6434 0.7566 0.7617 0.7540 0.7574

HG14 0.5052 0.4918 0.5131 0.5400 0.5441

Total Average 0.719175 0.77197 0.783445 0.79143 0.8042

Furthermore, the significance of establishing a baseline is evident in the “Massey—
the alphabet” dataset. Despite a notable increase in accuracy when transitioning from
“Original” to “10× Original Data” (0.6667 to 0.6171), the initial baseline accuracy was lower
compared to other datasets. This improvement effectively brings it closer to the average
accuracy of different datasets.

An essential aspect to assess is the potential for overfitting. Substantial accuracy
increases from “Original” to “30× Original Data” in some datasets, such as “Sebastian
Marcel” and “Massey—digit”, may indicate the possibility of overfitting. While accuracy
improves the training data, imbalanced results can be observed in the test data. Therefore,
achieving the right balance in data duplication and augmentation is crucial to avoid
overfitting.

Finally, let’s consider the influence of the machine learning model. Based on the
data, the ResNet50 model may be better suited for specific datasets. The “NUS–II” dataset
consistently produces positive results, even with increased data duplication and augmenta-
tion. However, the model’s response may vary depending on the dataset’s characteristics.
Understanding the model’s role in the context of hand gesture recognition enables us to
make more informed decisions in model development.

By reviewing the results in Table 8, we can correlate them with the unique characteris-
tics of each dataset described earlier. In the “Sebastian Marcel” dataset, with its diverse
backgrounds, complex augmentation combinations such as “Change background + ge-
ometric + brightness + temperature + blur” yield the best results (0.9131), emphasizing
the need for robust augmentation when dealing with intricate backgrounds. Conversely,
the “Massey–alphabet” dataset, which exhibits lower overall accuracy, lacks significant
augmentation combinations, possibly due to the stable image characteristics in this dataset
(0.7540–0.7617). However, in “HG14”, which features relatively lower accuracy (0.4918–
0.5441), improvements in accuracy are evident when employing more complex augmenta-
tion. This improvement may be attributed to the highly varied backgrounds in each hand
gesture within the dataset. These insights underscore the necessity for further research
and exploration of augmentations tailored to the specific characteristics of each dataset to
enhance hand gesture recognition accuracy.

4. Discussion

However, it’s essential to remember that there is no one-size-fits-all approach in hand
gesture recognition. Each dataset possesses unique characteristics that influence how it
responds to augmentation and data duplication techniques. Therefore, the selection and
adaptation of techniques should be based on a deep understanding of the specific dataset’s
characteristics used in the research.

Based on our research findings, we draw several pivotal conclusions. The “green
screen” technique substantially boosts hand gesture recognition accuracy across various
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environmental conditions. Furthermore, implementing hybrid image augmentation yields
a notable positive impact on accuracy. However, it’s important to note that the extent
of accuracy improvement varies depending on the characteristics of each dataset. This
underscores the significance of tailoring techniques based on the unique characteristics
of individual datasets. Employing a dataset employing the “green screen” technique also
contributes to the success of hybrid image augmentation. Thus, the study highlights
the importance of an adaptive approach to data processing techniques in significantly
enhancing hand gesture recognition accuracy.

Despite the limitations posed by the available datasets, our research provides concrete
evidence that with a careful approach and deep understanding of dataset characteristics,
we were able to develop a hand gesture recognition model capable of overcoming various
practical challenges. For instance, when faced with significant variations in lighting condi-
tions across different environments, our model demonstrated its ability to recognize hand
gestures accurately and consistently. Furthermore, our model could accurately distinguish
hand gestures without background interference in complex or unpredictable background
situations. Moving forward, we advocate for further research in applying augmentation
techniques in hand gesture recognition, particularly on datasets featuring more diverse
characteristics and complex environmental variations. Future studies could explore the
implementation of adaptive augmentation techniques, where the type and complexity level
of augmentation are tailored to the unique characteristics of each dataset. This approach
could enhance the model’s resilience to more extensive variations in real-world conditions,
such as drastic lighting changes or unexpected backgrounds like crowds or moving objects.

Our research demonstrates that employing a series of augmentations, ranging from
background changes to blurring, significantly improves hand gesture recognition accuracy.
From a single type of augmentation alone, accuracy increased from 0.72 to 0.8042 when all
kinds of augmentations were applied simultaneously. Combining various augmentation
techniques can enhance the model’s overall performance. The strength of our research
lies in the comprehensive approach to improving hand gesture recognition accuracy by
considering multiple environmental factors. Unlike the study by Luo, Cui, and Li [49],
which focused on isolating hand regions based on skin color, our approach provides a more
holistic solution by applying various augmentations. While Rahmat et al.’s research [50]
was limited to improving object detection and lighting, we offer a broader approach by
considering background variations, geometry, lighting, and blurring effects.

Compared to Yi Yao and Chang-Tsun Li’s study [51], which used appearance-based
methods, we substantially improved hand gesture recognition accuracy by applying various
augmentations simultaneously. We successfully demonstrated that combining background
changes, geometric augmentations, brightness enhancement, color temperature adjustment,
and blurring could significantly improve hand gesture recognition accuracy.

Therefore, our research represents a holistic and comprehensive approach to enhancing
hand gesture recognition accuracy by considering various environmental factors and
implementing an effective series of augmentations.

5. Conclusions

This research has successfully developed a hybrid augmentation framework for en-
hancing the performance of hand gesture recognition systems in user- and environment-
independent scenarios. The augmentation strategy incorporates background replacement,
geometric transformations, brightness and temperature changes, and blurriness imple-
mentation. All these augmentations aim to generate more training data with variational
conditions. From the experiments using several datasets, it is found that this hybrid aug-
mentation strategy improves the classification accuracy by 8.5% on average. Besides that,
adding the training data using 10×, 20×, and 30× duplications also helps to increase the
recognition performance by up to 6% compared to just using the original training data.
It is noted that the experiment was conducted using training data from a single person.
Therefore, in the future, it can be observed whether the proposed augmentation strategy
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will provide more significant improvement when more volunteers are involved in the
image acquisition process.

Based on the discussion above, we can conclude several crucial points that mark
a significant step forward in hand gesture recognition. First, using the “green screen”
technique has revolutionized the accuracy of hand gesture recognition across various
environmental contexts. By isolating the background, the hand gesture recognition model
becomes more focused on the gestures, overcoming visual disturbances that may arise from
complex or changing backgrounds. Second, innovative approaches in applying hybrid
image augmentation have shown that geometric precision, lighting quality, and consistent
backgrounds are key to improving accuracy. However, this improvement is not uniform
and needs to be tailored to the unique characteristics of each dataset, emphasizing the need
for dataset-based technique adjustments.

Moreover, the findings offer significant insights into the significance of tailoring aug-
mentation strategies to the specific dataset employed. Datasets using the “green screen”
technique demonstrate more substantial success in implementing hybrid image augmen-
tation, reaffirming the need for adaptive strategies in data processing to achieve optimal
accuracy. This conclusion paves the way for more detailed approaches in using aug-
mentation techniques, especially on datasets with diverse characteristics and complex
environmental variations. By providing a solid foundation, this research encourages fur-
ther exploration into the potential application of hand gesture recognition technology in
various broader application contexts.
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