
Mathematics 2014, 2, 53-67; doi:10.3390/math2010053
OPEN ACCESS

mathematics
ISSN 2227-7390

www.mdpi.com/journal/mathematics

Article

Convergence of the Quadrature-Differences Method for Singular
Integro-Differential Equations on the Interval
Alexander Fedotov

N.I.Lobachevskii Institute of Mathematics and Mechanics, Kazan Federal University,
Kremliovskaya 35, Kazan 420008, Russian Federation; E-Mail: fedotov@mi.ru;
Tel.: +79-178-771-385

Received: 22 December 2013; in revised form: 20 February 2014 / Accepted: 21 February 2014 /
Published: 4 March 2014

Abstract: In this paper, we propose and justify the quadrature-differences method for the
full linear singular integro-differential equations with the Cauchy kernel on the interval
(−1,1). We consider equations of zero, positive and negative indices. It is shown that the
method converges to an exact solution, and the error estimation depends on the sharpness of
derivative approximations and on the smoothness of the coefficients and the right-hand side
of the equation.
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1. Introduction

In [1–4], the quadrature-differences methods for the various classes of the periodic singular integro-
differential equations with Hilbert kernels were justified. The convergence of the methods was proven
and the error estimates were obtained. Here, we propose and justify the same method for the full linear
singular integro-differential equations with the Cauchy kernel on the interval (−1, 1). Note that for the
first order equations, this method was justified in [5].

It is known (see, e.g., [6,7]) that the theories of the singular integral equations in periodic (with the
Hilbert kernel) and non-periodic (with the Cauchy kernel) cases differ greatly, due to the discontinuity of
the contour in the latter case. Therefore, the calculation schemes and the justifications of the method in
these cases have essential distinctions. Thus, if for the equations with Hilbert kernels, the same uniform
grid is used both for the approximation of the derivatives and integrals and as collocation nodes, then,
for the equations with the Cauchy kernel, we must use two different grids: the roots of the special
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polynomials. For the first class of equations, the problem is stated in Hölder space, and therefore, the
usual technique of the compact approximation [8] for the justification is used. The rate of convergence
grows with the growing of the smoothness of the coefficients and the right-hand side of the equation
infinitely. For the second class of equations, the highest order derivative of the desired function has,
in general, integrable singularities at the end points of the contour. Therefore, the problem is stated
in the spaces of weighted quadratically integrable functions; the “second kind” [8] of theory of the
approximation methods is used, and the rate of convergence is restricted by the order of smoothness of
the desired function, coefficients and the right-hand side of the equation.

In the paper, equations of zero, positive and negative indices are considered. The convergence of the
method is proven, and the rate of convergence is obtained.

2. Formulation of the Problem

Consider a linear singular integro-differential equation of the form:
m∑
ν=0

(aν(t)x
(ν)(t) + bν(t)(Sx

(ν))(t) + (Thνx
(ν))(t)) = f(t), −1 < t < 1, m ≥ 1 (1)

with the initial conditions:

x(ν)(ξ0) = 0, ν = 0, 1, ...,m− 1, −1 ≤ ξ0 ≤ 1 (2)

where x(t) is a desired unknown and aν(t), bν(t), hν(t, τ), ν = 0, 1, ...,m, f(t) are given continuous
functions of their arguments, t, τ ∈ [−1, 1]; bm(t) is a polynomial of some order, n0 ≥ 0 and
singular integrals:

(Sx(ν))(t) =
1

π

∫ 1

−1

x(ν)(τ)dτ

τ − t
, ν = 0, 1, ...,m

are to be interpreted as the Cauchy–Lebesgue principal value; and

(Thνx
(ν))(t) =

1

π

∫ 1

−1

hν(t, τ)x(ν)(τ)dτ, ν = 0, 1, ...,m

are regular integrals.
First, we consider in detail a zero index equation (κ = 0) and then point out the changes in the

calculation scheme and justification for the cases of positive (κ > 0) and negative (κ < 0) indices.

3. Calculation Scheme

Let us define, following Muskhelishvili [7], the index and the canonical function of the Equation
(1). To do this, denote θ(t) = π−1arg(am(t) + ibm(t)), t ∈ [−1, 1], some continuous and one-valued
branch of the multi-valued function π−1arg(am(t) + ibm(t)). Then, the canonical function of Equation
(1) will be:

Z(t) = (1− t)γ1(1 + t)γ2 exp(−
∫ 1

−1

θ(τ)dτ

τ − t
), t ∈ (−1, 1)

where γ1 = λ1 − θ(1), γ2 = λ2 + θ(−1) and λ1, λ2 are the integers subject to the condition, γ1, γ2 ∈
(−1, 1). The integer κ = −(λ1 + λ2) is called the index of Equation (1), and the numbers, γ1 and γ2,
determine the class of possible solutions of the problems, (1) and (2) (see [7,9]).



Mathematics 2014, 2 55

Now, we will define two weight-functions:

ρ(t) = Z(t)(a2
m(t) + b2

m(t))−1/2 and ρ̄(t) = Z−1(t)(a2
m(t) + b2

m(t))−1/2, (a2
m(t) + b2

m(t))1/2 > 0

and two sequences of polynomials {φn(t)}∞n=o and {ψn(t)}∞n=o with the following properties:∫ 1

−1

ρ(τ)φk(τ)φl(τ)dτ = σkδk,l, k ≥ l,

∫ 1

−1

ρ̄(τ)ψk(τ)ψl(τ)dτ = ζkδk,l, k ≥ l (3)

am(t)ρ(t)φn+1(t) + bm(t)(Sρφn+1)(t) = (−1)κ((σn+1βn+1−κ)/(ζn+1−καn+1))ψn+1−κ(t), n ≥ max{n0, κ} (4)

where αn+1 > 0 and βn+1−κ > 0 are the senior coefficients of the polynomials, φn+1(t) and ψn+1−κ(t),
correspondingly, and δk,l is the Kronecker symbol. The existence of the polynomials satisfying (3), due
to the positiveness and integrability of the weight-functions, ρ(t) and ρ̄(t), was shown in [10]. Moreover,
it was shown there that each of the polynomials {φn(t)}∞n=o, {ψn(t)}∞n=o has just n real simple roots on
the interval (−1, 1). Identity (4), which plays the crucial role in the following account, was obtained by
Elliott [6].

Let:
{τk | φn+1(τk) = 0, k = 0, 1, ..., n} (5)

{tj | ψn+1−κ(tj) = 0, j = 0, 1, ..., n− κ} (6)

be the grids on [−1,1]. By:
{τk | k = −m1,−m1 + 1, ..., n+m2} (7)

we denote the union of the the grid (5) with the nodes:

τk = −1 + (τ0 + 1)(k +m1)/(m2 + 1), k = −m1,−m1 + 1, ...,−1

τk = 1 + (1− τn)(k − n−m2)/(m2 + 1), k = n+ 1, n+ 2, ..., n+m2

Here, m1 and m2 are two nonnegative integers:

m1 = m2 = m/2 for even m

m1 = (m+ 1)/2, m2 = (m− 1)/2 for odd m

We will seek an approximate solution of Equation (1) as a vector:

xn = (x−m1 , ..., xn+m2) (8)

of values of unknown function in the nodes of the grid (7). Derivatives and values of the unknown
function in the nodes of the grids, (5) and (6), and for the initial condition in the point, ξ0, we will
approximate by any numerical formulae:

x(m)(τk) ∼ [D(m)
n xn]τk , k = 0, 1, ..., n

x(ν)(tj) ∼ [D(ν)
n xn]tj , j = 0, 1, ..., n− κ

x(ν)(ξ0) ∼ [D(ν)
n xn]ξo , ν = 0, 1, ...,m− 1
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which use only the nodes (7) and the components of the vector (8).
Singular integrals, (Sx(ν))(t), ν = 0, 1, ...,m− 1, are to be approximated by the quadratures. To do

this, we will integrate polynomials:

(Qn−κD
(ν)
n xn)(τ) =

n−κ∑
j=0

[D(ν)
n xn]tj lj(τ), ν = 0, 1, ...,m− 1

lj(τ) =
ψn+1−κ(τ)

(τ − tj)ψ′n+1−κ(tj)
, j = 0, 1, ..., n− κ

(SQn−κD
(ν)
n xn)(t) =

n−κ∑
j=0

[D(ν)
n xn]tj(Slj)(t), ν = 0, 1, ...,m− 1 (9)

(Slj)(t) =
(Sψn+1−κ)(t)− (Sψn+1−κ)(tj)

(t− tj)ψ′n+1−κ(tj)
, j = 0, 1, ..., n− κ

To approximate regular integrals, (Thνx
(ν))(t), ν = 0, 1, ...,m− 1, we will integrate polynomials:

(Qn−κhνD
(ν)
n xn)(t, τ) =

n−κ∑
j=0

[D(ν)
n xn]tjhν(t, tj)lj(τ), ν = 0, 1, ...,m− 1

(TQn−κhνD
(ν)
n xn)(t) =

n−κ∑
j=0

[D(ν)
n xn]tjhν(t, tj)T lj, ν = 0, 1, ...,m− 1 (10)

T lj = (Sψn+1−κ)(tj)/ψ
′
n+1−κ(tj), j = 0, 1, ..., n− κ

Coefficients of the quadrature Formulae (9) and (10) depend on the integrals, (Sψn+1−κ)(t), which,
according to the relations ([k−1

2
] denotes the largest integer not exceeding k−1

2
):

(S1)(t) =
1

π
ln

∣∣∣∣1− t1 + t

∣∣∣∣
(Sτ k)(t) =

tk

π
ln

∣∣∣∣1− t1 + t

∣∣∣∣+
2

π

[ k−1
2 ]∑
j=0

tk−(2j+1)

2j + 1
, k = 1, 2, ...

could be calculated explicitly for all fixed n.
To approximate the dominant part of Equation (1):

(Ux(m))(t) = am(t)x(m)(t) + bm(t)(Sx(m))(t)

we will apply the operator, U , to the polynomial:

(Pnρ
−1D(m)

n xn)(τ) =
n∑
k=0

ρ−1(τk)[D
(m)
n xn]τk l̄k(τ)

l̄k(τ) =
φn+1(τ)

(τ − τk)φ′n+1(τk)
, k = 0, 1, ..., n
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multiplied to the weight-function, ρ(τ),

(UρPnρ
−1D(m)

n xn)(t) =
n∑
k=0

ρ−1(τk)[D
(m)
n xn]τk(Uρl̄k)(t) (11)

where, using Equation (4),

(Uρl̄k)(t) = (−1)κ
σn+1βn+1−κ(ψn+1−κ(t)− ψn+1−κ(τk))

ζn+1−καn+1(t− τk)φ′n+1(τk)
, k = 0, 1, ..., n (12)

To approximate the regular integral, (Thmx
(m))(t), we will integrate the polynomial:

(Pnρ
−1hmD

(m)
n xn)(t, τ) =

n∑
k=o

ρ−1(τk)[D
(m)
n xn]τkhm(t, τk)l̄k(τ)

also multiplied to the weight-function, ρ(τ),

(TρPnρ
−1hmD

(m)
n xn)(t) =

n∑
k=o

ρ−1(τk)[D
(m)
n xn]τkhm(t, τk)Tρl̄k (13)

where Tρl̄k, k = 0, 1, ...n, are coefficients of the Gauss-type quadrature formula, and for τk, which are
not the roots of the polynomial, bm(t), the following relationship is valid:

Tρl̄k = (−1)κ
σn+1βn+1−κψn+1−κ(τk)

ζn+1−καn+1bm(τk)φ
′
n+1(τk)

Substituting the numerical derivative formulae, the values of Quadratures (9)–(11), (13) and the right-
hand side in the nodes of the grid (6) in Equation (1) and the numerical formulae for the point, ξ0, in the
initial conditions (2), we will obtain the system of linear algebraic equations:

n∑
k=0

ρ−1(τk)[D
(m)
n xn]τk(Uρl̄k)(ti) +

m−1∑
ν=0

(aν(ti)[D
(ν)
n xn]ti+ (14)

+bν(ti)
n−κ∑
j=0

[D(ν)
n xn]tj(Slj)(ti) +

n−κ∑
j=0

[D(ν)
n xn]tjhν(ti, tj)T lj)+

+
n∑
k=0

ρ−1(τk)[D
(m)
n xn]τkhm(ti, τk)Tρl̄k = f(ti), i = 0, 1, ..., n− κ

[D(ν)
n xn]ξ0 = 0, ν = 0, 1, ...,m− 1 (15)

of the quadrature-differences method.
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4. Justification

Let us denote by Wm
2,ρ (W 0

2,ρ = L2,ρ) the set of functions that have on [−1, 1] absolutely continuous
(m−1)-order derivatives and quadratically integrable with the weight-function ρ(τ)m-order derivatives.
Then, let us define the following spaces, X,Xn; Y, Yn; Z,Zn−κ:

X = {x ∈ Wm
2,ρ−1 | x(ν)(ξ0) = 0, ν = 0, 1, ...,m− 1}, Y = L2,ρ−1 , Z = L2,ρ̄

with the norms:

‖x‖X =

{∫ 1

−1

ρ−1(τ) | x(m)(τ) |2 dτ
}1/2

, x ∈ X

‖y‖Y =

{∫ 1

−1

ρ−1(τ) | y(τ) |2 dτ
}1/2

, y ∈ Y

‖z‖Z =

{∫ 1

−1

ρ̄(τ) | z(τ) |2 dτ
}1/2

, z ∈ Z

Xn = {xn} - the set of n+m+ 1-components vectors of the form (8) satisfying the conditions

[D(ν)
n xn]ξ0 = 0, ν = 0, 1, ...,m− 1

Yn = {yn} - the set of n + 1-components vectors, Zn−κ = {zn−κ}, the set of n + 1 − κ-components
vectors with the norms:

‖xn‖Xn =

{∫ 1

−1

ρ(τ) | (Pnρ
−1D̄(m)

n xn)(τ) |2 dτ
}1/2

, xn ∈ Xn

‖yn‖Yn =

{∫ 1

−1

ρ(τ) | (Pnρ
−1yn)(τ) |2 dτ

}1/2

, yn ∈ Yn

‖zn−κ‖Zn−κ =

{∫ 1

−1

ρ̄(τ) | (Qn−κzn−κ)(τ) |2 dτ
}1/2

, zn−κ ∈ Zn−κ

where operator D̄(m)
n : Xn → Yn is defined by the formulae:

D̄(0)
n xn = xn, D̄nxn = D̄(1)

n xn, [D̄(1)
n xn]τk =

xk − xk−1

τk − τk−1

, k = 0, 1, ..., n

[D̄(ν)
n xn]τk =


[D̄nD̄

(ν−1)
n xn]τk+1

, k = −m1 + ν
2
, ..., n+m2 − ν

2
, ν − even

[D̄nD̄
(ν−1)
n xn]τk , k = −m1 + ν+1

2
, ..., n+m2 − ν−1

2
, ν − odd

ν = 1, 2, ...,m.

Here, and further, the product of the vector and function is equal to the vector, the components of which
are the products of vector components and function values in the same nodes and:

(Pnyn)(τ) =
n∑
k=0

[yn]τk l̄k(τ), l̄k(τ) =
φn+1(τ)

(τ − τk)φ′n+1(τk)
, k = 0, 1, ..., n
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(Qn−κzn−κ)(t) =
n−κ∑
j=0

[zn−κ]tj lj(t), lj(t) =
ψn+1−κ(t)

(t− tj)ψ′n+1−κ(tj)
, j = 0, 1, ..., n− κ

are Lagrange interpolative operators. We will need also the following operators:

pmn : X → Xn, p
m
n x = (x(τ−m1), x(τ−m1+1), ..., x(τn+m2))

pn : Y → Yn, pny = (y(τ0), y(τ1), ..., y(τn))

qn−κ : Z → Zn−κ, qn−κz = (z(t0), z(t1), ..., z(tn−κ))

Proof of Theorem 1. It is known (see, e.g., [6,7,9]) that if the right-hand side of Equation (1) belongs
to Hµ or L2,ρ̄, then the m-order derivative of the solution of the problems, (1) and (2), has the form
x∗(m)(t) = ρ(t)ω(t), where ω(t) ∈ Hµ or ω(t) ∈ L2,ρ correspondently, i.e., x∗(t) ∈ Wm

2,ρ−1 . Thus, we
will consider the problems, (1) and (2), as operator equation:

Kx ≡ UD(m)x+ V x = f, K : X → Z (16)

where:

Uy = amy + bmSy, U : Y → Z, V x =
m∑
ν=0

AνD
(ν)x, V : X → Z

AνD
(ν)x = aνD

(ν)x+ bνSD
(ν)x+ ThνD

(ν)x, ν = 0, 1, ...,m− 1

AmD
(m)x = ThmD

(m)x, D(ν)x = x(ν), ν = 0, 1, ...,m− 1

Here, as is shown in [6,7,9,11], K : X → Z is a linear bounded operator, V : X → Z is a compact
operator and U : Y → Z is continuously invertible.

Let us consider η an arbitrary constant, which is not an eigenvalue of the problem:

D(m)x+ ηρx = 0, x(ν)(ξ0) = 0, ν = 0, 1, ...,m− 1

and make a substitution:
z = U(D(m)x+ ηρx) (17)

in Equation (16). Due to the invertibility of the operator, U : Y → Z:

x = GU−1z, D(m)x = U−1z − ηρGU−1z (18)

where G : Y → X is the inverse to the operator:

Fx = D(m)x+ ηρx, F : X → Y

Equation (16) will take the form:

Bz ≡ z + V GU−1z − ηUρGU−1z = f, B : Z → Z (19)

being still equivalent to the original one. The equivalence here means that the solvability of one of them
yields the solvability of another, and their solutions are joined by the relationships, (17) and (18).
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Now, let us rewrite the system of Equations (14) and (15) as an operator equation:

Kn−κxn ≡ Un−κD
(m)
n xn + Vn−κxn = fn−κ, Kn−κ : Xn → Zn−κ (20)

where:
Un−κyn = qn−κUρPnρ

−1yn, Un−κ : Yn → Zn−κ

Vn−κxn = qn−κ

m∑
ν=0

AνnD
(ν)
n xn, Vn−κ : Xn → Zn−κ

AνnD
(ν)
n xn = aνQn−κD

(ν)
n xn + bνSQn−κD

(ν)
n xn + TQn−κhνD

(ν)
n xn, ν = 0, 1, ...,m− 1

AmnD
(m)
n xn = TρPnρ

−1hmD
(m)
n xn, fn−κ = qn−κf

and make a substitution:
zn−κ = Un−κFnxn (21)

where:
[Fnxn]τk = [D(m)

n xn]τk + ηρ(τk)[xn]τk , k = 0, 1, ..., n, Fn : Xn → Yn

The operator, Un−κ : Yn → Zn−κ, is invertible explicitly for all n, beginning from some n1, n1 ≥
max{n0, κ} (see, [6]) and:

xn = GnU
−1
n−κzn−κ, D(m)

n xn = U−1
n−κzn−κ − ηρGnU

−1
n−κzn−κ

where Gn : Yn → Xn is the inverse to Fn. The invertibility of Fn for all n beginning from some
n2, n2 ≥ n1 follows from Conditions (B.1), (B.2) of Theorem 1 and the choice of η (see [8]). Moreover,
for any y(t) = ρ(t)ω(t), ω(t) ∈ Hµ,

‖pmn Gy −Gnpny‖Xn ≤ C εn(Gy) (22)

Therefore, by the substitution (21), we will get an equation:

Bn−κzn−κ ≡ zn−κ + Vn−κGnU
−1
n−κzn−κ − ηUn−κρGnU

−1
n−κzn−κ = fn−κ (23)

Bn−κ : Zn−κ → Zn−κ

which is equivalent to Equation (20).
Now, to prove the unique solvability of Equation (23), we have to establish, according to Theorem

6.1 [8], the following:
(a) ‖Qn−κfn−κ − f‖Z → 0 for n→∞;
(b) the sequence of operators (Bn−κ) approximates operator B compactly;
(c) B : Z → Z is invertible.
The validity of (a) follows immediately from the estimations [12]:

‖Qn−κfn−κ − f‖Z ≤ CEn−κ(f) (24)

En−κ(f) ≤ C(n− κ)−µ, f(t) ∈ Hµ, n > κ (25)
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where En−κ(f) is the best uniform approximation of the function, f(t), by the polynomials of order not
higher than n− κ on [−1, 1].

To check (b), we will show first that the sequence (Bn−κ) approximates the operator, B, with respect
to Qn−κ. For arbitrary zn−κ ∈ Zn−κ, we will write:

‖Qn−κBn−κzn−κ −BQn−κzn−κ‖Z ≤ ‖Qn−κVn−κGnU
−1
n−κzn−κ− (26)

−V GU−1Qn−κzn−κ‖Z+ | η | ‖Qn−κUn−κρGnU
−1
n−κzn−κ − UρGU−1Qn−κzn−κ‖Z

and estimate each summand of the right-hand side independently.
To estimate the first summand, we will use the partial uniform best approximation, Eτ

n(h) (Et
n(h)),

of the function, h(t, τ), by the variable, τ (t):

Eτ
n(h) = ‖En(h)‖Z , (Et

n(h) = ‖En(h)‖Z)

Here, inside the norm symbol, we take first the best approximation by the variable, τ (t), and then take
the norm by the other variable. Using the boundedness of the operator, S : Z → Z [11], the equivalence:

U−1
n−κzn−κ = pnU

−1Qn−κzn−κ (27)

and Estimations (24) and (22), we will obtain:

‖Qn−κVn−κGnU
−1
n−κzn−κ − V GU−1Qn−κzn−κ‖Z ≤

≤ C(εn(GU−1Qn−κzn−κ) + Eτ
n(ρ−1hmD

(m)GU−1Qn−κzn−κ) + Et
n−κ(hm)+

+
m−1∑
ν=0

(En−κ(aνD
(ν)GU−1Qn−κzn−κ) + En−κ(bνSQn−κD

(ν)
n GnpnU

−1Qn−κzn−κ)+

+En−κ(D
(ν)GU−1Qn−κzn−κ) + Eτ

n−κ(hνD
(ν)GU−1Qn−κzn−κ) + Et

n−κ(hν)))

For the second summand, using once more Equations (27), (22) and (24), and the boundedness of the
operator, U : Y → Z, we will have:

| η | ‖Qn−κUn−κρGnU
−1
n−κzn−κ − UρGU−1Qn−κzn−κ‖Z ≤

≤ C(εn(GU−1Qn−κzn−κ) + En(GU−1Qn−κzn−κ))

Finally, using Conditions (A.1), (A.4) of Theorem 1 and Estimation (25), we will obtain:

‖Qn−κBn−κzn−κ −BQn−κzn−κ‖Z ≤

≤ C(εn(GU−1Qn−κzn−κ) + (n− κ)−γ), γ = min{µ, 1 + γ1, 1 + γ2}

which means the approximation of the operator, B, by the sequence of the operators (Bn−κ) with respect
to Qn−κ.

Let us assume, now, that the sequence (zn−κ), zn−κ ∈ Zn−κ, is bounded ‖zn−κ‖Zn−κ ≤ 1. As the
functions, Qn−κVn−κGnU

−1
n−κzn−κ and ηQn−κUn−κρGnU

−1
n−κzn−κ, are polynomials and the derivatives
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of the functions, V GU−1Qn−κzn−κ and ηUρGU−1Qn−κzn−κ are bounded in Z, then, according to the
Riesz theorem [13], the functions:

Qn−κBn−κzn−κ −BQn−κzn−κ = Qn−κVn−κGnU
−1
n−κzn−κ−

−ηQn−κUn−κρGnU
−1
n−κzn−κ − V GU−1Qn−κzn−κ + ηUρGU−1Qn−κzn−κ

form a compact sequence in Z, and thus, Condition (b) is valid. The validity of Condition (c) follows
from Condition (A.5) of Theorem 1 and the equivalence of Equations (16) and (19).

Therefore, according to Theorem 6.1 [8], for all n, beginning from some n3, n3 ≥ n2, operators
Bn−κ : Zn−κ → Zn−κ and, thus, operators Kn−κ : Xn → Zn−κ are invertible, and their inverses are
bounded collectively; and, the approximate solutions x∗n = GnU

−1
n−κz∗n−κ of the system of Equations (14)

and (15) converge to the exact solution x∗ = GU−1z∗ of Problems (1) and (2) with a rate:

‖x∗n − pmn x∗‖Xn ≤ C‖qn−κKx∗ −Kn−κp
m
n x
∗‖Zn−κ ≤ (28)

≤ C(‖qn−κUD(m)x∗ − Un−κD(m)
n pmn x

∗‖Zn−κ +
m−1∑
ν=0

(‖qn−κ(aνD(ν)x∗ − aνQn−κD
(ν)
n pmn x

∗)‖Zn−κ+

+‖qn−κ(bνSD(ν)x∗ − bνSQn−κD
(ν)
n pmn x

∗)‖Zn−κ + ‖qn−κ(ThνD(ν)x∗ − TQn−κhνD
(ν)
n pmn x

∗)‖Zn−κ)+

+‖qn−κ(ThmD(m)x∗ − TρPnρ−1hmD
(m)
n pmn x

∗)‖Zn−κ)

Using once more the boundedness of the operators, U : Y → Z, S : Z → Z, Estimation (24), Hölder
inequality and the error estimate of the Gauss-type quadrature formula, we will find:

‖qn−κUD(m)x∗ − Un−κD(m)
n pmn x

∗‖Zn−κ ≤ C(En−κ(UD
(m)x∗) + En(ρ−1D(m)x∗) + εn(x∗)),

‖qn−κ(aνD(ν)x∗ − aνQn−κD
(ν)
n pmn x

∗)‖Zn−κ ≤ Cεn(x∗)

‖qn−κ(bνSD(ν)x∗ − bνSQn−κD
(ν)
n pmn x

∗)‖Zn−κ ≤ C(En−κ(bνSD
(ν)x∗) + En−κ(D

(ν)x∗)+

+εn(x∗) + En−κ(bνSQn−κD
(ν)
n pmn x

∗))

‖qn−κ(ThνD(ν)x∗ − TQn−κhνD
(ν)
n pmn x

∗)‖Zn−κ ≤ C(Et
n−κ(hν)+

+Eτ
n−κ(hν) + εn(x∗)), ν = 0, 1, ...m− 1

‖qn−κ(ThmD(m)x∗ − TρPnρ−1hmD
(m)
n pmn x

∗)‖Zn−κ ≤ C(Et
n−κ(hm) + Eτ

n(ρ−1hmD
(m)x∗) + εn(x∗))

Thus, taking into account the smoothness of the functions in the right-hand side, Estimation (25)
and the obvious inequality (here, C depends on γ and n3), (n − κ)−γ ≤ Cn−γ , we will obtain the
requested estimation:

‖x∗n − pmn x∗‖Xn ≤ C(n−γ + εn(x∗)), γ = min{µ, 1 + γ1, 1 + γ2}
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5. Equations of Non-Zero Indices

It is known [7] that for the unique solvability of Problems (1) and (2), in the case when κ > 0,
the equations: ∫ 1

−1

τ jx(m)(τ)dτ = 0, j = 0, 1, ..., κ− 1 (29)

should be added. Therefore, the equations:
n∑
k=0

ρ−1(τk)[D
(m)
n xn]τk

∫ 1

−1

τ jρ(τ)l̄k(τ)dτ = 0, j = 0, 1, ..., κ− 1 (30)

should be added to the system of Equations (14) and (15). The justification of the method in this case
is similar to the justification in the κ = 0 case, except the definitions of the spaces, X and Xn, where
Conditions (29) and (30) should be added.

Theorem 1. Let for κ > 0 Problems (1), (2) and (29) and the calculation scheme, (5)–(15), (30), of the
method satisfy Conditions (A.1)–(A.5), (B.1), (B.2) of Theorem 1. Then, for n large enough, the system
of Equations (14), (15), (30) is uniquely solvable, and approximate solutions x∗n converge to the exact
solution, x∗(τ) ∈ X , of Problems (1), (2), (29) with the error estimation:

‖x∗n − pmn x∗‖Xn ≤ C(n−γ + εn(x∗))

The case, when κ < 0, is more complicated, because the operator U : Y → Z, and therefore, the
operator, K : X → Z, in this case is, in general, non-invertible; and, Condition (A.5) of Theorem 1 will
not be satisfied. We may assume, instead, only the solvability of the concrete equation with the fixed
coefficients and the right-hand side. Moreover, the system of Equations (14) and (15) in this case will
contain n + m + 1 unknown variables, but consist of n + m + 1 − κ equations. Therefore, it will be
overdetermined and, thus, in general, unsolvable. This means that the previously used proof cannot be
applied here. Nevertheless, we may reduce this case to a general one by a simple technique first used by
V.V. Ivanov [14] and later by many authors (see, e.g., [15–17]).

Instead of Equation (1), we will consider the equation:

UD(m)x+ V x+ w = f (31)

containing in the left-hand side polynomial:

w(t) =
−κ∑
j=1

χjt
j−1

with the coefficients χj, j = 1, ...,−κ, which ought to be determined. Equations (1) and (31) are closely
connected. Indeed, if x∗(τ) is the solution of Problems (1) and (2), then the couple (x∗, w), w(t) ≡ 0

will be the solution of Problems (31) and (2). On the other hand, if Problems (1) and (2) will be solvable
for only one fixed right-hand side, then corresponding Problems (31) and (2) will be solvable for any
right-hand side, f(t) ∈ Z, because to satisfy the conditions of solvability (see [7,9]), one needs to find
out only the coefficients: χj, j = 1, ...,−κ of the polynomial, w(t), satisfying the equations:∫ 1

−1

ρ̄(t)tj−1(f(t)− (V x)(t)− w(t))dt = 0, j = 1, ...,−κ



Mathematics 2014, 2 64

and thus, the proof of Theorem 1 will be valid also for this case.
The system of Equations (14) and (15) also should be slightly changed. We will add the summands,

wn(tj), j = 0, 1, ..., n− κ: the values of the approximating polynomial

wn(t) =
−κ∑
j=1

χjnt
j−1

in the nodes of the grid (6) to the left-hand sides of the equations of System (14). In the operator form,
the system of equations will take the following form:

Un−κD
(m)
n xn + Vn−κxn + wn−κ = fn−κ, wn−κ = (wn(t0), ..., wn(tn−κ)) (32)

Now, the number of the unknown variables is n + m + 1− κ, so it is equal to the number of equations.
These changes now allow us to use the proof, like the one of Theorem 1.

Theorem 2. Let, for κ < 0, Problems (1), (2) and the calculation scheme, (5)–(13), (32), of the method
satisfy Conditions (A.1)–(A.4), (B.1), (B.2) of Theorem 1. Let us assume, also, that Problems (1) and (2)
have a unique solution, x∗(t). Then, for n, large enough, the system of Equation (32) is uniquely solvable,
and the approximate solutions: x̄∗n = (x∗n, χ∗1n, ..., χ∗−κn) converge to the exact solution x̄∗ = (x∗, 0) of
Equation (31) with the error estimation:

‖x̄∗n − p̄mn x̄∗‖X̄n = ‖x∗n − pmn x∗‖Xn + max
1≤j≤−κ

| χjn |≤ C(n−γ + εn(x∗))

p̄mn x̄
∗ = (pmn x

∗, χ∗1, ..., χ
∗
−κ), X̄n = Xn ×R−κ, ‖x̄n‖X̄n = ‖xn‖Xn + max

1≤j≤−κ
| χjn |

The proof of Theorem 3 is, in general, similar to the proof of Theorem 1, so we will give it briefly,
paying attention only to the major differences.

Proof of Theorem 3. Let us rewrite Equation (31) in operator form:

K̄x̄ ≡ Ū(D(m)x,w) + V x = f, K̄ : X̄ → Z (33)

where:
X̄ = {x̄ | x̄ = (x,w), x ∈ X}, ‖x̄‖X̄ = ‖x‖X + max

1≤j≤−κ
| χj |

Ȳ = {ȳ | ȳ = (y, w), y ∈ Y }, ‖ȳ‖Ȳ = ‖y‖Y + max
1≤j≤−κ

| χj |

Ū(y, w) = Uy + w, Ū : Ȳ → Z

The operator, Ū , is invertible and:
Ū−1z = (U−1(z − w), w)

where w(t) is a polynomial, the coefficients of which can be found from the equations:∫ 1

−1

ρ̄(t)tj−1(z(t)− w(t))dt = 0, j = 1, ...,−κ

Thus, the substitution:
z = Ū(D(m)x+ ηρx, w) (34)
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allows us to reduce Equation (33) to the equivalent equation:

B̄z ≡ z + V GŪ−1z − ηUρGŪ−1z = f, B̄ : Z → Z (35)

Let us rewrite Equation (32) in the same way:

K̄n−κx̄n ≡ Ūn−κ(D
(m)
n xn,wn−κ) + Vn−κxn = fn−κ, K̄n−κ : X̄n → Zn−κ (36)

where:
X̄n = Xn ×R−κ, ‖x̄n‖X̄n = ‖xn‖Xn + max

1≤j≤−κ
| χjn |

Ȳn = Yn ×R−κ, ‖ȳn‖Ȳn = ‖yn‖Yn + max
1≤j≤−κ

| χjn |

Ūn−κ(yn,wn−κ) = Un−κyn + wn−κ, Ūn−κ : Ȳn → Zn−κ

with wn−κ = (wn(t0), ..., wn(tn−κ))—a vector of the values of the polynomial, wn(t), the coefficients of
which can be found from the equations:∫ 1

−1

ρ̄(t)tj−1((Qn−κzn−κ)(t)− wn(t))dt = 0, j = 1, ...,−κ (37)

Now, we will use the substitution:

zn−κ = Ūn−κ(D
(m)
n xn + ηρxn,wn−κ)

which allows us to reduce Equation (36) to the equivalent equation:

B̄n−κzn−κ ≡ zn−κ + Vn−κGnŪ
−1
n−κzn−κ − ηUn−κρGnŪ

−1
n−κzn−κ = fn−κ, B̄n−κ : Zn−κ → Zn−κ

Besides, according to the proof of Theorem 1, we have to check that conditions (a)–(c) are satisfied.
Condition (a) may be checked like the one in the proof of Theorem 1. In order to check (b), we had
previously to calculate wn−κ for the chosen zn−κ, according to Formula (37) and, then, follow the proof
of Theorem 1, taking zn−κ − wn−κ instead of zn−κ. The validity of Condition (c) follows from the
invertibility of the operator, K̄. Indeed, for the given right-hand side of Equation (35), we will obtain the
right-hand side of Equation (33). Then, due to the invertibility of K̄, we will find the couple (x,w) and,
via Equation (34), will obtain z.

The error estimation:

‖x̄∗n − p̄mn x̄∗‖X̄n = ‖x∗n − pmn x∗‖Xn + max
1≤j≤−κ

| χjn |≤ C‖qn−κK̄x̄∗ − K̄n−κp̄
m
n x̄
∗‖Zn−κ =

= C‖qn−κKx∗ −Kn−κp
m
n x
∗‖Zn−κ ≤ C(n−γ + εn(x∗))

obtained just as in the proof of Theorem 1, finishes the proof in this case.

Remark 1. Theorems 1–3 might be extended to the case of the mostly general boundary conditions
[8]:

uν(x) ≡
m−1∑
i=0

∫ 1

−1

x(i)(τ)dζiν(τ) = 0, ν = 0, 1, ...,m− 1
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where ζiν(τ), i, ν = 0, 1, ...,m − 1 are given functions of the bounded variation and integrals are
interpreted as Stieltjes ones. These boundary conditions might be approximated by any difference
conditions:

uνn(xn) = 0, ν = 0, 1, ...,m− 1

satisfying uνn(pmn x) → uν(x) for n → ∞ for any x ∈ X . Theorems 1–3 will remain valid, but the
value of max

0≤ν≤m−1
| [D

(ν)
n pmn x

∗]ξ0 | in the definition of εn(x∗) should be substituted by the value of

max
0≤ν≤m−1

| uνn(pmn x
∗) |.

Remark 2. Condition (A.3) of Theorem 1 is only sufficient and, as is shown in [17–19], can be
reduced.
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10. Szegö, G. Orthogonal Polynomials. In AMS Colloquim Publications, 23; AMS: Providence, RI,
USA, 1967

11. Hvedelidze, B.V. Linear discontinuous boundary problems of the theory of functions and some
their applications. Proc. Tbilisi Math. Inst. Georgian Acad. Sci. 1956, 23, 3–158, (in Russian).

12. Natanson, I.P. Construction Theory of Functions; GosTechIzdat: Moscow, Soviet Union, 1959,
(in Russian).



Mathematics 2014, 2 67
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