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Abstract: In their breakthrough paper in 2006, Goldston, Graham, Pintz and Yıldırım
proved several results about bounded gaps between products of two distinct primes. Frank
Thorne expanded on this result, proving bounded gaps in the set of square-free numbers with
r prime factors for any r ≥ 2, all of which are in a given set of primes. His results yield
applications to the divisibility of class numbers and the triviality of ranks of elliptic curves.
In this paper, we relax the condition on the number of prime factors and prove an analogous
result using a modified approach. We then revisit Thorne’s applications and give a better
bound in each case.
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1. Introduction and Statement of Results

The celebrated twin prime conjecture predicts that there are infinitely many pairs of consecutive
primes. While a proof of the conjecture seems to be out of reach by current methods, there has been
a spate of recent advances concerning the weaker conjecture:

lim inf
n→∞

(pn+1 − pn) <∞

In 2005, Goldston, Pintz and Yıldırım [1] proved that there exists infinitely many consecutive primes,
which are much closer than average, that is,

lim inf
n→∞

pn+1 − pn
log pn

= 0
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Based on their methods, Zhang [2] showed that:

lim inf
n→∞

(pn+1 − pn) ≤ 7× 107

Maynard [3] improved the upper bound to 600 using a modified sieve method. The constant was
subsequently improved to 252 by an ongoing polymath project [4].

In a similar vein, people have investigated related problems about “almost primes” or numbers with
few prime factors. Chen [5] proved that there are infinitely many primes, p, such that p + 2 has at most
two distinct prime factors. In [6], Goldston, Graham, Pintz and Yıldırım (GGPY) considered the E2

numbers, which are numbers with exactly two distinct prime factors, and showed that there are infinitely
many pairs of E2 numbers that are at most six apart.

Thorne [7] observed that the methods in [6] are highly adaptable, and generalized the result to Er
numbers, which are numbers with exactly r distinct prime factors. In [7], he showed that given an
infinite set of primes, P , satisfying certain conditions, and positive integers ν and r with r ≥ 2, there
exists an effectively computable constant C(r, ν,P), such that:

lim inf
n→∞

(qn+1 − qn) ≤ C(r, ν,P)

where qn is the n-th Er number, whose prime factors are all in P .
Using this theorem, Thorne proved several corollaries. With a result by Soundararajan [8], he showed

that there are infinitely many pairs of E2 numbers, m and n, such that the class groups, Cl(Q(
√
−m))

and Cl(Q(
√
−n)), each contain elements of order four, with |m− n| ≤ 64. As a second application, he

considered the quadratic twists of elliptic curves over Q without a Q-rational torsion point of order two.
LetE/Q be such an elliptic curve, L(E, s) denote its Hasse–Weil L-function, rk(E) := rk(E,Q) denote
the rank of the group of rational points on E over Q and E(D) denote the D-quadratic twist of E for
a fundamental discriminant, D. Using the work of Ono [9], he showed that for “good” elliptic curve
E/Q (defined as in [10]), there are infinitely many pairs of square-free numbers, m and n, such that
L(E(m), 1) · L(E(n), 1) 6= 0, rk(E(m)) = rk(E(n)) = 0 and |m − n| ≤ CE hold simultaneously for
some absolute constant, CE . For E = X0(11), Thorne obtained a bound of CE ≤ 6,152,146.

In this paper, we revisit Thorne’s examples and obtain stronger bounds by relaxing the Er condition
to instead consider bounded gaps between square-free numbers with prime factors all in P . In this case,
we can prove an analogous general theorem with a better bound on the gaps.

Theorem 1. Suppose P is a set of primes with positive Frobenius density. Let ν be a positive integer;
and let qn denote the n-th square-free number, whose prime factors are all in P . Then:

lim inf
n→∞

(qn+ν − qn) ≤ C(ν,P)

Remark 1. Theorem 1 also holds for arbitrary sets of primes of positive density satisfying a
Siegel–Walfisz-type condition (defined in Section 2).

We observe that if we remove the restriction on the number of prime divisors in each of Thorne’s
examples, we can obtain better bounds. Replacing E2 by a square-free number in his first example, we
obtain the following twin prime-type result.
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Corollary 1. There are infinitely many square-free numbers, n, such that the class groups, Cl(Q(
√
−n))

and Cl(Q(
√
−n− 8)), each contain elements of order four.

In the second example, the bound, CE , can be improved analogously. We give an explicit bound in
the case when E = X0(11).

Corollary 2. Let E := X0(11). Then, there are infinitely many pairs of square-free numbers, m and n,
for which the following hold simultaneously:

(i) L(E(m), 1) · L(E(n), 1) 6= 0,

(ii) rk(E(m)) = rk(E(n)) = 0,

(iii) |m− n| ≤ 48.

Remark 2. There are more general applications of Theorem 1. Thorne [7] described an application to
the nonvanishing of Fourier coefficients of weight one newforms, where Theorem 1 can also be applied.
If f(z) =

∑∞
n=1 a(n)qn is a newform of integer weight, then the set of integers, n, such that a(n) is

nonzero modulo ` has zero density for all prime ` by the theory of Deligne and Serre [11]. Nonetheless,
our result shows that there are bounded gaps between such n for almost all `, yielding better bounds
than [7].

Our result also applies to the quadratic twists of elliptic curves over Q that have a given 2-Selmer
F2-rank. If K is a number field, E is an elliptic curve over K and r is a suitable nonnegative integer,
Mazur and Rubin [12] conjecture that for a positive proportion of quadratic extensions, F/K, the
quadratic twist, EF , of E by F/K has the 2-Selmer rank r. Using ([12] (Proposition 4.2)), our result
shows that for K = Q, an elliptic curve, E/Q, with no two-torsion points, and a given integer, r ≥ 0,
either no quadratic twists have 2-Selmer rank r or there are bounded gaps between the square-free
numbers, d, such that E(d) has 2-Selmer rank r.

2. Main Result

We borrow our notation from [6], using k to denote an integer greater than one, L = {L1, . . . , Lk} to
denote an admissible k-tuple of linear forms (defined in Section 2.2) with Li(n) := ain + bi for some
ai, bi ∈ Z, ai > 0, and P to denote a set of primes with positive density α. The constants implied by “O”
and “�” may depend on k, L and P . Let τk(n) denote the number of ways of writing n as a product of
k factors and ω(n) denote the number of distinct prime factors of n. φ(n) and µ(n) are the usual Euler
and Möbius functions. N and R will denote real numbers regarded as tending to infinity, and we will
always assume R ≤ N1/2.

Given a set of primes, P , with density α, we call a square-free number with prime factors only in P an
EP number . Let P(N) be the set of primes in P greater than exp(

√
logN) and ξP be the characteristic

function of all EP(N) numbers. Given a positive integer, M , to be chosen later, let δm be the density of
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integers, n, congruent to m mod M in the set of EP numbers and the minimum density δ of a set of linear
forms, L, be the minimum of δbj , 1 ≤ j ≤ k. We define:

∆P,b(N ; q, a) :=
∑

N<n≤2N
n≡a(mod q)
n≡b(mod M)

ξP(n)− 1

φ(q)

∑
N<n≤2N
(n,q)=1

n≡b(mod M)

ξP(n)

Following [7], we say that P satisfies a Siegel-Walfisz condition SW (M) if for each b coprime to M
and for any positive C, ∣∣∣∣∣∣∣∣∣∣

∑
N<p≤2N,p∈P
p≡a(mod q)
p≡b(mod M)

1− 1

φ(q)

∑
N<p≤2N,p∈P
p≡b(mod M)

1

∣∣∣∣∣∣∣∣∣∣
�A N log−C N

holds uniformly for all q with (q,Ma) = 1.
We also recall that a set of primes, P , has Frobenius densityα, 0 < α < 1 (cf. [13]), if there is

a Galois extension, K/Q, and a union of conjugacy classes, H , in G = Gal(K/Q), such that for all
primes, p, sufficiently large, Frobp ∈ H if and only if p ∈ P , and #H/#G = α.

Analogous to the approach in [6,7], Theorem 1 follows from the following main result.

Theorem 2. Let P be an infinite set of primes with positive Frobenius density α < 1 that satisfies
SW (M). Let Li(x)(1 ≤ i ≤ k) be an M -admissible (defined in Section 2.2) k-tuple of linear forms
with minimum density δ. There are at least ν + 1 forms among them that infinitely, often, simultaneously
represent square-free numbers with prime factors all in P , provided that:

k > ν
41−α

δφ(M)

b(1)

b(k)
Γ(α)Γ(2− α)

where:

b(k) :=
Γ(1− α)Γ(k(1− α) + 1)

Γ((k + 1)(1− α) + 1))
= B(1− α, k(1− α) + 1)

Remark 3. Our method is not directly applicable in the case when α = 1. Nonetheless, if we take the
limit, α→ 1, on the right-hand side of the inequality, we get k > ν/(δϕ(M)). In practice, one can take
a subset of P with Frobenius density close to one that satisfies SW (M), so that the same k still satisfies
the inequality in Theorem 2.

In the case when k = 2 and ν = 1, we have the following twin prime-type result.

Corollary 3. Let P be an infinite set of primes with positive Frobenius density α < 1 that satisfies
SW (M). For any even number, d, let δ′ = maxm min(δm, δm+d). Assume that:

δ′φ(M) > 21−2αb(1)

b(2)
Γ(α)Γ(2− α)

Then, there are infinitely many n for which n and n + d are simultaneously square-free numbers with
prime factors all in P .
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We have plotted the right-hand side of the inequality against α to illustrate the conditions under which
one can obtain a twin prime-type result (Figure 1).

Figure 1. The right-hand side of Corollary 3 vs. α

0.2 0.4 0.6 0.8 1.0

Α

5

10

15

20

25

.

As another sample application of our theorem, we consider the problem of representing square-free
integers by translates of tuples. This problem was actually answered by Hall [14], who even obtained
an asymptotic expression for the number of such representations, but, by taking the limit, α → 1, in
Theorem 2.1, we easily obtain the following corollary.

Corollary 4. Let {b1, b2, . . . , bk} be an admissible k-tuple. Then, there are infinitely many n, such that
all of the n+ bi are simultaneously square-free.

Here, we recall from [1] that a k-tuple of integers is admissible if for all prime, p, they do not cover all
the residue classes modulo p. We remark that admissibility is not a necessary condition for this corollary
to hold, but it is a natural limit of our method.

2.1. The Level of Distribution of EP Numbers

In this section, we will prove a Bombieri–Vinogradov-type result for EP numbers if P satisfies
SW (M), generalizing a result of Orr [15]. More precisely, we shall show that the EP numbers have
a level of distribution ϑ = 1/2. We remark that a set, P , with positive Frobenius density satisfies
SW (M) for some M as a consequence of Lemma 3.1 in [7].

Lemma 1. Suppose that P satisfies SW (M) for some M . Then, for each b coprime to M and for any
C, there exists some B = B(C) > 0, such that:∑

q≤N1/2 log−B N
(q,M)=1

max
a

(a,q)=1

|∆P,b(N ; q, a)| �C N log−C N
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Proof. The result is a variant of Motohashi [16]. Similar results are also treated by Bombieri, Friedlander
and Iwaniec [17]. We will use the modern treatment given by ([18] (Theorem 17.4)), following the
approach of Thorne ([7] (Lemma 3.2)).

Let ξP,b(n) be the characteristic function of EP(N) numbers congruent to b modulo M and χP,b(n)

be the characteristic function of primes in P(N) congruent to b modulo M . We further define
ξ′P,b(n) = ω(n)−1ξP,b(n). Borrowing the notation from [18], given an arithmetic function, f(n), define:

Df (N ; q, a) =
∑
n≤N

n≡a(mod q)

f(n)− 1

φ(q)

∑
n≤N

(n,q)=1

f(n)

Finally, we let f |I denote the restriction of f(n) to the interval, I , i.e., f |I(n) = f(n) if n ∈ I , f |I(n) = 0

otherwise. We first remark that:

ξP,b =
∑

ij≡b(mod M)

ξ′P,i ∗ χP,j, ∆P,b(N ; q, a) = DξP,b|[N,2N ]
(2N ; q, a)

Hence, for Q = N1/2 log−B N , where B = B(C) will be chosen later,∑
q≤Q

max
(a,q)=1

|∆P,b(N ; q, a)| =
∑
q≤Q

max
(a,q)=1

|DξP,b|[N,2N ]
(2N ; q, a)|

≤
∑

ij≡b(mod M)

∑
q≤Q

max
(a,q)=1

|Dξ′P,i∗χP,j |[N,2N ]
(2N ; q, a)|

Fixing ε > 0, we now split the interval [x, 2N/x] into intervals of the form [t, (1 + ε)t), where
x = exp(

√
logN). The number of such intervals is � logN

ε
. Then, we remark that

∑
t ξ
′
P,i|[t,(1+ε)t) ∗

χP,j|[N/t, 2N
(1+ε)t

] closely approximates ξ′P,i ∗ χP,j|[N,2N ]. Both functions are supported in [N, 2N ] and
identical on [N(1+ε), 2N/(1+ε)]. The differences on the intervals, [N,N(1+ε)) and (2N/(1+ε), 2N ],
contribute� εN/φ(q) to each Dξ′P,i∗χP,j |[N,2N ]

(2N ; q, a). Summing over all q ≤ Q and all pairs (i, j),
such that ij ≡ b(mod M), the total contribution of the error is:

� εN
∑
q≤Q

1

φ(q)
� εN logN

On the other hand, we may apply Theorem 17.4 in [18] with α = ξ′P,i|[t,(1+ε)t) and β = χP,j|[N/t, 2N
(1+ε)t

].

Note that Condition (17.13) on β is satisfied for some ∆ �U log−U N , since P satisfies the SW (M)

condition, and:

||ξ′P,i|[t,(1+ε)t)|| �
√
εt

log(1−α)/2(εt)
, ||χP,j|[N/t, 2N

(1+ε)t ]
|| ∼

(
α(1− 2ε)N/t

log((1− 2ε)N/t)

)1/2

where:

||f || :=

(∑
n

f(n)2

)1/2

Hence, the theorem gives (note that x� logU N for any U > 0):∑
t

∑
q≤Q

max
(a,q)=1

|Dξ′P,i|[t,(1+ε)t)∗χP,j |[N/t, 2N
(1+ε)t

]
(2N ; q, a)| � ε−1/2N log−B+2.5N
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We take ε = log−2B/3+1N , and sum over all the pairs (i, j), such that ij ≡ b(mod M) to conclude that:∑
q≤Q

max
(a,q)=1

|∆P,b(N ; q, a)| � N log−2B/3+2N

From there, taking B = 3C/2 + 3 gives the desired result.

2.2. Linear Forms and Admissibility

Following [7] and [6], we will prove our results for k-tuples of linear forms:

Li(x) := aix+ bi (1 ≤ i ≤ k), ai, bi ∈ Z, ai > 0

We will prove that for any admissible k-tuple with k sufficiently large, there are infinitely many x for
which several Li(x) simultaneously represent square-free numbers with all prime factors in P . The basic
setup is the same as [7]. We shall recall only the important notions and hypotheses in this section and
refer our readers to ([7] (Section 2.2]) and ([6] (Section 3)) for a detailed exposition. As in [7] and [6],
we define the quantities:

PL(n) :=
k∏
i=1

Li(n), A := lcmi(ai), S(L) :=
∏
p|A

(
1− 1

p

)−k∏
p-A

(
1− k

p

)(
1− 1

p

)−k
We recall from [7] the following admissibility constraint.

Definition 1. Given a positive integer, M , a k-tuple of linear forms L = {L1, . . . , Lk} is M -admissible
if the following conditions hold simultaneously.

(i) For every prime, p, there exists an integer, xp, such that p -
n∏
i=1

(aixp + bi);

(ii) for each i, M divides ai;

(iii) for each i, M is coprime to ai/M .

A k-tuple of linear forms, L, is called admissible if it satisfies only (i). The above stronger
admissibility constraint is introduced to incorporate the fact thatP may fail to be well-distributed modulo
M .

We will primarily consider the case when a1 = · · · = ak = M . Given a set of linear forms
L = {L1, . . . , Lk} with Li(n) = ain + bi, remove finitely many primes from P , so that (A, p) = 1

for all p ∈ P . Throughout the paper, we shall use
∑′

for a sum over all the values relatively prime to A
and any prime p ∈ P(N) (this is different from [7], which only requires the values to be relatively prime
to A). As in [7] and [6], we may assume without loss of generality that M -admissibility can be replaced
by a stronger condition, which we label Hypothesis A(M). The justification for this hypothesis appears
in [7].

Hypothesis A(M). L = {L1, . . . , Lk} is an M -admissible k-tuple of linear forms. The functions
Li(n) = ain + bi(1 ≤ i ≤ k) have integer coefficients with ai > 0. Each of the coefficients, ai, is
divisible by the same set of primes, none of which divides any of the bi. If i 6= j, then any prime factor
of aibj − ajbi divides each of the ai.
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2.3. Preliminary Lemmas

In this section, we shall provide the setup of the proof of the main theorem and prove a few key
lemmas. We first recall a lemma from [6], which we shall use frequently in this section.

Lemma 2. ([6] (Lemma 4)) Suppose that γ is a multiplicative function, and suppose that there are
positive real numbers κ,A1, A2, L, such that:

0 ≤ γ(p)

p
≤ 1− 1

A1

and:

−L ≤
∑
w≤p<z

γ(p) log p

p
− κ log

z

w
≤ A2

if 2 ≤ w ≤ z. Let g be the multiplicative function defined by:

g(d) =
∏
p|d

γ(p)

p− γ(p)

Let:

cγ :=
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)κ
Assume that F : [0, 1]→ R is a piecewise differentiable function. Then:∑

d<z

µ2(d)g(d)F

(
log z/d

log z

)
= cγ

(log z)κ

Γ(κ)

∫ 1

0

F (1− x)xκ−1dx+O(cγLM(F )(log z)κ−1)

where: M(F ) = sup{(|F (x)| + |F ′(x)|) : 0 ≤ x ≤ 1}. The constant implied by “O” may depend on
A1, A2 and κ, but it is independent of L and F .

Following the approach in [7] and [6], we shall consider the sum:

S :=
∑

N<n≤2N

(
k∑
i=1

ξP(Li(n))− ν

) ∑′

d|PL(n)

λd

2

where λd are real numbers to be described later. As in [7] and [6], Theorem 2 will follow from the
positivity of the sum, S.

Note that there is a key distinction between our definition of S and the definition in [7] and [6]. Here,
we sum up λd over only the square-free numbers, d, that are relatively prime to all the primes in P(N).
Intuitively, this gives a bigger sieve weight to the values, n, where PL(n) has many prime factors in
P(N); hence, the positivity of S can be satisfied for smaller k. As we can see in the proof of Lemma 4,
this change also simplifies the calculation of S.

Define:

yr =

µ2(r)S(L) if r < R, (r, A) = 1 and (r, p) = 1 for all p ∈ P(N)

0 otherwise
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For each square-free number, d, let:

f(d) :=
d

τk(d)
=
∏
p|d

p

k
, f1 := f ∗ µ

The sieve weights, λd, are related to the quantities, yr, by:

λd = µ(d)f(d)
∑′

r

yrd
f1(rd)

Then, by Möbius inversion, we have:

yr = µ(r)f1(r)
∑′

d

λdr
f(dr)

Since the sum of λd is taken over all the square-free numbers relatively prime to the primes in P(N), we
take yr to be supported only on integers coprime to P(N), which implies that the λd are also supported
on integers coprime to P(N).

To determine S, we break the sum into parts and evaluate each of them individually. Let:

S1,j :=
∑

N<n≤2N

ξP(Lj(n))

 ∑′

d|PL(n)

λd

2

and S0 :=
∑

N<n≤2N

 ∑′

d|PL(n)

λd

2

Then:

S =
k∑
j=1

S1,j − νS0

We shall now estimate S0 and S1,j in the following two lemmas.

Lemma 3. Suppose that L is a set of linear forms satisfying Hypothesis A(M). There is a constant, C,
such that if R ≤ N1/2(logN)−C , then:

S0 = S(L)
∏
p

(
1− 1

p

)−kα ∏
p∈P(N)

(
1− k

p

)
N(logR)k(1−α)

Γ(k(1− α) + 1)
+O(N(logN)k(1−α)−1)

Proof. From the definition of S0, we have:

S0 =
∑′

d,e

λdλe
∑

N<n≤2N
[d,e]|PL(n)

1 = N
∑′

d,e

λdλe
f([d, e])

+O

(∑′

d,e

|λdλer[d,e]|

)

where for each square-free d with (d,A) = 1 and (d, p) = 1 for all p ∈ P ,

rd :=
∑

N<n≤2N
d|PL(n)

1− N

f(d)

As in the proof of Theorem 7 in [6], note that the error term is O(N) if R ≤ N1/2(logN)−3k. For the
main term,

∑′

d,e

λdλe
f([d, e])

=
∑′

d,e

λdλe
f(d)f(e)

∑
r|(d,e)

f1(r) =
∑′

r

f1(r)

(∑′

d

λdr
f(dr)

)2

=
∑′

r

µ2(r)y2
r

f1(r)
=
∑′

r

µ2(r)S(L)2

f1(r)
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We use Lemma 2 with:

γ(p) =

k if p - A and p /∈ P(N)

0 otherwise

and F (x) = 1. Then, g(d) = f1(d)−1. It can verified as in ([6] (Lemma 7)) that the conditions in
Lemma 2 are satisfied with κ = k(1 − α), using the fact that the Frobenius density of P(N) is α < 1.
Then, the main term becomes:

S(L)
∏
p

(
1− 1

p

)−kα ∏
p∈P(N)

(
1− k

p

)
N(logR)k(1−α)

Γ(k(1− α))

∫ 1

0

xk(1−α)−1dx

with the desired error term. The result follows by evaluating the integral.

Remark 4. This argument breaks down when α = 1, since κ needs to be positive in order to apply
Lemma 2. A similar phenomenon occurs in the proof of Lemma 4.

Lemma 4. Let L be a set of linear forms satisfying Hypothesis A(M). There is a constant, C, such that
if R = N1/4(logN)−C , then:

S1,j ∼
DN(logR)(k+1)(1−α)

log1−αN

where:

D :=
S(L)δbjφ(M)cPΓ(2(1− α) + 1)

Γ(2− α)2Γ((k + 1)(1− α) + 1)

∏
p

(
1− 1

p

)−α(k+1) ∏
p∈P(N)

(
1− 1

p

)(
1− k

p

)
and cP = cP(N) > 0 satisfies: ∑

N<n≤2N

ξP(n) =
cPN

log1−α(N)

Remark 5. The ratio, cP(N), approaches a positive constant as N tends to infinity by Theorem 2.4
in [13].

Proof. From the definition of S1,j , we have:

S1,j =
∑

N<n≤2N

ξP(Lj(n))

 ∑′

d|PL(n)

λd

2

=
∑′

d,e

λdλe
∑

N<n≤2N
[d,e]|PL(n)/Lj(n)

ξP(Lj(n))

We remark that in the second equality, we have used the condition that [d, e] is not divisible by any prime
in P(N), and hence, the condition [d, e]|PL(n) in the sum implies that [d, e]|PL(n)/Lj(n) for nonzero
ξP(Lj(n)). This contributes to the much simpler estimate of S1,j than that in [7].

Let Ω∗(x) denote the set of residue classes, a, modulo x, such that x|PL(a)/Lj(a). Note that
|Ω∗(x)| = τk−1(x) by Hypothesis A(M) (cf. (4.4) in [7]). Then:

S1,j =
∑′

d,e

λdλe
∑

a∈Ω∗([d,e])

∑
N<n≤2N

n≡a(mod [d,e])

ξP(Lj(n))
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Write n′ = Lj(n) = ajn + bj , then ajN + bj < n′ ≤ 2ajN + bj , with n′ ≡ aaj + bj(mod [d, e]) and
n′ ≡ bj(mod aj). By assumption, the values, [d, e], aj/M,M , are all coprime. Let ud,e = [d, e]aj/M .
Then, we may use the Chinese Remainder Theorem to combine the congruence conditions modulo [d, e]

and aj/M into a single condition on ud,e. Let Ω∗1(x) denote the set of all possible residue classes of n′

modulo x. Then:
S1,j =

∑′

d,e

λdλe
∑

a′∈Ω∗1(ud,e)

∑
ajN+bj<n

′≤2ajN+bj
n′≡a′(mod ud,e)
n′≡bj(mod M)

ξP(n′)

Now, we decompose the inner sum:∑
ajN+bj<n

′≤2ajN+bj
n′≡a′(mod ud,e)
n′≡bj(mod M)

ξP(n′) =
1

φ(ud,e)

∑
ajN<n

′≤2ajN
n′≡bj(mod M)

ξP(n′) + ∆P,bj(ajN ;ud,e, a
′) +Obj(1)

Accordingly, we can decompose S1,j into its main term and error term S1,j = M1,j + E1,j . Let
∆P,bj(X;ud,e) := max(a,ud,e)=1 |∆P,bj(X;ud,e, a)|. The error term can be estimated using Lemma 1
and Cauchy’s inequality as in the proof of Lemma 4.1 in [7]. Let v = [d, e], then ud,e = ajv/M . Note
that |Ω∗1(ud,e)| = |Ω∗([d, e])| = τk−1([d, e]). Moreover, by Hypothesis A(M), we have (a′, ud,e) = 1 for
all a′ ∈ Ω∗1(ud,e). Hence:

E1,j =
∑′

d,e

λdλe
∑

a′∈Ω∗1(ud,e)

(∆P,bj(ajN ;ud,e, a
′) +Obj(1))

≤
∑′

d,e

λdλeτk−1([d, e])(∆P,bj(ajN ;ud,e) +O(1))

� log2kN
∑
v≤R2

(3k − 3)ω(v)∆P,bj

(
ajN ;

ajv

M

)
�U (log2kN)(ajN) log−U(ajN)

� N log2k−U N

for any U . To obtain the third line, we use the fact that |λd| � logk R ≤ logkN by (4.3) of [6]. For the
main term of S1,j ,

M1,j =
∑′

d,e

λdλe
τk−1([d, e])

φ(ud,e)

∑
ajN<n≤2ajN
n≡bj(mod M)

ξP(n) (1)

∼ δbj
φ(M)

φ(aj)

 ∑
ajN<n≤2ajN

ξP(n)

∑′

d,e

λdλeτk−1([d, e])

φ([d, e])

where δbj is the density of the elements congruent to bj mod M in the set of EP(N) numbers.
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Our next step is to evaluate the last sum. Let f ∗(n) = φ(n)/τk−1(n) and f ∗1 = f ∗ ∗ µ. Then:∑′

d,e

λdλeτk−1([d, e])

φ([d, e])
=
∑′

d,e

λdλe
f ∗([d, e])

=
∑′

d,e

λdλe
f ∗(d)f ∗(e)

f ∗((d, e))

=
∑′

d,e

λdλe
f ∗(d)f ∗(e)

∑
r|(d,e)

f ∗1 (r)

=
∑′

r

f ∗1 (r)

∑′

r|d

λd
f ∗(d)

2

=
∑′

r

µ2(r)

f ∗1 (r)
(y∗r)

2

by an analogue of Lemma 6 in [6], where:

y∗r :=
µ2(r)r

φ(r)

∑′

m

ymr
φ(m)

Thus:

y∗r =
µ2(r)rS(L)

φ(r)

∑′

m<R/r
(m,rA)=1

µ2(m)

φ(m)

We use Lemma 2 with:

γ(p) =

1 if p - rA and p /∈ P(N)

0 otherwise

and F (x) = 1. Again, the conditions are verified as in ([6] (Lemma 7)) with κ = 1− α, giving:

cγ =
φ(rA)

rA

∏
p

(
1− 1

p

)−α ∏
p∈P(N)

(
1− 1

p

)
Hence for square-free r with (r, A) = 1 and (r, p) = 1 for all p ∈ P(N),

y∗r ∼
φ(A)S(L)

A

∏
p

(
1− 1

p

)−α ∏
p∈P(N)

(
1− 1

p

)
(logR/r)1−α

Γ(1− α)

∫ 1

0

x−αdx

=
φ(A)S(L)

A

∏
p

(
1− 1

p

)−α ∏
p∈P(N)

(
1− 1

p

)
(logR)1−α

Γ(2− α)

(
logR/r

logR

)1−α

Thus:∑′

r

µ2(r)

f ∗1 (r)
(y∗r)

2 ∼ φ(A)2S(L)2

A2

∏
p

(
1− 1

p

)−2α ∏
p∈P(N)

(
1− 1

p

)2
(logR)2(1−α)

Γ(2− α)2

∑′

r<R

µ2(r)

f ∗1 (r)

(
logR/r

logR

)2(1−α)

We evaluate the last sum using Lemma 2, taking F (x) = x2(1−α) and:

γ(p) =


p(k − 1)

p− 1
if p - rA and p /∈ P(N)

0 otherwise
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The conditions are satisfied when κ = (k − 1)(1− α), as verified in ([6] [Lemma 8]). Then:

cγ =
1

S(L)

A

φ(A)

∏
p

(
1− 1

p

)−α(k−1) ∏
p∈P(N)

(
1− 1

p

)−1(
1− k

p

)
Hence:∑′

r

µ2(r)

f ∗1 (r)
(y∗r)

2

∼φ(A)S(L)

A

∏
p

(
1− 1

p

)−α(k+1) ∏
p∈P(N)

(
1− 1

p

)(
1− k

p

)
(logR)(k+1)(1−α)Γ(2(1− α) + 1)

Γ(2− α)2Γ((k + 1)(1− α) + 1)

Plugging the definition of cP and this identity into (1), we have the desired result. Note that here we have
used the fact that aj/φ(aj) = A/φ(A) by Hypothesis A(M).

2.4. Proof of Theorems 1 and 2

Proof of Theorem 2. Let R = N1/4(logN)−C , where C is the constant in Lemma 2.6. Noting that
4 logR ∼ logN , we have, as N →∞,

S ≥ S(L)
∏
p

(
1− 1

p

)−kα ∏
p∈P(N)

(
1− k

p

)
N(logR)k(1−α)

Γ(k(1− α) + 1)
(kD(k)− ν)

where:

D(k) :=
cPδφ(M)

41−α
Γ(k(1− α) + 1)Γ(2(1− α) + 1)

Γ(2− α)2Γ((k + 1)(1− α) + 1)

∏
p

(
1− 1

p

)−α ∏
p∈P(N)

(
1− 1

p

)
Hence, S is positive for all large enough N if:

kD(k)− ν ⇔ k > ν
b(1)

b(k)

41−α

cPδφ(M)

Γ(2− α)

Π
(2)

where:

Π :=
∏
p

(
1− 1

p

)−α ∏
p∈P(N)

(
1− 1

p

)
and:

b(k) :=
Γ(1− α)Γ(k(1− α) + 1)

Γ((k + 1)(1− α) + 1))
= B(1− α, k(1− α) + 1)

is the beta function. Finally, by a variant of the Tauberian theorem ([19] (Theorem 2.4.1)), we deduce
that:

cPΠ ∼ 1

ζP(N)(2)Γ(α)
=

1

Γ(α)

∏
p∈P(N)

(
1− 1

p2

)
where, as we recall from Lemma 4, cP = cP(N) > 0 is the function that satisfies:∑

N<n≤2N

ξP(n) =
cPN

log1−α(N)

For N large enough, the infinite product approaches one. Now, the result follows from Equation (2).
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Proof of Theorem 1. To derive Theorem 1.1 from our main theorem, we consider for given k and m a
set of k primes, b1, ..., bk, with the appropriate residue classes as needed. Then, {Mx + bi} forms an
M -admissible k-tuple, which can be normalized to fit HypothesisA(M). This gives us the value, bk−b1,
for the constant, C(ν,P).

3. Discussion of Examples

In this section, we shall revisit two of the examples in [7]. We observe that both Theorem 1.2 and
Corollary 1.3 in [7] rely on theorems that are not just applicable to Er numbers, but any square-free
numbers whose prime factors satisfy a Chebotarëv condition. Therefore, Theorem 2 applies in these two
examples, and we can get better bounds in both cases.

3.1. Example 1: Ideal Class Groups with Order Four Elements

We first recall a result of Soundararajan [8]. Proposition 1 and 2 in [8] show that for any positive
square-free number d ≡ 1 (mod 8), whose prime factors are all congruent to±1 (mod 8), the class group
Cl(Q(

√
−d)) contains an element of order four.

Applying Theorem 2 with ν = 1, α = 1/2, δ = 1/2 and M = 8, the right-hand side of Theorem 2
is 1.850 . . . < 2 when k = 2. Hence, we may take k = 2. Considering the eight-admissible two-tuple
{8n+ 17, 8n+ 25}, we obtain Corollary 1, which is an improvement on the bound in [7].

3.2. Example 2: Rank Zero Quadratic Twists of Modular Elliptic Curves

As in Section 6 of [7], we shall focus on the elliptic curve E = X0(11), recalling the setting from [9].
We take the cubic model of X0(11) to be:

y2 = f(x) = x3 − 4x2 − 160x− 1264

The Galois representation:
ρf : Gal(Q/Q)→ GL2(Z/2Z)

induced by the natural action of Gal(Q/Q) on the two-torsion points of E(−11) has the property that:

tr(ρf (Frobp)) ≡ a(p) (mod 2)

for all, except finitely many, primes, p. Here, a(p) = p + 1 − #E(Fp), and Frobp is the Frobenius
element at p in Gal(Q[f(x)]/Q). Let S be the set of primes, p, such that tr(ρf (Frobp)) ≡ 1 (mod 2).
We remark that S is also the set of all primes p, such that f(x) is irreducible mod p. Equation (1.4) and
Theorem 1.1 of Boxer-Diao [10] establish that for any positive square-free number, d, with prime factors
all in S, we have:

L(E(−d), 1) 6= 0 and rk(E(−d),Q) = 0

We note that Gal(Q[f(x)]/Q) ∼= S3; hence, the Chebotarëv density theorem shows that S has density
α = 1/3. Murty and Murty’s theorem [20] now implies that S satisfies SW (11), as analyzed in [7].
Furthermore, since a(p) is odd only if p = 11 or p is a quadratic residue mod 11 (cf. the proof of
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Corollary 1 in [9]) and these values distribute uniformly among the five quadratic residue classes, one
may take δ = 0.2. Given ν = 1, α = 1/3, δ = 0.2 and M = 11, the right-hand side of Theorem 2 is
7.771 . . . < 8 when k = 8. Hence, we may take k = 8. One may check that the eight-tuple:

{1, 3, 9, 15, 25, 31, 45, 49}

contains only quadratic residues mod 11 and, hence, forms an 11-admissible eight-tuple {11n+bj}, such
that δ ≥ 0.2. As a result, there are infinitely many pairs of square-free m and n with:

L(E(−m), 1) · L(E(−n), 1) 6= 0, rk(E(−11m)) = rk(E(−11n)) = 0

and:
|m− n| ≤ 48
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