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Abstract: Root-operator factorization à la Dirac provides an effective tool to deal with
equations, which are not of evolution type, or are ruled by fractional differential operators,
thus eventually yielding evolution-like equations although for a multicomponent vector.
We will review the method along with its extension to root operators of degree higher than
two. Also, we will show the results obtained by the Dirac-method as well as results from
other methods, specifically in connection with evolution-like equations ruled by square-root
operators, that we will address to as relativistic evolution equations.
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1. Introduction

Evolution equation is a rather generic term, which in Physics signifies any mathematical device useful
to describe the evolution of a dynamical system. Here, we will adopt this term to refer to a partial
differential equation of the type [1]

∂

∂t
V(x, t) = K · V(x, t), (1)

for the dependent variable V , designated to characterize the physical state of the dynamical system of
concern. Equation (1) specifies in fact the rate of change of V , regarded as a function of the independent
“space” and “time” variables (x, t), with respect to the relevant evolution variable “t”.
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The left hand side is just the first order derivative of V with respect to t, whilst the right hand side,
which may be both linear and non linear, only involves V , its integer-order derivatives with respect to x,
and possibly the independent varables x, t.

The meaning of the “state function” V(x, t) depends on the specific problem at hand as also the
definite form of the right hand side. Anyway, since the equation only involves the first order time
derivative, one expects its solution to be uniquely specified by a single initial condition

V(x, t0) = V0(x),

so that, known V at a given time t0, it can be known at any subsequent time t > t0 after
integrating the equation.

Many physical processes are well modelled by equations like Equation (1). The heat equation
(HE) [2], the time-dependent Schrödinger equation (SE) [3] and the paraxial wave equation (PWE) [4]
are substantive examples of evolution equation. The theory concerned with such equations is well
established; we will review some basic aspects of it below, thus exemplifying the essential features
of the theory concerned in general with evolution-type equations.

Many physical processes are equally well modelled by equations, which cannot be traced back to the
scheme of Equation (1). In fact, the HE, SE and PWE pertain to specific physical contexts and also to
definite approximations within those contexts. Thus, the HE pertains to the non-relativistic theory of heat
diffusion; the SE pertains to non-relativistic quantum mechanics as the PWE to the paraxial wave optics.

When trying to go beyond the inherent approximations in order to improve the adherence of the
equation to the process it describes, we may be led to face equations involving higher-order derivatives
of V with respect to the “time” variable t, or equations involving fractional differential operators (modern
theories of transport in heterogeneous porous media resort, for instance, to fractional advection-diffusion
equations) or pseudo-differential operators.

The relativistic heat equation (RHE), as proposed in the telegraph form in [5],[
α

C2

∂2

∂t2
+
∂

∂t

]
u(r, t) = α∇2u(r, t), (2)

α and C being the thermal diffusivity and the spead of heat, the Klein-Gordon equation (KGE) [6][
∇2 − 1

c2

∂2

∂t2
−
(mc
h̄

)2
]
ψ(r, t) = 0, (3)

with c and m being the speed of light and the mass of the particle, and the homogeneous 3D scalar wave
equation (WE) [7] [

∇2 − 1

c2

∂2

∂t2

]
ϕ(r, t) = 0, (4)

are basic examples of equations containing the second-order derivative with respect to time.
Interestingly, the SE and the PWE can be seen as the non-relativistic and paraxial limit, respectively,
of the KGE and the WE.

Likewise, the relativistic Schrödinger equation (RSE) [6]

ih̄
∂ψ(r, t)

∂t
=
√
m2c4 − h̄2c2∇2ψ(r, t), (5)
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involves the square-root of an operator containing the laplacian ∇2. As is well known, Equation (5)
is also referred to as Salpeter equation [8]; it has been the object of recent investigations (see,
for instance, [9–11]).

The analysis here presented is only an aspect of an investigation, which resorting to different
methods, is aimed at establishing if, at which extent and in which form some properties of the evolution
equations could be recovered to equations, which are not of evolution type or demand to deal with
pseudo-differential operators, like the aforementioned RHE, KGE,WE and RSE.

As shown in [12–14], the Dirac-like factorization approach conveys a valuable method to tackle with
both kinds of difficulties.

In fact, the Dirac equation [6,15][
γj

∂

∂xj
− mc

h̄
I4×4

]
ψ = 0, j = 0, 1, 2, 3 (6)

where γj , j = 0, 1, 2, 3, are the 4 × 4 Dirac matrices, (x0, x1, x2, x3) ≡ (ct, x, y, z) and I4×4 is the
4× 4 unit matrix, offers in a sense the “evolution-like” alternative to the KGE. As is well known, it was
originally formulated by Dirac when seeking a relativistically covariant evolution equation for the state
function of a quantum particle in the Schrödinger-like form, i.e., of the type

ih̄
∂ψ

∂t
= Ĥψ,

with the Hamiltonian Ĥ being a linear Hermitian operator [15]. However, it can also be understood as
following from a “factorization” of the Klein-Gordon equation[

∇2 − 1

c2

∂2

∂t2
−
(mc
h̄

)2
]
I4×4ψ =[

γj
∂

∂xj
− mc

h̄
I4×4

] [
γj

∂

∂xj
+
mc

h̄
I4×4

]
ψ = 0,

so that one can eventually deal with a first-order derivative with respect to the evolution variable even
though in a system of four coupled linear differential equations for the 4-component state vector ψ.

The Dirac-like factorization approach can as well be effectively applied to deal with evolution
equations ruled by fractional differential operators or pseudo-differential operators, like that entering
the RSE. In fact, allowing to express the power of operators as the sum of operators, it allows for the
“disentanglement” of root operators into the sum of operators, and hence, under appropriate conditions,
one can overcome the problem of working with fractional differential operators [12].

In addition, the factorization approach to root operators may open new perspectives within the theory
of fractional calculus, suggesting, for instance, alternative formulations to already well-established
definitions and/or treatments [13].

The plan of the paper is as follows. In Section 2 we will briefly recall the main features of the
theory concerned with evolution equations, referring to the HE, the SE and the PWE as basic examples.
Section 3 synthesises the relation between the evolution operator formalism and the solution of fractional
partial differential equations. In Section 4, we will review the Dirac-like factorization method in
connection with root operators. Square, cube and quartic root operators will be treated in some detail,
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specific properties of the relevant Lie algebra of inherent matrices will be deduced. Then, we will
illustrate some applications of the method, specifically in connection with the square and cube root
operators in Section 5. Finally, in Section 6 we will focus the discussion on evolution equations
ruled by relativistic-type free Hamiltonian operators, that we will address to as relativistic-type free
evolution equations. We will show that the solution to such equations can be expressed in the form of
an integral transform of the initial data in full analogy with the HE, which can in a sense be considered
as the “non-relativistic” counterpart. Some properties of the obtained solution will be deduced tracing a
comparison with those of the solution of the HE. The concluding notes of Section 7 will close the paper.

2. Examples of Evolution Equation: Heat, Schrödinger and Paraxial Wave Equations

The (1+1)D HE [2]

∂

∂t
u(x, t) = α

∂2

∂x2
u(x, t), −∞ < x <∞, t > 0, (7)

rules the time evolution of the temperature function u(x, t) through an in principle infinitely long
homogeneous bar, characterized by the thermal diffusivity α. The relevance of such an equation is not
limited to the context of heat propagation, and not only to the context of second order linear evolution
equations. For instance, the non linear Burgers’ equation [16] can be converted into the HE by the
Hopf-Cole transformation [17,18]. Also, the Black-Scholes equation [19,20] can be trasformed into the
HE; originally proposed in the early 1970’s as a model for investment portfolios, the Black-Scholes
equation is now at the heart of the modern financial industry.

At a basic level, we write down the (1+1)D SE [3]

i

h̄

∂

∂t
ψ(x, t) = − 1

2m

∂2

∂x2
ψ(x, t), (8)

which, as evolution equation for the wavefunction ψ(x, t), describes the 1D free motion of a (spinless)
particle of mass m.

Correspondingly, the 2D PWE [4,21]

ik0
∂

∂z
ψ(x, z) = − 1

2n

∂2

∂x2
ψ(x, z), (9)

is the equation of motion for the complex slowly-varying amplitude ψ(x, z) of a monochromatic scalar
light field

E(x, z, t) = ein(k0z−ω0t)ψ(x, z),

propagating in a homogeneous medium of refractive index n. Here, z denotes the coordinate along the
main direction of the field propagation, k0 = 2π/λ0 is the field wave number in the vacuum, andω0 the
relevant angular frequency,ω0 = k0c.

The analogies between the two equations are evident, and may be synthesized by the correspondences

t↔ z, h̄↔ 1

k0

, m↔ n.

Likewise, the analogy with the HE becomes recognizable once allowing the evolution variable in
Equations (8) and (9), or equivalently in Equation (7), to take on a purely imaginary value.
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The theory concerned with the heat, Schrödinger and paraxial wave equations is well established.
However, in spite of the afore-evidenced analogies, the three equations have been analysed by different
approaches, yielding parallel formulations, that only recently have been merged into each other within
the framework of a united formalism.

2.1. General Treatment: Hamiltonian and Evolution Operators

Evidently, the HE, the SE and the PWE can be recast in the form

∂ϕ(x, ζ)

∂ζ
= Ĥϕ(x, ζ), (10)

introducing a sort of “Hamiltonian” operator Ĥ (not necessarily Hermitian), which can be seen as the
“generator” of the system evolution. Specifically, the “Hamiltonian” pertaining to the aforementioned
equations is simply the free-evolution operator,

Ĥ =
∂2

∂x2
. (11)

The solution to Equation (10) can be written in the form

ϕ(x, ζ) = Û(ζ)ϕ0(x), (12)

introducing the “evolution operator” Û (not necessarily unitary),

Û(ζ) = eζĤ, (13)

which acts on the initial data ϕ(x, 0) = ϕ0(x) to yield the wavefunction at subsequent times.
Specifically, for the equations we are considering the evolution operator is

Û(ζ) = eζ
∂2

∂x2 , (14)

and the “time-like” variable ζ is intended to be ζ = αt, ζ = ih̄t
2m

and ζ = iz
2k0n

according to the equation
under consideration.

2.2. Evolution Operator as Poisson and Fresnel Transforms

Under the minimal assumption that the initial condition ϕ0(x) tends to zero sufficiently rapidly as
x → ±∞, the evolution operator specializes into the Poisson transform for the HE and into the Fresnel
transform for the SE and PWE [22].

Thus, the solutions to the (1+1)D HE follow as [2]:

u(x, t) =
1√

4παt

∫ ∞
−∞

e−
(x−y)2

4αt u0(y)dy, (15)

where u0(x) = u(x, 0) conveys the initial condition.
The kernel of the transform is the fundamental solution of the HE,

S(x, t) =
1√

4παt
e−

x2

4αt , t > 0, (16)
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i.e., the solution corresponding to a “point-like source” at t = 0: u0(x) = δ(x), signifying a highly
concentrated unit heat source; in fact, lim

t→0
S(x, t) = δ(x).

Analogously, the solutions to the (1+1)D SE and the 2D PWE result from the Fresnel transform of
the initial condition ψ0(x) = ψ(x, 0) as

ψ(x, ς) =
1√

4πiς

∫ ∞
−∞

ei
(x−y)2

4ς ψ0(y)dy, (17)

with ς being ς = h̄t
2m

or ς = z
2k0n

according to whether we are interested in Equations (8) or (9).
The above can be seen as a sort of “imaginary” version of Equation (15). Again, the kernel is the
fundamental solution of the equations of concern,

W (x, ς) =
1√

4πiς
ei
x2

4ς = S(x, iς), (18)

being, as before, lim
ς→0

W (x, ς) = δ(x).

It is worth noting that Equations (15) and (17) implicitly assume the equivalence of the representations
of the evolution operator Û as an exponential operator (Equation (14)), involving the free-Hamiltonian
operator ∂2

∂x2
, and as a Poisson or Fresnel transform. Evidently, the former requires the implied series of

derivatives of the initial data, ∂
2nu0
∂x2n

or ∂2nψ0

∂x2n
, to exist and converge to a finite value, whereas the latter is

meaningful only if u0(x) or ψ0(x) are integrable and the pertinent integrals converge. The discussion of
the legitimacy of such an equivalence is out of the topic of the paper [22].

2.3. Polynomial Solutions and Symmetry Transformations

In view of the considerations we will develop in Section 4 in connection with the treatment of
relativistic-like evolution equations, we will focus here on two aspects of the theory of the HE, the
SE and the PWE: The polynomial solutions and the symmetry transformations.

The polynomial solutions vn(x, t) of the HE, referred to as heat polynomials [2], correspond to initial
data given by monomials: vn(x, 0) = xn, and hence

vn(x, t) =
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t yndy. (19)

For simplicity’s sake, we have set α[m2/s] = 1. Also, an appropriate multiplying constant of unit
value is implied in the initial monomials in order to provide the vns with the correct dimensions in
conformity to those of u(x, t).

Clearly, polynomial solutions can be a valid tool to find solutions [2,23–25].
The heat polynomials realize the power series expansion of the simple exponential solution of the

(1+1)D HE [2]

E(x, t, χ) = eχx+χ2t =
∞∑
n=0

χn

n!
vn(x, t), (20)

with χ arbitrary parameter. In practice, one considers the eigenstate eχx of the derivative operator ∂x
belonging to the eigenvalue χ. It evolves indeed according to Equation (20), also obtainable from the
inherent power series expansion, by evolving the sinlge monomials, i.e.,

eχx =
∞∑
n=0

χn

n!
xn →

∞∑
n=0

χn

n!
vn(x, t) = eχx+χ2t. (21)
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Indeed, a significant aspect of the theory of the HE is aimed at establishing the criteria under which
the power series expansion of a function (when it exists) can be used to determine the evolution of that
function, when given as input for the HE.

Equation (20) yields for the vn’s the explicit expression

vn(x, t) = n!

[n/2]∑
j=0

tj

j!(n− 2j)!
xn−2j = (−t)n/2Hn(

x√
−4t

), (22)

with Hn denoting Hermite polynomials [26].
For future use, let us write down the explicit expressions of the first vns:

v0(x, t) = 1, v1(x, t) = x, v2(x, t) = x2 + 2t,

v3(x, t) = x3 + 6xt, v4(x, t) = x4 + 12x2t+ 12t2,

v5(x, t) = x5 + 20x3t+ 60xt2.

A further property of the vns of interest here concerns the raising and lowering operators (or,
multiplication and derivative operators), conveyed by the relations

[x+ 2t∂x] vn(x, t) = vn+1(x, t), ∂xvn(x, t) = nvn−1(x, t), (23)

yielding the differential equation obeyed by the vns,[
2t∂2

x + x∂x − n
]
vn(x, t) = 0, vn(x, 0) = xn. (24)

Recently, polynomial solutions of the 2D PWE have been introduced in full analogy with the heat
polynomials [27,28]. In fact, in the light of the afore-mentioned analogy, the optical analogues vn(x, ς)

of the heat polynomials are found to be explicitly given by

vn(x, ς) = (−iς)
n
2Hn(

x√
−4iς

). (25)

Also, they result from the Fresnel transform of monomials, i.e.,

vn(x, ς) =
1√

4πiς

∫ ∞
−∞

ei
(x−y)2

4ς yndy,

and realize the power series expansion of the function

E(x, ς, λ) = eiλx−iλ
2ς , (26)

which simply conveys the plane-wave solution of both Equations (8) and (9), corresponding to the input
E(x, 0, λ) = eiλx, i.e., the eigenstate of the momentum operator −i∂x, belonging to λ. The parameter λ
is then related to the transverse wavenumber (i.e., spatial frequency) of the field or to the momentum
of the particle; the frequency chirping in optics corresponds indeed to the “energy chirping” in
quantum mechanics.

The investigation of the symmetry transformations, pertaining to the equations we are dealing with,
is a very fascinating and fruitful job. Symmetry transformations establish specific rules to pass from one
solution to another solution of the same equation.
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In particular, in relation with the HE, SE and PWE, we may quote the special conformal
transformation that allows for an appropriate Gaussian modulation of a solution to get another solution.
In fact, it can easily be verified that if u(x, t) is a temperature function, also

v(x, t) =
1√
t+ ε

e−
x2

4(t+ε)u(
εx

t+ ε
,
εt

t+ ε
) (27)

is a temperature function for any arbitrary parameter ε. It can be traced back to the Gaussian modulation
of the initial data, which then turn from u0(x) to w0(x) = e−

x2

4ε u0(x).
Similarly, any solution of the SE or PWE can be transformed into a solution as well according to

ϕ(x, ς) =
1√
ε+ iς

e−
x2

4(ε+iς)ψ(
εx

ε+ iς
,

ες

ε+ iς
). (28)

Interestingly, in connection with optical propagation, the modulation of the input function by e−
x2

4ε

may signify lensing or Gaussian aperturing according to whether ε is real or purely imaginary [21].
Note that the modulating function in both Equations (27) and (28) is the fundamental solution

Equations (16) or (18).
Equation (28) confirms the Gaussian packets/beams as solutions to Equation (8) [3] and Equation

(9) [4], following indeed from Equation (28) when setting ψ0(x) = 1, which amounts to ψ(x, ς) = 1

as well. In this case, the symmetry transformations simply manifest the symmetry of the solutions of
Equation (10) with respect to the shift of the evolution variable ζ [21]. In fact, Equations (27) and (28)
follow directly from the additivity of the evolution operator Û(ζ), being

Û(ζ1)Û(ζ2) = Û(ζ1 + ζ2).

As said, the fundamental solution is the result of the evolution of the initial data δ(x); namely,
referring to the HE, we can write

S(x, t) = Û(t)δ(x), t > 0. (29)

Therefore, the Gaussian e−
x2

4ε can be regarded as resulting from δ(x) at the t = ε (apart from the
factor 1√

4πε
), and hence

e−
x2

4ε = Û(ε)δ(x).

This implies that

v(x, t) = Û(t)e−
x2

4ε 1 ∝ Û(t)Û(ε)δ(x)

= Û(t+ ε)δ(x) = S(x, t+ ε),

just conveying Equation (27) for u(x, t) = 1. In practice, it is as we had translated the origin of the
“time” from t0 = 0 to t0 = −ε.

Of course, the same can be seen for Equation (28) with the simple replacement t→ iς [21].
Central to the theory of the HE is the well-known Appell transformation [2,23]. It establishes the

possibility to pass from one solution of the HE to another according to the rule

w(x, t) = S(x, t)u(
x

t
,−1

t
). (30)
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Apart from its role in connection with, for instance, the heat polynomials, the interest in the Appell
transformation arises from its significative property, proven in [29], according to which it is essentially
the only transformation mapping solutions of the HE into another in the sense that any simmetry
transformation of the HE can be seen as composed by Appell transformations and scaling and shift
of both coordinates x, t.

Appell transformation for the PWE (as well as for the SE) can be considered, of course, as discussed
in [27,28], accordingly yielding the optical analogue of Equation (30) as

φ(x, ς) = W (x, ς)ψ(±x
ς
,−1

ς
) =

1√
4πiς

ei
ξ2

4ζψ(±x
ς
,−1

ς
). (31)

Evidently, in conformity to the formal analogy of the equations of concern, the aforementioned result
regarding the role of the Appell transformation in relation to the symmetry transformations of the HE [29]
can be reformulated in connection with the optical Appell transformation. In fact, in [30] the latter
has been proven to be the only symmetry transformation of the PWE in the sense that any symmetry
transformation of the PWE can be obtained by composing Appell transformations with scaling and
translations of both coordinates.

We conclude recalling that, as Equations (27) and (28) relate to the symmetry operator (for Equation
(10)) e−

1
2ε

K̂+ = e−
x2

4ε , the Appell transformation, conveyed by Equations (30) and (31), relates to the

symmetry operator represented by the Fourier trasform F̂ = e−i
π
2

(K̂++K̂−− 1
2

) = e−i
π
4

(x2− ∂2

∂x2
−1) [21].

As said, the analysis here presented frames within an investigation aimed at establishing if, at which
extent and in which form some properties of the evolution equations—in particular, those exemplified
in connection with the just discussed HE, SE and PWE—might be extended to equations, which are not
of evolution type or demand to deal with fractional differential operators, like the RHE, KGE,WE and
RSE, mentioned in the Introduction.

As we will show in Sections 4 and 5, operator factorization à la Dirac can help in this.

3. Evolution Operator and Fractional Partial Differential Equations

As stressed in the previous discussion the evolution operator is a flexible tool which can be applied
within a more general context going beyond the cases analyzed so far. For instance, it can effectively
be applied to fractional differential equations, which, as is well known, are finding wide applications in
modeling both physical and engineering systems [31–35].

Indeed, in the case of fractional evolution equations like

∂tF (x, t) = −∂αxF (x, t), 0 < α < 1 (32)

F (x, 0) = f(x).

the solution can be formally obtained as

F (x, t) = Û(t)f(x),

Û(t) = e−t∂
α
x .

The use of the Laplace transform identity [36]

e−p
α

=

∫ ∞
0

gα(ξ)e−ξpdξ
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where gα(ξ) is a Levy stable distributions or α-stable distributions, allows to write the solution of
Equation (32) in the form [11]

F (x, t) =

∫ ∞
0

gα(ξ)e−ξt
1/α∂xf(x)dξ =

∫ ∞
0

gα(ξ)f(x− ξt1/α)dξ.

On the other hand, the solution of the equation

∂αt F (x, t) = ÔxF (x, t), 0 < α < 1 (33)

F (x, 0) = f(x),

where Ôx is an operator acting on the x variable, can be obtained by the use of a slight redefinition of
the evolution operator method. According to [37],

F (x, t) = Ûα(t)f(x),

where
Ûα(t) = Eα(tαÔx),

and Eα =
∑∞

n=0
xr

γ(αr+1)
is the Mittag-Leffler function. Furthermore the use of the identity [37]

Eα(btα) =

∫ ∞
0

nα(s, t)ebsds,

nα(s, t) =
t

α
s−

α+1
α gα(ts−1/α),

yields [37]

Ûα(t) =

∫ ∞
0

nα(s, t)eÔxsds =

∫ ∞
0

nα(s, t)Û(s)ds,

which is a fairly noticeable results, since it provides the solution of a fractional partial differential
equation of the type of Equation (33) as the Laplace transform of its integer counterpart. If e.g., Ôx = ∂2

x

and f(x) = e−x
2 , we find

F (x, t) =

∫ ∞
0

nα(s, t)
1√

1 + 4s
e−

x2

1+4sds.

Finally the equation

∂βt F (x, t) = −∂αxF (x, t), 0 < α,β < 1

F (x, 0) = f(x),

can be solved by merging the two procedures, thus finding

F (x, t) =

∫ ∞
0

nβ(s, t)

∫ ∞
0

gα(ξ)f(x− ξs1/α)dξds.

It is evident that operational and integral transform methods are general and useful tools to deal with
fractional derivative operators and also if fractional differential operators are involved as in the case of
the relativistic heat equation, which reads
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∂tF (x, t) =
{

1−
√

1− ∂2
x

}
F (x, t),

F (x, 0) = e−x
2

,

whose solution is readily obtained in the form

F (x, t) = ete−t
√

1−∂2xe−x
2

= et
∫ ∞

0

g 1
2
(ξ)e−t

2ξ e
− x2

1+4ξt2

√
1 + 4ξt2

dξ

In this paper we will consider the problem of dealing with various forms of differential equations
involving square and higher order root operators by the use of a generalization of the Dirac factorization
method, which in our opinion may offer a new point of view to the theory of fractional operators.

4. Dirac-like Factorization to Disentangle Root Operator Functions

As is well known, the algebra of the operators is definitely different from that of c-numbers. Thus,
for instance, the identity

Am +Bm = (A+B)m = (A+B)(A+B)...(A+B), (34)

can not hold if A and B are numbers (real or complex). In contrast, it can hold if A and B are operators
or matrices satisfying definite relations.

We will refer to Equation (34) as Dirac-like factorization procedure. On reviewing already published
results [12–14], we will firstly exemplify the procedure in the case of a square-root operator, and then
will show how to extend the method to higher order root-operators. New results will then be established.

4.1. Square Root Function

The identity
A2 +B2 = (A+B)2 = (A+B)(A+B),

can hold if A and B are anticommuting operators or matrices, for which so{
Â, B̂

}
= ÂB̂ + B̂Â = 0.

This suggests to write down the square root function
√
A2 +B2 in the “disentangled” form

√
A2 +B2 = Aα +Bβ , (35)

where α and β turn out to be “mathematical objects” such that

α2 = β2 = 1,

αβ+ βα = 0,
(36)

in order for the desired equality, given by Equation (35), be satisfied. In principle, A and B can be either
numbers or commuting operators; of course, the latter case is of major interest, and it will be considered
here.
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Clearly, α and β cannot simply be numbers; indeed, as a direct consequence of Equation (36), they
must be traceless matrices with eigenvalues equal to ±1, and hence of order 2n × 2n, n = 1, 2, .., and
determinant equal to (−1)n.

Thus, on one side one looses the scalar nature of the original function, which in the stated identity
Equation (35) is to be understood as a multiple of the 2n× 2n unit matrix I2n×2n. In fact, Equation (35)
conveys a matrix identity in a proper 2n-dimensional vector space, whose meaning and ultimate
dimensions (following those of α and β) are dictated by the context inherent in the problem at hand.
On the other side, one gains a root-free matrix form expression, that could facilitate the solution of
the problem although it must be reintenpreted in the light of the gained degree (or, degrees) of freedom
(naturally conveyed, as seen, by the procedure). In addition, the method can open new perspectives within
the theory of fractional calculus, suggesting alternative formulations to already established treatments
and/or definitions.

At a basic level, involving up to three addends in the square root, the smallest admissible dimension
2n = 2 is enough to ensure that the desired matrices α and β can be realized. So, on the basis of
Equation (36), we may identify them with any two of the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (37)

We recall that

σ2
j = I2×2,

{σj,σk} = 2δj,kI2×2,

[σj,σk] = 2iεjklσl, j, k, l = 1, 2, 3,

I2×2 being the 2× 2 unit matrix, and εjkl the Levi-Civita tensor:

εjkl =


1 if (j, k, l) is an even permutation of (1, 2, 3),
−1 if (j, k, l) is an odd permutation of (1, 2, 3),
0 if any two indices are equal .

Eventually, we can write√
Â2 + B̂2I2×2 = Âσj + B̂σk , j 6= k j, k = 1, 2, 3 (38)

or, more in general,√
Â2 + B̂2 + Ĉ2I2×2 = Âσj + B̂σk + Ĉσl, j 6= k 6= l j, k, l = 1, 2, 3 (39)

As said, the correspondence of each of the operators involved in the square root with a specific
Pauli matrix is a mere matter of convenience, possibly suggested by the problem under investigation.
Therefore, the resulting matrix expression of the original (scalar) operator function is not unique.

Finally, we recall the well known property of the Pauli matrices that

eaσj = cosh(a)I2×2 + sinh(a)σj, (40)
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according to which the exponential matrix eaσj belongs to the algebra spanned by the Pauli matrices and
the unit matrix I2×2.

4.2. Estension of the Procedure to Higher-Degree Root Operator Functions

The obvious extension of the above procedure amounts to establishing whether it be possible to
write down

m

√
Âm + B̂m I = Âα + B̂β , (41)

or, more in general, with m operators involved in,

m

√
Âm1 + Âm2 + ..+ Âmm I = Â1α1 + Â2α2 + ..+ Âmαm , (42)

with the α and β matrices being identified through suitable conditions analogous to Equation (36).

4.2.1. Cube Root

Indeed, the factorization
( Â3 + B̂3) I = (Âα + B̂β)3,

allowing for the disentanglement of the cube root operator as

3

√
Â3 + B̂3 I = Âα + B̂β , (43)

is possible for commuting operators Â, B̂, and matrices α and β such to satisfy the three-term relations

α3 = β3 = I,{
α,β2

}
+ {β, {α,β}} = 0,

{
β,α2

}
+ {α, {α,β}} = 0,

(44)

(in a sense paralleling the two-term relations in Equation (36)), which can equivalently be written as

α3 = β3 = I,

α+ {β,βαβ} = 0, β+ {α,αβα} = 0.
(45)

We see that α and β are traceless matrices, with eigenvalues conveyed by the third roots of unity:

µ3 = 1,

and hence
µ0 = 1, µ1 = −1

2
(1− i

√
3), µ2 = −1

2
(1 + i

√
3).

Therefore, they must be of the order 3n× 3n, n = 1, 2, .., with determinant

δ = (µ0 µ1 µ2)n = 1.

The matrices

τ1 =

 0 1 0

0 0 1

1 0 0

 , τ2 =

 0 µ1 0

0 0 µ2

1 0 0

 , (46)
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of smallest admissible dimension, provide a suitable pair of matrices satisfying the required conditions.
They are seen to span, by repeated commutators, an 8-dimensional Lie algebra. For instance,

[τ1,τ2] = −i
√

3τ3, τ3 =

 0 0 1

µ1 0 0

0 µ2 0

 = τ>2 .

For completeness’ sake, we write down the expressions of the other τ-matrices,

τ4 =

 µ2 0 0

0 1 0

0 0 µ1

 , τ5 =

 µ1 0 0

0 1 0

0 0 µ2

 = τ∗4, τ8 =

 0 0 1

1 0 0

0 1 0


(47)

τ6 =

 0 µ2 0

0 0 µ1

1 0 0

 = τ∗2 = τ>7 , τ7 =

 0 0 1

µ2 0 0

0 µ1 0

 = τ∗3 = τ>6 .

Each of them is such that τ3
j = I3×3, and δj = 1, j = 1, .., 8. Also, their commutators are

[τj,τk] = −i
√

3fjklτl,

the relevant structure constants fjkl being

f123 = f134 = f142 = f246 = f268 = f284 = f358 = f382 =

f478 = f483 = f562 = f674 = 1,

f156 = f146 = f175 = f235 = f251 = f346 = f371 = f461 =

f573 = f587 = f685 = f786 = −1.

Of course, fjkl = −fkjl.
Interestingly, only 4 commutators vanish, i.e.,

[τ1,τ8] = [τ2,τ7] = [τ3,τ6] = [τ4,τ5] = 0,

and accordingly, the involved pairs of matrices are the only ones that do not allow for the desired
factorization à la Dirac of the sum of third-power operators. Note in fact that the relations in
Equation (44) could not be satisfied by (non null) commuting matrices. Therefore, 24 possible pairs
of matrices suitable for the disentanglement of the cube root are conveyed by the set of τ-matrices.

If a third term is added in the sum, amounting to the linearization issue

3

√
Â3 + B̂3 + Ĉ3I3×3 = Âα + B̂β + Ĉγ, (48)

a triplet of matrices is needed, such that each and each pair of them satisfy the relations in Equation (44),
in addition to the further one ∑

p∈S3

(αβγ) = 0, (49)
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the sum being over all the six possible products of the three matrices obtained from all their permutations
p (∈ S3). The relations in Equation (44) for each pair of matrices can as well be cast in the form as
Equation (49) if applied to sets of three matrices in which two of them are the same.

One can see that 24 suitable triplets of matrices can be extracted from the set of τ-matrices, the choice
being a matter of convenience in conformity to the problem under analysis.

The τ-matrices have already been deduced in [43] in connection with the analysis of the fractional
Dirac equation. There, the triplets of matrices allowing for Equation (48) are explicitly signalized.

We conclude by noticing that, as a consequence of that τ3
j = I , the exponential matrix eaτj turns out

to be the sum of three terms; precisely,

eaτj = A0(a)I3×3 +A1(a)τj +A2(a)τ2
j . (50)

The coefficients Aj(a), j = 0, 1, 2 are given by

A0(a) = 0F2(−;
1

3
,
2

3
;
a3

27
),

A1(a) = a 0F2(−;
2

3
,
4

3
;
a3

27
), (51)

A2(a) =
a2

2
0F2(−;

4

3
,
5

3
;
a3

27
),

where 0F2(·) denotes the generalized hypergeometric function. Formally represented by
the series [26,38]

pFq(a1, .., ap; b1, .., bq; z) =
∞∑
k=0

∏p
j=1(aj)k∏q
j=1(bj)k

zk

k!
, (52)

with (a)k ≡ γ(a + k)/γ(a) being the Pochhammer symbol, pFq converges for all finite z if p ≤ q.
Hence, the Aj’s are convergent series; also, they have been investigated in [39,40] as pseudo-hyperbolic
functions.

Equation (50) corresponds to Equation (40) on due account of the link between the hyperbolic and
the hypergeometric functions:

cosh(z) = 0F1(−;
1

2
,
z2

4
),

sinh(z) = z 0F1(−;
3

2
,
z2

4
).

Finally, we note that the set {τj}j=1,..,8 is closed with respect to the square, since the square of a
τ-matrix just equals the matrix in the set with which it commutes; thereby, τ2

1 = τ8, τ2
2 = τ7, and so

on. This property of the τ-matrices (i.e., the cube roots of the unit matrix) perfectly parallels that of the
cube roots of unity; in fact, µ2

0 = µ0, µ2
1 = µ2, and µ2

2 = µ1, so that {µ2
0, µ

2
1, µ

2
2} = {µ0, µ1,µ2}.

As a consequence, the exponentials eaτj belong to the algebra spanned (in general, over the complex
field C) by the {τj}j=1,..,8 and the unit matrix.

4.2.2. Quartic Root

Likewise, the disentanglement of the quartic root as

4

√
Â4 + B̂4 I = Âα + B̂β , (53)
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demands for α and β matrices such to satisfy the four-term relations

α4 = β4 = I,

{α2 , {α,β}} = 0, {β2 , {α,β}} = 0,{
α2 ,β2

}
+ {α,β}2 = 0.

(54)

Therefore, we can say that the desired matrices α and β are traceless and with eigenvalues conveyed
by the quartic roots of unity:

µ4 = 1,

i.e.,
µ0 = 1, µ1 = i, µ2 = −i, µ3 = −1

As a consequence, they must be of the order 4n× 4n, n = 1, 2, .., with determinant

δ = (µ0 µ1 µ2µ3)n = (−1)n .

The anticommutation relations in the second row of Equation (54) suggest a correspondence of the
matrices α2 , {α,β} and β2 with σ-composed matrices. Thus, working with the smallest admissible
dimension, i.e., 4n = 4, we start taking

ρ1 =

(
02×2 −i√σ3

i
√
σ3 02×2

)
, (55)

with
√
σ3 =

(
1 0

0 i

)
.

We recall that given a 2 × 2 matrix M with eigenvalues µ1 6= µ2, the function f(M ) can be evaluated
according to [41] f(M ) = µ1f(µ2)−µ2f(µ1)

µ1−µ2 I+ f(µ1)−f(µ2)
µ1−µ2 M.

Evidently, ρ4
1 = I . Then, following the conditions in Equation (54), the suitable matrix

ρ2 =

(
σ+ σ−

σ− σ+

)
, (56)

is obtained, where

σ+ =
1

2
(σ1 + iσ2) =

(
0 1

0 0

)
, σ− =

1

2
(σ1 − iσ2) =

(
0 0

1 0

)
.

Note that σ2
+ = σ2

− = 0, and [σ+,σ−] = σ3 whereas {σ+,σ−} = I .
Of course, ρ1 and ρ2 do not commute with each other (as it must be in order for they to allow for

Equation (53)); in fact,

[ρ1,ρ2] =
√

2ρ3, ρ3 = e−i
π
4

(
σ− −iσ+

iσ+ −σ−

)
,

whilst
{ρ1,ρ2} = i

√
2ρ3 = i [ρ1,ρ2] .
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It can be verified that ρ3 can be a suitable matrix to realize Equation (53) accompanied by either
ρ1 or ρ2.

By repeated commutators, we span a 15-dimensional Lie algebra of matrices
{
ρj
}
j=1,..,15

such that
ρ4
j = I , ∀j. Let us explicitly write the other 12 matrices:

ρ4 =

(
−σ+ σ−

σ− −σ+

)
, ρ5 =

(
02×2 σ3

σ3 02×2

)
, ρ6 =

( √
σ3 02×2

02×2 −
√
σ3

)
,

ρ7 = ρ∗3, ρ8 =

(
σ3 02×2

02×2 σ3

)
, ρ9 = e−i

π
4

(
−σ+ −iσ−
iσ− σ+

)
, (57)

ρ10 = iρ∗6, ρ11 =

(
02×2 σ1

σ1 02×2

)
, ρ12 =

(
−σ− σ+

σ+ −σ−

)
= ρ>4 ,

ρ13 = ρ∗9, ρ14 =

(
σ− σ+

σ+ σ−

)
= ρ>2 , ρ15 = iρ∗1.

Then, with the Lie bracket recast in the form[
ρj,ρk

]
=
√

2gjklρl,

we can specify the structure constants gjkl as

g1,7,2 = g1,14,9 = g3,4,10 = g3,12,15 = g4,9,15 = g6,7,14 = g6,14,3 = g6,13,2

= g7,15,4 = g9,12,10 = g9,14,6 = g10,12,3 = g10,13,4 = g12,15,9 = −1

g1,2,3 = g1,13,142 = g2,3,6 = g2,6,9 = g2,9,1 = g3,14,1 = g4,10,9 = g4,15,3

= g7,10,12 = g13,15,12 = 1

g1,4,7 = g1,9,12 = g2,7,10 = g2,13,15 = g2,15,7 = g4,7,6 = g6,9,4 = g6,12,7

= g7,14,15 = g9,15,14 = g10,142,7 = g12,13,6 = −i

g1,3,4 = g1,12,13 = g2,10,13 = g3,6,12 = g3,10,142 = g3,15,2 = g4,6,13 = g4,13,1

= g7,12,1 = g9,10,2 = g13,14,10 = g14,15,13 = i

g1,5,10 = g1,10,11 = g2,5,12 = g2,12,8 = g4,14,8 = g5,14,4 = g6,15,11 = −
√

2
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g2,4,5 = g2,8,4 = g4,5,14 = g4,8,2 = g5,6,15 = g5,10,1 = g5,124,2 = g5,15,6

= g8,12,14 = g8,14,12 = g12,14,5 =
√

2

g1,11,6 = g3,8,7 = g3,9,8 = g7,11,13 = g8,9,13 = g9,11,3 = g9,13,11 = g10,11,15

= g10,15,5 = g11,13,7 = g11,15,10 = −i
√

2

g1,6,5 = g3,7,11 = g3,11,9 = g6,11,1 = g7,8,3 = g8,13,9 = i
√

2,

with gjkl = −gkjl.
However, not all the matrices in Equation (57) satisfy the condition on the determinant being in fact

δ(ρ5) = δ(ρ8) = δ(ρ11) = 1; accordingly, such matrices are not suitable for the desired factorization.
Besides, they commute with each other, and each of them commute also with other four matrices in the
set
{
ρj
}
j=1,..,15

. In turn, each of the other ρ-matrices commutes only with two elements in the set, one
being ρ5, ρ8 or ρ11. Of course, this can be deduced from the set of {j, k} indices that do not appear in
the above reported table of structure constants gjkl.

An accurate analysis reveals that one can rely on 48 possible pairs of matrices allowing for
Equation (53); as expected, the matrices ρ5, ρ8 and ρ11 are not inlcuded in any of the possible pairs.

Another property of the ρ-matrices is worth mentioning. It in a sense parallels that concerning the
τ-matrices, and suggests a generalization to the m-th roots of the unit matrix. One can easily verify that
the set

{
ρj
}
j=1,..,15

⊕ I4×4 is closed under the square and the cube. Interestingly, we find that

ρ2
5 = ρ2

8 = ρ2
11 = I4×4,

as a consequence, indeed, of that they are directly linked to the Pauli matrices. By applying the same
terminolgy as for (complex) numbers, we can say that such 4 × 4 matrices are not primitive 4-th roots
of the 4 × 4 unit matrix, being in fact also 2-th roots of the 4 × 4 unit matrix (In fact, µ0 and µ3 are
not primitive 4-th roots of unity, whilst µ1 and µ2 are). This clearly clarifies why such matrices have
determinant equal to 1.

In contrast, the squares of the other ρ-matrices just equal ρ5, ρ8 or ρ11 (apart from a minus sign),
precisely that with which the matrix of concern commutes. Thus, for instance, ρ2

1 = ρ8, ρ2
2 = ρ11,

ρ2
3 = ρ5, and so on.

Finally as to the cube, it is obvious that

ρ3
5 = ρ5, ρ

3
8 = ρ8, ρ

3
11 = ρ11,

whereas the cube of any other ρ-matrix just equals the matrix (different from ρ5, ρ8 and ρ11) with which
the matrix of concern commutes (apart from ±1 or ±i). Thus, for instance, ρ3

1 = iρ15, ρ3
2 = ρ14,

ρ3
3 = −ρ13, and so on.

Then, as for the τ-matrices, we can say that the exponential matrix eaρj belongs to the algebra spanned
(in general, over the complex field C) by the

{
ρj
}
j=1,..,15

and the unit matrix. In fact, the analog of
Equation (50) can be written as

eaρj = B0(a)I4×4 + B1(a)ρj + B2(a)ρ2
j + B3(a)ρ3

j , (58)
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with the coefficients Bk(a), k = 0, 1, 2, 3 being correspondingly given by

Bk(a) =
ak

k!
1F4(1;

k + 1

4
,
k + 2

4
,
k + 3

4
,
k + 4

4
; (
a

4
)4),

as an obvious extension of Equation (51) to the matrices Equation (57).
Needless to say, for the non primitive 4-th root matrices ρ5, ρ8 and ρ11 we can write down an

expression similar to Equation (40), namely

eaρl = cosh(a)I4×4 + sinh(a)ρl, l = 5, 8, 11.

4.2.3. m-th Roots

It is evident that with increasing m in Equation (41) the problem becomes even more complex.
However, on the basis of the previous analysis, we can try to draw some basic issues, at least for the
two-term case just displayed in Equation (41).

The identity in Equation (41) yields m + 1 relations involving terms of degree m in the mn × mn
matrices α and β. Firstly, the latter come to be the m-th roots of the unit matrix, being

αm = βm = I, (59)

and hence their eigenvalues can be written as

µj = ei
2π
m
j, j = 0, 2, ...m− 1.

It is easy to see that
m−1∑
j=0

µj = 0,

thus implying
Tr(α) = Tr(β) = 0.

Also, being
m−1∏
j=0

µj = (−1)m−1,

we can say that the determinant of the matrices α and β is

δ = (−1)n(m−1).

As to the other conditions ensuring Equation (41) be satisfied, they can be synthesised in the form∑
p,q

αp1βq1αp2βq2 ....αpαβqβ = 0 (60)

where the sum is intended to comprise all the powers pj and qi such that
∑

j pj = l and
∑

i qi = k, for
any choice of integers (l, k) such that l 6= 0, k 6= 0 and l + k = m, thus yielding m!

l!k!
terms of degree m.
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We see that the m×m matrices

ν1 =


0 µ0 0 · · · 0

0 0 µ0 · · · 0
...

...
...

...
...

0 0 0 · · · µ0

µ0 0 0 · · · 0

 , ν2 = δ


0 µ1 0 · · · 0

0 0 µ2 · · · 0
...

...
...

...
...

0 0 0 · · · µm−1

µ0 0 0 · · · 0

 ,

with δ =

{
1 m odd
ei

π
m m even

, represent a suitable pair of matrices (of smallest allowable order) which

satisfy Equations (59) and (60). Starting from them, one can span an (m2 − 1)-dimensional Lie algebra
of matrices {νj}j=1,..,m2−1 satisfying Equation (59).

On the basis of the previous analysis, we can also state that in general the set {ν}j=1,..,m2−1

⊕Im×m is closed under the powers 2, 3, ...m. Consequently, we can write the group element eaνj in
the general form

eaνj = C0(a)Im×m +
m−1∑
k=1

Ck(a)νkj , (61)

where the coefficients Ck(a), k = 0, 1, 2,m− 1 are

Ck(a) =
ak

k!
1Fm(1;

k + 1

m
,
k + 2

m
, ...,

k +m

m
; (
a

m
)m).

5. Possible Applications: Practical and Conceptual Issues

The Dirac-like factorization procedure can be applied to various (physical and/or mathematical)
contexts, and also be variously finalized.

We will illustrate some applications in connection with root functions of differential operators,
specifically, square and cube roots respectively of second-order and third-order differential operators.

5.1. Square Root of Differential Operators

As said, the factorization approach to square root of differential operators can conveniently be
exploited in connection with evolution equations ruled by pseudo-differential operators [12,14] as well
as within the theory of fractional calculus, where it may open new perspectives [13,14].

Let us discuss both issues in some detail.

5.1.1. Solving Relativistic-like Free Evolution Equations

The equation we will consider here is

∂ζψ(ξ, ζ) = −
√

1− ∂2
ξψ(ξ, ζ), (62)

ψ(ξ, 0) = ψ0(ξ).

We will refer to it as relativistic-like free evolution equation. In fact, setting ζ = i ct
λc

and ξ = x
λc

, λc = h̄
mc

being the Compton wavelength of the particle, the above equation would yield the (1+1)D version of the
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Salpeter Equation (5), and accordingly ψ(ξ, ζ) would represent the particle wave function. However,
we will limit to consider in more detail real evolution variables ζ, so that the HE naturally arises as the
“nonrelativistic” counterpart of Equation (62). A few comments on the solution à la Dirac of the (1+1)D
Salpeter equation will be however given later.

The Dirac-like “linearization” procedure turns the problem of the solution of Equation (62) into that
of the solution of the system of two coupled linear homogeneous first order partial differential equations

∂ζψ(ξ, ζ) = −(σj − i∂ξσk)ψ(ξ, ζ), j 6= k, (63)

ψ(ξ, 0) = ψ0(ξ),

for the two component vector ψ(ξ, ζ) =

(
ψ1(ξ, ζ)

ψ2(ξ, ζ)

)
.

The solution to the above “evolution equation” is indeed immediately written in the form

ψ(ξ, ζ) = e−ζ(σj −i∂ξσk)ψ0(ξ), (64)

in full analogy with Equation (12). Whatever be the specific Pauli matrices chosen in the factorization,
on account of thatσ2

j = I2×2 and {σj,σk} = 2δj,kI2×2, the direct evaluation of the exponential function
in Equation (64) [42] would yield for the evolution matrix the explicit expression

U(ξ, ζ) = cosh[ζ(
√

1− ∂2
ξ)]I2×2 −

sinh[ζ(
√

1− ∂2
ξ)]√

1− ∂2
ξ

(σj − i∂ξσk). (65)

Let us apply such a result to specific initial data. Indeed, we consider the input vector

ψ0(ξ) =

(
e−

ξ2

4

0

)
. (66)

Evidently, the definite expression of the evolved vector depends on the specific choice of the Pauli
matrices in the square-root factorization.

Thus, with
H = −(σ3 − i∂ξσ2),

the evolution of the vector ψ is dictated by

ψ(ξ, ζ) =

(
Ĉ − Ŝ −∂ξŜ
∂ξŜ Ĉ − Ŝ

)
ψ0(ξ), (67)

Ĉ and Ŝ being the cosh- and sinch-operator functions entering Equation (65), i.e.,

Ĉ = cosh[ζ(
√

1− ∂2
ξ)], Ŝ =

sinh[ζ(
√

1− ∂2
ξ)]√

1− ∂2
ξ

.

Therefore, with ψ0(ξ) given by Equation (66), we obtain

ψ(ξ, ζ) =

(
Ĉ − Ŝ
∂ξŜ

)
e−

ξ2

4 , (68)
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Equivalently, resorting to the Fourier transform, defined as

ψ̃(κ) =
1√
2π

∫ +∞

−∞
ψ(ξ)e−iκξdξ, (69)

the vector ψ(ξ, ζ) would be given by

ψ(ξ, ζ) = 2

√
1

π

∫ ∞
0

dκ

(
(C − S) cos(κξ)

−κS sin(κξ)

)
e−κ

2

. (70)

The functions C and S represent the Fourier images of the operators Ĉ and Ŝ , namely

C = cosh[ζ(
√

1 + κ2)], S =
sinh[ζ(

√
1 + κ2)]√

1 + κ2
.

Equations (68) and (70) yield the same results for the two vector components, which are plotted in
Figure 1 vs. ξ at some ζ.

Figure 1. ζ-evolution of the two components (a) ψ1(ξ, ζ) and (b) ψ2(ξ, ζ) of the ψ-vector
for the input given by Equation (66), shown at ζ = 0 (red solid line), ζ = 0.3 (blue dotted
line), ζ = 0.6 (green dashed line), and ζ = 1 (magenta dash-dotted line).

Figure 2 shows the Euclidean norm |ψ|2 = ψ2
1 +ψ2

2 of the vectorψ at the ζ’s pertaining to Figure 1.
Paralleling Figure 1, Figure 3 shows the behavior of the squared moduli of the two vector components

ψ1 and ψ2, obtained as Dirac approach based solutions of the (1+1)D Salpeter equation for the input
given by Equation (66). As said, the latter follows from Equation (62) with the replacement ζ → iτ,
τ = ct

λc
.

Of course, this amounts to replacing the hyperbolic functions with the circular functions, i.e.,
cosh→ cos and sinh → i sin, in all the relevant expressions. Accordingly, complex expressions for
ψ1 and ψ2 are obtained, thus demanding to plot the respective squared moduli.
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Figure 2. ζ-evolution of the Euclidean norm |ψ|2 = ψ2
1 + ψ2

2 of the vector ψ for the input
given by Equation (66) (see Figure 1), shown at ζ = 0 (red solid line), ζ = 0.3 (blue dotted
line), ζ = 0.6 (green dashed line), and ζ = 1 (magenta dash-dotted line).

Figure 3. τ-evolution of the squared moduli of the two components (a) ψ1(ξ, τ) and (b)
ψ2(ξ, τ) of the ψ-vector obtained as solution of the (1+1)D Salpeter equation for the input
given by Equation (66). They are shown at τ = 0 (red solid line), τ = 0.3 (blue dotted line),
τ = 0.6 (green dashed line), and τ = 1 (magenta dash-dotted line).

Finally, as in Figure 2, Figure 4a shows the Euclidean norm ||ψ| |2 = ψ2
1 + ψ2

2 of the vector solution
ψ at the τ’s pertaining to Figure 3. It can be compared with the squared amplitude of the wave function
obtained as solution of the Salpeter equation through the Fourier transform based approach for the
Gaussian input Equation (66), namely ψ0(ξ) = e−

ξ2

4 . Such an approach yields the solution of the
(1+1)D Salpeter equation in the form [10,11]
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ψ(ξ, τ) =
1√
2π

∫ +∞

−∞
dκe−iτ

√
1+κ2eiκξψ̃0(κ), (71)

corresponding to the initial wave function ψ0(ξ), whose Fourier transform is ψ̃0(κ).

Figure 4. (a) τ-evolution of the Euclidean norm |ψ|2 = ψ2
1 + ψ2

2 of the vector solution
ψ of the (1+1)D Salpeter equation for the input given by Equation (66) (see Figure 3),
shown at τ = 0 (red solid line), τ = 0.3 (blue dotted line), τ = 0.6 (green dashed line), and
τ = 1 (magenta dash-dotted line). (b) τ-evolution of the squared amplitude of the solution of
the Salpeter equation obtained through Equation (71) for the Gaussian initial wave function
ψ0(ξ) = e−

ξ2

4 , shown at τ = 0 (red solid line), τ = 1 (blue dotted line), τ = 1.5 (green
dashed line), and τ = 2 (magenta dash-dotted line).

5.1.2. Suggesting Alternative Formulations in Fractional Calculus

Another possible context of application of the Dirac-like “linearization” procedure is that of the theory
of the fractional calculus [43–45]. As an example, let us consider the operator

Ô =
√
a+ ∂x, (72)

a being an arbitrary constant. For it the following interpretation,

Ôf(x) =
a+ ∂x√
a+ ∂x

f(x) = (a+ ∂x)
1√
π

∫ ∞
0

dss−1/2e−ase−s∂xf(x),

can be worked out, resorting to the integral representation of the operator L̂−ν , <(ν) > 0, as

L̂−ν =
1

γ(ν)

∫ ∞
0

dssν−1e−sL̂, <(ν) > 0 (73)

which reproduces for operators the well-known Laplace-transform identity for c-numbers. Note that the
shift operator e−s∂x under the integral yields e−s∂xf(x) = f(x− s).
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Alternatively, in the light of the above analysis, the scalar operator can be replaced by the
operator matrix √

a+ ∂x →
√
aσj +

√
∂xσk , j 6= k j, k = 1, 2, 3, (74)

for any specific choice of the inherent Pauli matrices, thus opening new perspectives within the theory
of fractional calculus.

The operator nature of the l.h.s. would be conveyed by the matrix nature of r.h.s.; indeed,
√
∂x may

be seen as acting on 1, thus giving √
∂x 1 =

1√
πx

according to the Euler definition of fractional derivative

∂νxx
µ =

γ(µ+ 1)

γ(ν − µ+ 1)
xµ−ν .

Thus, the operator in Equation (72) can be regarded as acting in a 2D vector space through the matrix

Ô :=

(
0

√
a− i√

πx√
a+ i√

πx
0

)
,

or also through

Ô :=

(
1√
πx
−i
√
a

i
√
a − 1√

πx

)
, Ô :=

(
1√
πx

√
a

√
a − 1√

πx

)
,

each matrix being obtained in correspondence with a specific choice of the Pauli matrices in
Equation (74). In our opinion, the view conveyed by the above analysis deserves to be explored.

5.2. Cube Root of Differential Operators

Paralleling the analysis, developed in connection with the square root functions of operators, regarding
the evolution Equation (62), we may consider an evolution equation involving a cube root of the
differential operators ∂3

ξ , namely

∂ζψ(ξ, ζ) = 3
√

1 + ∂3
ξψ(ξ, ζ), (75)

ψ(ξ, 0) = ψ0(ξ).

By the Dirac-like procedure, it is recast into the system of three coupled linear homogeneous partial
differential equation of the first order for the three component vector ψ(ξ, 0),

∂ζψ(ξ, ζ) = (τj + ∂ξτk)ψ(ξ, ζ), j 6= k, (76)

ψ(ξ, 0) = ψ0(ξ),

for any choice of the suitable pairs of the afore-introduced τ-matrices.
As before, the solution can be formally written as

ψ(ξ, ζ) = eζ(τj +∂ξτk)ψ0(ξ). (77)
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However, in order to get an explicit expression for the evolution matrix

U(ξ, τ) = eζ(τj +∂ξτk) (78)

one needs to resort to appropriate ordering techniques since the τ-matrices involved in the linearization
of the original cube root operators should not commute with each other.

Just to fix mind, let us work with the matrices in Equation (46). Then, we apply the Zassenhaus
formula [46,47] giving the exponential of the sum of two operators as the in general infinite product of
operators according to

eX̂+Ŷ = eX̂eŶ
∞∏
j=1

eĈj ,

where the first terms in the product explicitly write as

Ĉ1 = −1

2

[
X̂, Ŷ

]
,

Ĉ2 =
1

3

[
Ŷ ,
[
X̂, Ŷ

]]
+

1

6

[
X̂,
[
X̂, Ŷ

]]
,

Ĉ3 =
1

8

{[
Ŷ ,
[
Ŷ ,
[
X̂, Ŷ

]]]
+
[
Ŷ ,
[
X̂,
[
X̂, Ŷ

]]]}
− 1

24

[
X̂,
[
X̂,
[
X̂, Ŷ

]]]
.

Then, in the case of Equation (78) we find that

Ĉ1 =
i
√

3

2
ζ2∂ξτ3, Ĉ2 = ζ3∂2

ξ(
1

2
τ4 − τ5),

thus enabling us to write for U (ξ, τ) at the third order in the evolution parameter ζ the expression

U(ξ, ζ) = eζτ1eζ∂ξτ2e
i
√

3
2
ζ2∂ξτ3eζ

3∂2ξ( 1
2
τ4−τ5) +O(ζ4)

= eζτ1eζ∂ξτ2e
i
√

3
2
ζ2∂ξτ3e

1
2
ζ3∂2ξτ4e−ζ

3∂2ξτ5 +O(ζ4),

the latter expression being allowed by the commutation [τ4,τ5] = 0. In turn, each exponential can be
written in the form as Equation (50).

6. Relativistic-like Evolution Equation: A “Direct” Solving Method

We will reconsider Equation (62), rewritten here for convenience’s sake,

∂ζψ(ξ, ζ) = −
√

1− ∂2
ξψ(ξ, ζ), (79)

ψ(ξ, 0) = ψ0(ξ),

and approach its solution through a more “direct” method. Equation (62) has been the object of the
recent analysis in [48]. Here, we will further elaborate that analysis, trying to reproduce as much as
possible the solving procedure inherent to the HE. Interestingly, we will find many analogies.



Mathematics 2015, 3 716

6.1. Evolution Operator

In full analogy with Equation (10), the solution to Equation (79) can be expressed in terms of the
evolution operator, i.e.,

ψ(ξ, ζ) = Û(ζ)ψ0(ξ), (80)

with Û(ζ) being explicitly given by the exponential operator

Û(ζ) = e−ζ
√

1−∂2ξ . (81)

Evidently, it reproduces the evolution operator in Equation (14) pertaining to Equation (10) to the
lowest order in ∂2

ξ of the power series expansion of
√

1− ∂2
ξ , apart from some scaling and multiplying

factors, as we will detail later.

6.2. Evolution Operator as McDonald Transform

In order to determine the action of Û(ζ) on the initial data ψ0(ξ), we resort to the result [49–51]∫ ∞
0

e−as
2− b

s2 ds =

√
π

4a
e−2
√
ab, a, b > 0 (82)

from the integral calculus. Note that the l.h.s. can be interpreted as the Laplace transform
of f(s) = e−

b
s/
√
s.

Then, assuming that the identity expressed by Equation (82) holds also when the parameters a, or b
or both are (commuting) operators, we can write

ψ(ξ, ζ) =
2√
π

∫ ∞
0

dse−s
2− ζ2

4s2
(1−∂2ξ)ψ0(ξ), (83)

setting in particular a = 1 and b = ζ2

4
(1− ∂2

ξ) so that 2
√
ab = ζ

√
1− ∂2

ξ .
One can recognize under the integral the “non-relativistic” evolution operator in Equation (14)

(at “time” ζ2

4s2
).

Accordingly, on account of Equation (15), we can write

ψ(ξ, ζ) =
2

πζ

∫ +∞

−∞
dξ′ψ0(ξ′)

∫ ∞
0

dsse
−s2

[
1+

(ξ−ξ′)2

ζ2

]
− ζ2

4s2 . (84)

It is convenient to change the order of the integrals, and then to exploit the integral representation of
the modified Bessel function of the second kind (or, McDonald function) Kν , i.e., [26,51,52]∫ ∞

0

sν−1e−βs
p−γs−pds =

2

p

(
γ

β

) ν
2p

K ν
p
(2
√
βγ), <(β),<(γ) > 0. (85)

Thereby, we end up with the integral transform expression for the solution of Equation (79):

ψ(ξ, ζ) =
ζ

π

∫ +∞

−∞
dξ′

K1(
√
ζ2 + (ξ− ξ′)2)√
ζ2 + (ξ− ξ′)2

ψ0(ξ′). (86)
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Clearly, the same result can be obtained working in the Fourier domain. In fact, since
√

1− ∂2
ξe
±iκξ =

√
1 + κ2e±iκξ, Equation (79) signifies

∂ζψ̃(κ, ζ) = −
√

1 + κ2ψ̃(κ, ζ) (87)

ψ̃(κ, 0) = ψ̃0(κ),

in the Fourier conjugate κ-domain. Here, ψ̃(κ, ζ) denotes the Fourier transform (see Equation (69)) of
ψ(ξ, ζ) with respect to ξ.

The solution to Equation (87) is then easily formulated as

ψ̃(κ, ζ) = e−ζ
√

1+κ2ψ̃0(κ),

which, when transformed back to the ξ-domain, on account of

K1(
√
β2 + γ2)√
β2 + γ2

=
1

2β

∫ +∞

−∞
e−β

√
1+t2e±iγtdt, <(β) > 0, <(γ) > 0, (88)

yields Equation (86) for ψ(ξ, ζ). This in turn legitimates the assumption underlying Equation (83).
Equation (86) conveys the interesting result that, just as for Equation (10) governed by the

non-relativistic free-Hamiltonian, written in Equation (11), the solution to Equation (79) is given by
an integral transform of the initial data, having the form of a convolution product, whose kernel

V (ξ, ζ) =
ζ

π

K1(
√
ζ2 + ξ2)√
ζ2 + ξ2

, (89)

involves the McDonald function K1(z). Accordingly, we will refer to Equation (86) as McDonald
transform. As basic properties of the McDonald function Kν(z), we may recall that it is real when
ν is real and z is positive, and that Kν(z) = K−ν(z).

Further analogies between Equations (10) and (79) can be drawn.
Firstly, in the light of Equation (88), we see that

lim
ζ→0

V (ξ, ζ) = δ(ξ),

thus enabling us to refer to V (ξ, ζ) as the fundamental solution of Equation (79).
Correspondingly, the opposite limit ζ � 1 and |ξ − ξ′| � ζ yields the “non-relativistic” solution.

In fact, we can exploit the asymptotic properties of K1, giving [26,52]

K1(z) ∼
( π

2z

)1/2

e−z,

according to which we get

V (ξ, ζ) ∼
(
ζ

2π

)1/2
e−
√
ζ2+ξ2

√
ζ2 + ξ2

.

Then, we replace the square root
√
ζ2 + ξ2 = ζ

√
1 + ξ2

ζ2
by its power series expansion in ξ2

ζ2
at zero

order in the denominator, thus yielding ζ, and at the first order in the exponent, giving ζ+ ξ2

2ζ
. Eventually,

we end up with the expression

ψ(ξ, ζ) ∼ e−ζ√
2πζ

∫ +∞

−∞
dξ′e−

(ξ−ξ′)2
2ζ ψ0(ξ′), (90)
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which reproduces the Poisson transform in Equation (15) up to the term e−ζ. The latter accounts in a
sense for the “rest energy”, and it does not appear in Equation (15). Also, the evolution variable is half
that pertaining to Equation (10) since the non-relativistic limit of Equation (79) would yield 1

2
∂2

∂ξ2
; the

factor 1
2

is inglobed in the variable ζ in Equation (10), emerging indeed in the specific cases, for instance,
of the SE and the PWE.

6.3. Symmetry Transformations and “Polynomial” Solutions

A symmetry property analogous to Equation (27) for the case u(x, t) = 1, in practice the
corresponding relation of the evolution of the fundamental solution for the case of concern can be
established in the case of concern as well.

In fact, on the basis of the relation

V (ξ, ζ) = Û(ζ)δ(ξ),

for the fundamental solution Equation (89), we can immediately verify that with

ψ0(ξ) = V (ξ, ε) =
ε

π

K1(
√
ε2 + ξ2)√
ε2 + ξ2

= Û(ε)δ(ξ), (91)

we obtain

ψ(ξ, ζ) = Û(ζ)ψ0(ξ) = Û(ζ)V (ξ, ε)

= Û(ζ)Û(ε)δ(ξ) = V (ξ, ε+ ζ), (92)

explicitly yielding the solution

ψ(ξ, ζ) =
ζ+ ε

π

K1(
√

(ζ+ ε)2 + ξ2)√
(ζ+ ε)2 + ξ2

. (93)

As remarked in Section 2.3, the above simply manifests the symmetry of the solutions of
Equation (79) with respect to a shift of the evolution variable ζ. In both cases, the fundamental solution
evolves through a simple shift of the evolution variable.

The possibility of obtaining an expression corresponding to Equation (27) in its general form is
under investigation.

Figure 5 compares the evolution of the Gaussian ψ0(ξ) = e−
ξ2

4 (in practice, the fundamental solution
of the HE) as it should occur in accord with Equation (10), i.e.,

ψG(ξ, ζ) =
1√

1 + ζ
e−

ξ2

4(1+ζ) ,

and in accord with the relativistic Equation (79), i.e., through Equation (86).
The (ζ, ξ)-contourplots are shown in both cases; in the latter case, as a check, the wavefunction at

ζ > 0 has also been obtained through the Fourier transform method.
The “relativistic” evolution shows a quicker attenuation of the wavefunction amplitude than the

“non-relativistic” one.
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Correspondingly, Figure 6 displays the (ζ, ξ)-contourplots of the fundamental solution Equation (93)
for some value of the “initial time” ζ0 = −ε.

Figure 5. (ζ, ξ)-contourplots exemplifyng the (a) “non-relativistic” and (b) “relativistic”
ζ-evolution of the Gaussian ψ0(ξ) = e−

ξ2

4 .

Figure 6. (ζ, ξ)-contourplots exemplifyng the ζ-evolution of the fundamental solution of
Equation (79), i.e., ψD(ξ, ζ), for (a) ε = 0.5, (b) ε = 1, (c) ε = 1.5, and (d) ε = 2.
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In order to have a function, which, just as the Gaussian e−
ξ2

4 , takes on the unit value at ξ = 0, the
factor π

K1(ε)
is added to Equation (93), so that the function

ψD(ξ, ζ, ε) =
ζ+ ε

K1(ε)

K1(
√

(ζ+ ε)2 + ξ2)√
(ζ+ ε)2 + ξ2

, (94)

is plotted in Figure 6.
For completeness’sake, Figure 7 plots the profiles of the wavefunctions of concern in the same panel at

different ζs. We see that, with increasing ε, ψD(ξ, ζ, ε) tends to be even more similar to the ψG(ξ, ζ)|nr.

Figure 7. ξ-profiles of ψG(ξ, ζ)|nr (red solid line), ψG(ξ, ζ)|r (blue dotted line),
ψD(ξ, ζ, ε = 1) (green dashed line), ψD(ξ, ζ, ε = 2) (magenta dash-dotted line), and
ψD(ξ, ζ, ε = 3) (turquoise thick solid line) at different ζ, specifically at (a) ζ = 0,
(b) ζ = 0.5, and (c) ζ = 1.

Notably, as solutions corresponding to initial monomials can be found for the HE, SE and PWE
as recalled in Section 2.3, explicit solutions corresponding to initial monomials can be found for
Equation (79) as well.

In fact, let us set ψ0(ξ) = ξn with n nonnegative integer. The resulting wavefunction is

pn(ξ, ζ) =
2ζ

π

[n/2]∑
h=0

n!

h!(n− 2h)!
ξn−2h

∫ +∞

0

dξ′ξ′2h
K1(
√
ζ2 + ξ′2)√
ζ2 + ξ′2

.

Since [51] ∫ +∞

0

dss2µ+1Kν(α
√
ζ2 + s2)√

(ζ2 + s2)ν
=

2µγ(µ+ 1)

αµ+1zν−µ+1
Kν−µ−1(αz),

α > 0, <(µ) > −1

2

we end up with the esplicit expression

pn(ξ, ζ) =

√
2ζ

π

[n/2]∑
h=0

n!

h!(n− 2h)!
(
ζ

2
)hξn−2hKh− 1

2
(ζ).
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We recall that the McDonald function of half odd integer order means [26,52]

K− 1
2
(z) =

√
π

2z
e−z,

Kh− 1
2
(z) =

√
π

2z
e−z

h−1∑
m=0

(h+m− 1)!

m!(h−m− 1)!

1

(2z)m
, h = 1, 2, ...

Therefore, we can say that the pns are polynomials of degree n, apart from the rest energy term e−ζ.
In the asymptotic regime, where the non-relativistic behavior is recovered, the pns yield the heat

polynomials times the exponential factor e−ζ. Explicitly, we obtain

pn(ξ, ζ) ∼ e−ζ(−ζ
2

)n/2Hn(
ξ√
−2ζ

) = e−ζvn(ξ,
ζ

2
),

vn being the heat polynomials Equation (22).
As said, u0(x) = 1 implies u(x, t) = 1 in Equation (15). Correspondingly, a uniform input for

Equation (79), i.e.„ ψ0(ξ) = 1, evolves just through the “rest energy” term

p0(ξ, ζ) ∼
√

2ζ

π
K 1

2
(ζ) = e−ζ.

Interestingly, we find that the first pns are just the corresponding vns at ζ
2
, apart from the rest energy

term e−ζ, namely

pn(ξ, ζ) = e−ζvn(ξ,
ζ

2
), n = 0, 1, 2, 3.

Figure 8 shows the plots of the pns and vns for n = 4, 5, 6, 7 at ζ = 1.

Figure 8. Plots of the pns (red solid lines) and vns (blue dotted lines) for n = 4, 5, 6, 7

at ζ = 1.
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The interest in the pns stems from the possibility, to be explored, of using them as alternative to the
evaluation of the integral transform Equation (86) by exploiting the power series expansion, if any, of
the input function, in analogy with the HE [2,24,25].

Furthermore, as the heat polynomials realize the power series expansion of the evolved form (through
Equation (7)) of the eigenstates eχξ of the derivative operator ∂

∂ξ
, i.e., eχξeχ2ζ, the relativistic heat

polynomials realize the power series expansion of the corresponding “relativistically” evolved form, i.e.,

eχξe−ζ
√

1−χ2
=
∞∑
n=0

χn

n!
pn(ξ, ζ), (95)

for |χ| ≤ 1.
The above relies on the Neumann-type series for the MacDonald function (also referred to as

multiplication theorem) [26,52]

(s2 − τ2)−
1
2
νKν [z(s2 − τ2)

1
2 ] =

∞∑
n=0

s−ν−n

n!
(
1

2
zτ2)nKν+n(zs),

holding for |τ2/s2| ≤ 1.
Equation (95) conveys the generating function relation for the pns, as Equation (20) conveys that for

the vns. In both cases the generating function is of the type

G(ξ, ζ, χ) = A(χ, ζ)eχξ,

with A(χ, ζ) = e−ζ
√

1−χ2 , |χ| ≤ 1, for the pns and A(χ, ζ) = eχ
2ζ for the vns, both being amenable for

a Taylor series expansion with respect to χ.
Therefore, the generating functions pertaining to the pns as well as the vns can be ascribed to the

Appèl family [53,54]. Also, according to [54], we can express the relativistic heat polynomials in the
operator form

pn(ξ, ζ) = A(∂ξ, ζ)ξ
n,

where the derivative operator ∂ξ represents one of the monomial operators of the lowering-raising pair

P̂ = ∂ξ,

M̂ = ξ+
A′(∂ξ, ζ)

A(∂ξ, ζ)
,

the prime denoting differentiation with respect to the first argument. They are expected to act on the pns
according to the usual monomial relations

P̂ pn(ξ, ζ) = npn−1(ξ, ζ), (96)

M̂pn(ξ, ζ) = pn+1(ξ, ζ),

which, as can easily be verified, explicitly mean

∂ξpn(ξ, ζ) = npn−1(ξ, ζ),

ξ+ ζ
∂ξ√

1− ∂2
ξ

 pn(ξ, ζ) = pn+1(ξ, ζ). (97)
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Evidently, the relations in Equation (96) amount to

M̂P̂ pn(ξ, ζ) = P̂ M̂pn(ξ, ζ) = npn(ξ, ζ),

signifying the differential equationξ∂ξ + ζ
∂2
ξ√

1− ∂2
ξ

− n

 pn(ξ, ζ), pn(ξ, 0) = ξn. (98)

Since the operator
(
1− ∂2

ξ

)−1/2 can be understood as

1√
1− ∂2

ξ

=
1√
π

∞∑
j=0

γ(1
2

+ j)

j!
∂2j
ξ ,

one recovers the relations in Equation (23) for the vns as well as the inherent differential Equation (24),
taking only the 0-th order term in the series. Also, we see that the raising operator for the pns is a
ξ-differential operator of order 2

[
n−1

2

]
+ 1, and accordingly Equation (98) is of order 2

[
n
2

]
.

Finally, it is worth noting that the pns belong to the family of non-local polynomials, since they obey
the integro-differential Equation (98) instead of an ordinary differential equation like the vns. In fact, on
the basis of the representations in Equations (73) and (85), Equation (98) amounts to

ξp′n(ξ, ζ) +
ζ

π

∫ +∞

−∞
dξ′K0(ξ− ξ′)p′′n(ξ′, ζ)− npn(ξ, ζ) = 0, pn(ξ, 0) = ξn.

Other properties of Equation (86) are under investigation.

7. Conclusions

As a particular aspect of the general issue of the analysis of equations involving fractional or
pseudo-differential operators, we have reviewed the square-root operator factorization method à la Dirac
along with its extension to higher-degree root operators, as recently suggested in the literature [12–14].
A deeper analysis of the cube and quartic root operators has been presented along with a precise
characterization of the Lie algebras of the pertinent matrices.

In addition, evolution equations ruled by square root operator functions, referred to as relativistic-like
free evolution equations, have been considered, further elaborating the analysis developed in [48]. In fact,
a closed form expression of the solution has been deduced as an integral transform of the initial data.
We have referred to it as McDonald transform since the kernel involves the McDonald function K1.
The presentation here has been finalized to a comparison between the properties of the non-relativistic
and relativistic equations, in order to establish which properties of the former can be recovered to the
latter. In particular, fundamental solution with its evolution property and solutions arising from initial
monomials have been found for the relativistic evolution equation in full analogy with the non relativistic
one. Further investigations of the McDonald transform have been suggested.
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