
Mathematics 2015, 3, 758-780; doi:10.3390/math3030758
OPEN ACCESS

mathematics
ISSN 2227-7390

www.mdpi.com/journal/mathematics

Article

The Segal–Bargmann Transform for Odd-Dimensional
Hyperbolic Spaces
Brian C. Hall 1,†,* and Jeffrey J. Mitchell 2,†

1 Department of Mathematics, University of Notre Dame, 255 Hurley Hall,
Notre Dame, IN 46556, USA

2 Department of Mathematics, Robert Morris University, 6001 University Boulevard,
Moon Township, PA 15108, USA; E-Mail: mitchellj@rmu.edu

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: bhall@nd.edu

Academic Editor: Palle E.T. Jorgensen

Received: 7 July 2015 / Accepted: 10 August 2015 / Published: 18 August 2015

Abstract: We develop isometry and inversion formulas for the Segal–Bargmann transform
on odd-dimensional hyperbolic spaces that are as parallel as possible to the dual case of
odd-dimensional spheres.

Keywords: Segal–Bargmann transform; heat kernel; hyperbolic space; spherical function

1. Introduction

The Segal–Bargmann transform for Euclidean space was developed in the 1960s as a unitary
map from L2(Rn) to an L2 space of holomorphic functions on Cn with respect to a Gaussian
measure [1–3]. Motivated by work of Gross [4], the first author introduced an analog of the
Segal–Bargmann transform for compact Lie groups and proved isometry and inversion formulas for
it [5–7]. The transform is connected to the Segal–Bargmann transform on an infinite-dimensional
Euclidean space [8] and can be extended to the group of paths with values in a compact group [9]. The
transform also arises in the study of two-dimensional Yang–Mills theory on a spacetime cylinder [10–12]
and in geometric quantization [13] and has been used in the study of quantum gravity (see [14,15] among
many others).
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The results of [5,6] were extended to the case of a compact symmetric space by Stenzel in [16].
Let U be a simply connected compact group; let K be the fixed-point subgroup of an involution; and
let X = U/K (every simply connected compact group can be thought of in this way; other examples
include spheres and projective spaces). If XC := UC/KC is the “complexification” of X , there is a
diffeomorphism Φ : T (X)→ XC given by:

Φ(x, Y ) = expx(iY ),

where the right-hand side of the formula refers to the analytic continuation of the geometric exponential
map. The image of a single fiber in T (X) in XC may be identified with the dual non-compact symmetric
space to X. If, for example, X is an n-sphere, the image of each fiber can be identified with
n-dimensional hyperbolic space.

Now, for each t > 0, we define the Segal–Bargmann transform Ct : L2(X)→ H(XC) by:

Ct(f) = (et∆/2f)C,

where et∆/2 is the (forward) heat operator on X and (·)C denotes analytic continuation in the space
variable from X to XC. If f ∈ L2(X) and F = Ct(f) ∈ H(XC), the isometry and inversion formulas
of [16] take the following form:

‖f‖2 =

∫
x∈X

∫
Y ∈Tx(X)

|F (expx(iY/2))|2 ν2t(Y )J(Y ) dY dx (1)

f(x) =

∫
Y ∈Tx(X)

F (expx(iY ))νt(Y )J(Y ) dY. (2)

Here, νt and J are the heat kernel and the Jacobian of the exponential, respectively, for the dual
non-compact symmetric space toX.Note that in Equation (1), we have expx(iY/2) and ν2t(Y ), whereas
in Equation (2), we have expx(iY ) and νt(Y ).

It is natural to attempt to extend the isometry and inversion formulas to the case where X is a
non-compact symmetric space. In light of the duality between compact and non-compact symmetric
spaces, one would expect, roughly speaking, to reverse the roles of compact and non-compact in
Equations (1) and (2). In attempting to do this, however, substantial complications quickly arise. The
polar decomposition, for example, is no longer a diffeomorphism, and functions of the form et∆/2f do
not extend to all of XC, but only to the Akhiezer–Gindikin “crown domain” [17] (see [18,19]).

One way to work around these difficulties was developed by Krötz, Ólafsson and Stanton in [20]. Let
G be a connected semisimple Lie group with finite center, and let K be a maximal compact subgroup of
G, so that G/K (with a G-invariant metric) is a Riemannian symmetric space of the non-compact type.
If f is in L2(G/K) and F = et∆/2f , one defines the orbital integral, given by:

O|F |2(iY ) =

∫
G

∣∣F (g · expx0(iY/2))
∣∣2 dg, (3)

for Y in the tangent space a to a maximal flat through the base point x0. This function is initially defined
only for Y in a certain bounded domain 2 Ω, and it blows up on the boundary of 2 Ω. Nevertheless, there
is a pseudodifferential “shift operator” D on a that can be used to eliminate the singularities in O|F |2 .
The operatorD is defined, essentially, by requiring that it map the spherical functions forG/K into their
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Euclidean counterparts, which are just linear combinations of exponentials (compare Equation (3.11) to
Equation (3.12) in [20]). We are then interested in the operator D̃, which describes the action of D on
the imaginary axis; that is, D̃ satisfies:

(Dg)(iY ) = D̃(g(iY )).

It is shown in [20], using the Gutzmer-type formula of Faraut [21], that D̃O|F |2 extends without
singularities to all of a.

The isometry formula of [20] (Theorem 3.3) then reads:

‖f‖2 =

∫
a

D̃
[
O|F |2(iY )

]
wt(Y ) dY, (4)

where:

wt(Y ) = et|δ|
2 e−|Y |

2/(4t)

(4πt)k/2
.

Here, k = dim a and δ is half the sum of the positive roots with multiplicity. We adjust the formula
in [20] to fit our normalization of the heat equation and to correct for a minor inconsistency in [20] in
how the orbital integral is defined. We also use a different normalization of the shift operator, which
means that we do not need a factor of the order of the Weyl group in the definition of wt, as in [20]. See
also [22,23] for a different approach to the isometry formula on G/K, but which also involves a sort of
shift operator.

On the one hand, the isometry formula in Equation (4) is easy to state and holds for all symmetric
spaces of the non-compact type. On the other hand, it is not parallel to the compact case and does
not explicitly involve the geometry of the dual compact symmetric space. A different approach was
developed by the authors of the current paper [24,25] in the case of a non-compact Riemannian
symmetric space of the “complex type,” that is, a space of the form X = G/K where G is complex
semisimple and K is a maximal compact subgroup (see also [26] for analogous results on compact
quotients of such symmetric spaces). The results of [24,25] are extremely parallel to Equations (1) and
(2), with νt now representing an “unwrapped” version of the heat kernel on the dual compact symmetric
space to X , except that there is a subtle cancellation of singularities that allows the formulas to make
sense. When one moves away from the complex case, the singularities become more complicated, and
the results of [24,25] do not extend as stated.

In the present paper, we consider the case in whichX is an odd-dimensional hyperbolic space,H2n+1,
in which case D̃ is a differential operator. As our first main goal, we develop an isometry formula that
is as parallel as possible to the compact case. We do this by taking the adjoint (with respect to certain
natural inner products) of the operator D̃ in Equation (4), which is done by integrating by parts. Two
main observations allow us to construct an isometry formula similar to Equation (1).

• If D̃∗ is the adjoint of D̃, then D̃∗(wt) is an “unwrapped” version of the heat kernel for the dual
compact symmetric space S2n+1.

• Taking the adjoint of D̃ involves boundary terms, which are meromorphic functions of the radius.
These functions tend to zero as long as we avoid poles at integer multiples of π.
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As our second main goal, we develop an inversion formula. We begin by developing a general
inversion formula, in the style of [20], that involves a shift operator and applies to an arbitrary symmetric
space of the non-compact type. We then specialize to the case of odd-dimensional hyperbolic spaces,
integrate by parts and obtain an inversion formula similar to Equation (2).

2. Main Results

We let G/K = H2n+1 denote the hyperbolic space of dimension 2n + 1, with the metric normalized
to have constant sectional curvature −1, where G is the identity component of SO(2n + 1, 1) and
K = SO(2n + 1). We refer to Section 5.7 of [27] for standard formulas involving the metric and
the Laplacian on H2n+1. We consider the map from T (H2n+1)→ GC/KC given by:

(x, Y ) 7→ expx(iY ), (5)

where the right-hand side of the above formula refers to the analytic continuation of the geometric
exponential map. For all sufficiently small R, the map Equation (5) is a diffeomorphism of the set
{(x, Y )| |Y | < R} onto its image. We refer to the set of points of the form expx(iY ) with |Y | < R as a
tube in GC/KC.

If we analytically continue the metric tensor from G/K = H2n+1 to a tube in GC/KC and then
restrict to the image of a single fiber in T (G/K), the result is the negative of a Riemannian metric ([28]
Proposition 1.17). Under this metric, the fibers are locally isometric to the unit sphere S2n+1. We begin
by introducing the relevant density to be used in the fibers.

Definition 1. For each nonnegative integer n and t, r ∈ R with t > 0, let νt(r) be given by:

νt(r) = etn
2/2

(
− 1

2π

1

sin r

d

dr

)n
e−r

2/(2t)

√
2πt

. (6)

We refer to this function as the unwrapped heat kernel for S2n+1. The 2π-periodization of this
function with respect to r is the actual heat kernel on S2n+1 (compare Proposition 7). The unwrapped
heat kernel is nonsingular at the origin, but has a pole of order 2n− 1 at nonzero integer multiples of π.
Our results are based on the idea of taking a limit that “stays a fixed distance away from the poles.”

Notation 2. A limit as R→ +∞ staying a fixed distance from the poles means a limit as ReR tends to
+∞ in a region of the form:

Sε,A = {R ∈ C|ReR > 0, |ImR| < A, |R− nπ| > ε, n = 1, 2, 3, . . .} ,

where 0 < ε < A < π. See Figure 1.

0 Π 2Π

Figure 1. A typical domain of the form Sε,A.
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With our notation established, we are ready to state our first main result.

Theorem 3 (Isometry theorem). Fix f ∈ L2(H2n+1) and let F = (et∆/2f)C. Then, for all sufficiently
small R, the integral:

I(R) =

∫
x∈H2n+1

∫
Y ∈Tx(H2n+1)
|Y |≤R

|F (expx(iY/2))|2 ν2t(|Y |)
sin2n(|Y |)
|Y |2n

dY dx (7)

is defined and convergent. Furthermore, I(R) extends to a meromorphic function on C with poles only
at nonzero integer multiples of π, and:

‖f‖2
L2(H2n+1) = lim

R→+∞
I(R), (8)

where the limit is taken staying a fixed distance from the poles.

The factor sin2n(|Y |)/ |Y |2n is just the hyperbolic version of the Jacobian factor J(Y ) in Equation (1).
In this rank-one case, the unwrapped heat kernel ν2t depends only on |Y | . Since the identity component
of SO(3, 1) admits a complex structure, the symmetric space H3 belongs to the complex case. When
n = 1, the preceding result is a special case of Theorem 3 of [25], after making a change of variables by
a factor of two in Y . In the n = 1 case, however, the function I(R) has no poles.

We emphasize that the initial definition of I(R) in Equation (7) does not make sense for large R,
because F (expx(iY )) is only defined when Y is in a certain bounded region Ω, since F := (et∆/2f)C

does not extend to the whole complexification of H2n+1. Thus, the limit on the right-hand side of
Equation (8) refers to the meromorphic extension of I(R).

Now, since H2n+1 has rank one, the G-orbit through expx0(iY0/2) consists of all points of the form
expx(iY/2), where |Y | = |Y0| . Thus, we may think of the integral on the right-hand side of Equation (7)
as an orbital integral through a point with |Y0/2| = R, followed by integration with respect to R (see the
first several paragraphs of Section 5). Since, as we have noted, νt(r) has a pole of order 2n − 1 at each
nonzero (integer) multiple of π, we see that the density in Equation (7) has a zero of order one at each
nonzero multiple of π. Except when n = 1, however, this zero in the density is not sufficient to cancel
out the singularities in the orbital integrals.

It may seem surprising that integration of the singular orbital integral of F does not produce branching
behavior in the function I(R). The absence of branching is demonstrated by integrating by parts to
convert I(R) into a truncated version of the isometry formula in Equation (4). Since the integrand on
the right-hand side of Equation (4) is nonsingular, the only singularities in I(R) will come from the
boundary terms, which do not involve integration.

We turn, next, to the development of an inversion formula. We begin with an inversion formula in
the style of [20], which involves the shift operator and applies to an arbitrary symmetric space of the
non-compact type. We then specialize this formula to the case of an odd-dimensional hyperbolic space
and perform an integration by parts, yielding a formula that is similar to Equation (7).

Let G be a non-compact semisimple Lie group, assumed to be connected and with finite center. Let
K be a maximal compact subgroup of G. The quotient G/K has a G-invariant metric making G/K into
a Riemannian symmetric space of the non-compact type. For each point x in G/K, let Kx denote the
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stabilizer of x in G, so that Kx is conjugate to K in G. Then, let f (x) denote the average of f over the
action of Kx; that is,

f (x)(y) =

∫
Kx

f(g · y) dg,

where dg is the normalized Haar measure on Kx. If F = et∆/2f , then since the heat operator commutes
with all isometries of G/K, we can say that F (x) may be computed either as the average of F over
the action of Kx or as the heat operator applied to f (x). Since F (x) is invariant under the action of Kx,
the function:

Y 7→ F (x)(expx(Y ))

is determined by its values on the tangent space ax to a maximal flat through x.
We let Hr(G/K), where r is a positive real number, denote the Sobolev space of functions on

G/K “having r derivatives in L2.” More precisely, consider the positive operator I − ∆, viewed as
an unbounded self-adjoint operator on L2(G/K). We then take Hr(G/K) to be the domain of the
operator (I − ∆)r/2, where (I − ∆)r/2 is defined by the functional calculus for self-adjoint operators.
In Section 7, we will describe the Sobolev space Hr(G/K) more concretely in terms of the Helgason
Fourier transform for G/K.

Theorem 4 (Inversion formula for an arbitrary symmetric space). Fix f ∈ L2(G/K), and let
F = et∆/2f. There is a positive constant r (depending only on G), such that if f belongs to the Sobolev
space Hr(G/K), we have:

f(x) = et|δ|
2/2

∫
ax

D(F (x))(expx(iY ))
e−|Y |

2/(2t)

(2πt)k/2
dY,

with absolute convergence of the integral. Here, D is the shift operator defined in Section 3.2 of [20].

Upon specializing Theorem 4 to the case of H2n+1, we may integrate by parts, with appropriate
attention to the boundary terms, to obtain an inversion formula similar to the isometry formula in
Theorem 3. As always, there is a factor of two difference in the scaling of the variables between the
isometry formula and the inversion formula.

Theorem 5 (Inversion formula for H2n+1). Fix f ∈ L2(H2n+1), and let F = et∆/2f. Define, for all
sufficiently small R,

J(R, x) =

∫
Y ∈Tx(H2n+1)
|Y |≤R

F (expx(iY ))νt(|Y |)
sin2n(|Y |)
|Y |2n

dY.

Then, for each x ∈ H2n+1, the function J(R, x) extends to a meromorphic function on C with poles only
at nonzero integer multiples of π. Furthermore, there is a positive constant r (depending only on n), such
that if f belongs to the Sobolev space Hr(H2n+1), we have:

f(x) = lim
R→+∞

J(R, x),

where the limit is taken along a path in C that stays a fixed distance away from the poles.
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The n = 1 case of the preceding theorem is a special case of Theorem 6 in [24]. In the n = 1 case,
the function J(R, x) actually has no poles.

We now turn to the question of a surjectivity theorem. In the complex case, we proved that if F is a
holomorphic function for which I(R) is defined for small R and has an analytic continuation with finite
limit at +∞, then F = (et∆/2f)C for some f ∈ L2(G/K). For technical reasons that will be discussed
in Section 6, it seems difficult to prove such a result in any case other than the complex case. For the
case of H2n+1, n ≥ 2, we content ourselves with the following weaker result. In the following result,
we make use of the Helgason–Fourier transform, as described in Section 2.3 of [20]. If f is a function
on H2n+1 = G/K, the Fourier transform of f , denoted f̂ , is a function on a∗ × B, where a ∼= R is the
tangent space to a maximal flat in H2n+1 and where B = M\K, with M being the centralizer of a in K.

Theorem 6. Suppose F is a holomorphic function on a tube for which I(R) is defined for all sufficiently
small R. Then, the restriction of F to H2n+1 is square integrable. Let Fε denote the function whose
Fourier transform is given by:

F̂ε(λ, b) = F̂ (λ, b)1{|λ|<1/ε}

and let I(R;Fε) denote the quantity in Equation (7) with F replaced by Fε. If:

lim
ε→0

lim
R→∞

I(R;Fε)

exists and is finite, there exists f ∈ L2(H2n+1), such that F = (et∆/2f)C.

3. Remarks on the Proofs of the Main Results

At a fundamental level, the isometry and inversion formulas are based on a duality between the
geometry of the base, G/K = H2n+1, and the geometry of the fibers in the local identification of
T (G/K) with GC/KC. As we have noted ([28] Proposition 1.17), the analytic continuation of the metric
from the base restricts to the negative of a Riemannian metric on a neighborhood of the identity in the
fibers. The fibers, with the resulting metric, are locally isometric to the dual compact symmetric space
S2n+1. For holomorphic functions on a tube in GC/KC, we have the following key result:

(spherical Laplacian in fibers)

= −(hyperbolic Laplacian in base). (9)

(Compare [28] Proposition 1.19.) This fundamental identity is ultimately responsible for all of our main
results. It follows formally from Equation (9), for example, that doing the forward heat operator in the
fibers accomplishes the backward heat operator for the base, which is precisely the inversion formula.
When the base is compact, the appropriate version of the fundamental identity is the key to proving both
the isometry and inversion formulas [6,16].

When the base is non-compact, a convenient way to exploit the fundamental identity is to use spherical
functions. In the case of the isometry formula, for example, there is a Gutzmer-type formula due to
Faraut [21,29], which says that the orbital integral in Equation (3) may be computed as:

O|F |2(ir) =

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)φλ(ir) dµ(λ), (10)
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where
∥∥∥f̂(λ)

∥∥∥ is the L2 norm of the Fourier transform f̂(λ, b) of f over the b variable and where φλ is
the spherical function with parameter λ ∈ R. Now, as discussed in Section 5, an appropriate integral of
O|F |2(ir) over r gives the quantity I(R) in the statement of Theorem 3. Thus, Equation (10) becomes:

I(R) = cn

∫ R

0

O|F |2(ir)ν2t(r) sin2n r dr

=

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)

[
cn

∫ R

0

φλ(ir)ν2t(r) sin2n r dr

]
dµ(λ). (11)

Meanwhile, φλ(r) is the restriction to a maximal flat of a radial-type eigenfunction for the Laplacian
forH2n+1. Thus, by Equation (9), φλ(ir) is the restriction to a maximal flat of a radial-type eigenfunction
for the Laplacian for S2n+1. The expression in square brackets on the right-hand side of Equation (11)
is then a polar-coordinates computation of the integral of this eigenfunction against the unwrapped
spherical heat kernel ν2t.

Now, we expect that the integral of an eigenfunction of the Laplacian against the heat kernel ν2t should
give etλ times the value of the eigenfunction at the base point, which is one in the case of a spherical
function. Since φλ(r) has eigenvalue −(|λ|2 + |δ|2) for the hyperbolic Laplacian, φλ(ir) has eigenvalue
|λ|2 + |δ|2 for the spherical Laplacian. We expect, then, that:

lim
R→+∞

cn

∫ R

0

φλ(ir)ν2t(r) sin2n r dr = et(|λ|
2+|δ|2). (12)

Thus, formally, letting R tend to infinity in Equation (11) should give:

lim
R→∞

I(R) =

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)et(|λ|

2+|δ|2) dµ(λ)

= ‖f‖2 ,

which is our isometry formula. A similar formal analysis yields the inversion formula (start with
Equation (37) in Section 7 and apply Equation (12) with t replaced by t/2).

Of course, the preceding analysis is only formal, since it takes no account of the singularities involved.
In the case of odd-dimensional hyperbolic spaces, the analytically continued spherical function φλ(ir)
has singularities at nonzero integer multiples of π. The claim is that φλ(ir) is actually meromorphic and
that the above analysis can be made rigorous if we simply integrate along a contour that avoids the poles.

To establish this claim, it is convenient to make use of shift operators. The unwrapped heat kernel ν2t

can be expressed as a certain shift operator applied to a Gaussian. Repeated integrations by parts move
the shift operator off the Gaussian and onto the spherical function, where it changes φλ into its Euclidean
counterpart, cosh(λr) (see Section 4). Thus, after integrating by parts a finite number of times, we end
up with an integral (of a Gaussian times cosh(λr)) that has no singularities and whose value can be
computed explicitly. The boundary terms in the integration by parts are manifestly meromorphic, and
they tend to zero as R tends to infinity, thus leading to a rigorous version of Equation (12).

To prove the isometry formula, it still remains to interchange the limit as R tends to infinity
with the integral on the right-hand side of Equation (11). Justifying this interchange for a general
square-integrable function f requires sharp estimates on the analytically continued spherical functions
and their derivatives, which we obtain in Section 4.
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For any symmetric space of the non-compact type, an analog of the fundamental identity Equation (9)
holds [28]. If one can construct a suitable unwrapped heat kernel and prove an analog of Equation (12),
one may hope to prove isometry and inversion formulas along the lines of what we have done here
for H2n+1.

4. Shift Operators and Spherical Functions

In this section, we consider various sorts of shift operators, each of which has an “intertwining
property” relating the radial part of a non-Euclidean Laplacian (for H2n+1 or S2n+1) to the Euclidean
Laplacian for R1. There are a total of four shift operators, two that shift (in one direction or the other)
betweenH2n+1 and R1 and two that shift between S2n+1 and R1.We also describe how the shift operators
act on spherical functions and use the resulting formulas to derive estimates on the spherical functions
and their derivatives.

Our first two shift operators are defined as follows:

D∗ =

(
− 1

2π

1

sinh r

d

dr

)n
(13)

D̃∗ =

(
− 1

2π

1

sin r

d

dr

)n
. (14)

The star in the notation indicates that these operators are the adjoints of other shift operators, which we
will introduce shortly. It is known (e.g., [30] p. 316) and not hard to verify by direct calculation that
these shift operators have the following intertwining properties:(

d2

dr2
+ 2n

cosh r

sinh r

d

dr

)
D∗ = D∗

(
d2

dr2
− n2

)
(15)(

d2

dr2
+ 2n

cos r

sin r

d

dr

)
D̃∗ = D̃∗

(
d2

dr2
+ n2

)
. (16)

The operators in parentheses on the left-hand sides are the radial parts of the Laplacians for H2n+1 and
S2n+1, respectively.

The operatorsD∗ and D̃∗ may be used to convert the heat kernels for R and for S1 into the heat kernels
for H2n+1 and S2n+1, respectively. For us, the term “heat kernel” will always refer to the fundamental
solution of the heat equation:

∂u

∂t
=

1

2
∆u,

where ∆ is the Laplacian, which we take to be a negative operator.

Proposition 7. The heat kernel γt on H2n+1 may be computed as:

γt(r) = e−tn
2/2D∗

(
1√
2πt

e−r
2/(2t)

)
and the heat kernel ρt on S2n+1 may be computed as:

ρt(r) = etn
2/2D̃∗

(
1√
2πt

∞∑
k=−∞

e−(r−2πk)2/(2t)

)
,

where r denotes the geodesic distance from the base point.
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By comparing the above expression for ρt to the definition of the unwrapped heat kernel νt

(Definition 1) and by noting that D̃∗ commutes with translations by 2π, we see that the 2π-periodization
of νt is simply ρt. This observation justifies the term “unwrapped heat kernel” for νt.

Proof. Although this result is known ([31] Section 8), we briefly outline the proof. It follows from
Equations (15) and (16) that both γt and ρt satisfy the heat equation. It remains only to show that these
are the fundamental solutions. Clearly, both γt and ρt will decay away from the base point, and near the
base point, the shift operators behave much like:

1

(2π)n

(
−1

r

d

dr

)n
,

which, by explicit computation, takes (2πt)−1/2e−r
2/(2t) to (2πt)−(2n+1)/2e−r

2/(2t). Thus, for small t,
both γt and ρt look like the heat kernel for R2n+1, which in turn behaves like a δ-function.

The formulas for the integral of a radial function on H2n+1 and S2n+1 take the form:

cn

∫ ∞
0

f(r) sinh2n r dr

cn

∫ π

0

f(r) sin2n r dr,

respectively, where r is the geodesic distance from the base point and where:

cn :=
2(2π)n

(2n− 1)!!

is the surface area of the unit sphere in R2n+1. We now regard D∗ and D̃∗ as maps from an L2 space with
Lebesgue measure to a L2 space with the measures coming from polar coordinates. We then compute
the adjoints of these maps (modulo boundary terms), which we call D and D̃, respectively.

Proposition 8. Let:

D =
1

(2n− 1)!!

n∏
k=1

(
sinh r

d

dr
+ (2k − 1) cosh r

)
D̃ =

1

(2n− 1)!!

n∏
k=1

(
sin r

d

dr
+ (2k − 1) cos r

)
,

where the product is taken with smaller values of k to the left and larger values of k to the right. Then,
for all sufficiently smooth even functions f and g on [−R,R], we have:

2

∫ R

0

(Df)(r)g(r) dr = B.T.+ cn

∫ R

0

f(r)(D∗g)(r) sinh2n r dr (17)

2

∫ R

0

(D̃f)(r)g(r) dr = B.T.+ cn

∫ R

0

f(r)(D̃∗g)(r) sin2n r dr, (18)

where “B.T.” indicates boundary terms that involve the values of f and g and their derivatives at R.
Furthermore, D and D̃ have the following intertwining properties:

D

(
d2

dr2
+ 2n

cosh r

sinh r

d

dr

)
=

(
d2

dr2
− n2

)
D (19)

D̃

(
d2

dr2
+ 2n

cos r

sin r

d

dr

)
=

(
d2

dr2
+ n2

)
D̃. (20)
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We emphasize that the boundary terms do not involve the values of the functions or their derivatives
at zero, but only at R.

Proof. If g is smooth and even on [−R,R], then g′(r)/ sinh r has a removable singularity at r = 0,
and the resulting function is again smooth and even on [−R,R]. Thus, there are no singularities in the
computation ofD∗g, despite the factors of sinh r in the denominator in the definition ofD∗ and similarly
for D̃∗g.

We start on the right-hand side of, say, Equation (17) and successively integrate by parts to move each
factor in the definition of D∗ off of g and onto f. To this end, we compute that:

ck+1

∫ R

0

f(r)

[(
− 1

2π

1

sinh r

d

dr

)
g(r)

]
sinh2(k+1) r dr

= B.T.+
ck

2k + 1

∫ R

0

[sinh r f ′(r) + (2k + 1) cosh r f(r)] g(r) sinh2k r dr, (21)

where the boundary term comes from evaluating:

−(ck+1/(2π)) sinh2k+1 r f(r)g(r)

at zero and at R and where ck+1/(2π) = ck/(2k + 1). Note that even if k = 0, the boundary term at
zero vanishes. Integrating by parts n times then yields the first claimed identity, and an entirely similar
calculation verifies the second identity. Finally, since the radial part of each Laplacian is a symmetric
operator on a dense subspace of its respective Hilbert space, Equations (19) and (20) follow from
Equations (15) and (16) by taking adjoints (we may initially prove the desired identities on C∞c ((0,∞))

and then extend to general smooth functions by using the local nature of all operators involved).

Lemma 9. For any sufficiently nice function f , we have:

(Df)(0) = f(0).

Proof. Although it is easy enough to verify this claim directly from the formula for D, it is more
illuminating to use Equation (17). If we apply Equation (17) with g equal to the Euclidean heat kernel at
time t, then D∗g is the heat kernel at time t for H2n+1 multiplied by the constant an(t) := etn

2/2. Then,
the integral on the right-hand side of Equations (17) is the integral of the radial extension of f against the
heat kernel on H2n+1 multiplied by an(t), while the left-hand side is the integral of the even extension
of Df against the heat kernel on R. Letting t tend to zero gives the claimed result, as the boundary terms
will vanish in the limit.

Proposition 10. The operator D in Proposition 8 maps the spherical function φλ for H2n+1 to the
function cos(λr). The operator D̃ in Proposition 8 maps the analytically continued spherical function
φλ(ir) to the function cosh(λr).

Proof. The spherical function φλ is an even eigenfunction for the radial part of the hyperbolic Laplacian
with eigenvalue−λ2−n2. Thus, by Equations (19), the functionDφλ is an eigenfunction for d2/dr2 with
eigenvalue −λ2. Since, also, Dφλ is even, we conclude that Dφλ(r) is a constant multiple of cos(λr).

However, since φλ is normalized to equal one at the base point, Lemma 9 tells us that the constant is one.
From the definition of D̃, we now see that D̃ maps the analytically continued spherical function φλ(ir)
to (Dφλ)(ir). That is, we haveD̃(φλ(ir)) = cosh(λr), the Euclidean counterpart of φλ(ir).
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We next show that the adjoint operator D̃∗ maps cosh(λr) to a constant (depending on λ) times φλ(ir).

Lemma 11. The analytically continued spherical function φλ(ir) may be obtained from its Euclidean
counterpart by the action of D̃∗ as follows:

D̃∗(cosh(λr)) = cλ,nφλ(ir),

where:

cλ,n =
1

(−2π)n

n−1∏
k=0

λ2 + k2

2k + 1
.

Proof. We let φλ,k denote the spherical function for H2k+1, so that φλ,0(ir) = cosh(λr). We then
claim that:

1

sin r

d

dr
φλ,k(ir) = dλ,kφλ,k+1(ir), (22)

where:

dλ,k =
λ2 + k2

2k + 1
.

To see this, let:

∆k :=
d2

dr2
+ 2k

cos r

sin r

d

dr

denote the radial part of the Laplacian on S2k+1. Direct calculation shows:

∆k+1

(
1

sin r

d

dr

)
−
(

1

sin r

d

dr

)
∆k = (2k + 1)

(
1

sin r

d

dr

)
as operators on smooth functions of r. Since φλ,k(r) is an eigenfunction of the radial part of the Laplacian
on H2k+1 with eigenvalue −λ2 − k2, the function φλ,k(ir) is an eigenfunction of ∆k with eigenvalue
λ2 + k2.

Consequently,

∆k+1

(
1

sin r

d

dr
φλ,k(ir)

)
=

(
1

sin r

d

dr

)
∆k(φλ,k(ir)) + (2k + 1)

(
1

sin r

d

dr
φλ,k(ir)

)
= (λ2 + (k + 1)2)

(
1

sin r

d

dr
φλ,k(ir)

)
.

Both sides of Equation (22) therefore are even, real-analytic eigenfunctions for the radial part of the
Laplacian on S2k+3 with the same eigenvalue. Thus, the two functions 1

sin r
d
dr
φλ,k(ir) and φλ,k+1(ir) are

equal up to a constant, as claimed in Equation (22) (it is easy to check that the eigenfunction equation
has exactly one series solution in even powers of r). To evaluate the constant, we let r tend to zero on
both sides of Equation (22), which gives, by L’Hospital’s rule,

φ′′λ,k(0) = dλ,kφλ,k+1(0) = dλ,k.

Meanwhile, φλ,k(0) = 1, and φλ,k(ir) satisfies:

d2φλ,k(ir)

dr2
+ 2k

cos r

sin r

dφλ,k(ir)

dr
= (λ2 + k2)φλ,k(ir). (23)
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Letting r tend to zero in Equation (23) and using L’Hospital’s rule again gives:

(2k + 1)φ′′λ,k(0) =
(
λ2 + k2

)
,

which means that:

dλ,k = φ′′λ,k(0) =
λ2 + k2

2k + 1
,

as claimed. If we apply Equation (22) n times and recall the definition of D̃∗ in Equation (14), we obtain
the lemma.

We now estimate the analytically continued spherical function and its derivatives. In what follows,
we do not require that r be real, but allow it to range over a region of the form Sε,A.

Lemma 12. For r in the region Sε,A (Notation 2), the analytically continued spherical functions satisfy
the following estimate: ∣∣∣∣∣

(
d

dr

)l
φλ(ir)

∣∣∣∣∣ ≤ Cn,l
1 + |r|

(1 + |λ|)n−l−1

e|λr| − 1

|λr|
. (24)

In particular, for |λ| > 1 and |r| > 1, we have:∣∣∣∣∣
(
d

dr

)l
φλ(ir)

∣∣∣∣∣ ≤ Dn,l
e|λr|

|λ|n−l
, (25)

and for |λ| ≤ 1, we have: ∣∣∣∣∣
(
d

dr

)l
φλ(ir)

∣∣∣∣∣ ≤ En,l(1 + |r|)er. (26)

Here, Cn,l, Dn,l and En,l are constants that depend only on n, l and ε.

Proof. As in the proof of Lemma 11, we let φλ,k denote the spherical function with parameter λ for
H2k+1. We note that, by Equation (22),

φλ,1(ir) =
1

λ2

1

sin r

d

dr
cosh(λr)

=
sinh(λr)

λr

r

sin r
.

Now, an elementary power-series argument shows that for all l ≥ 0, we have the estimate:∣∣∣∣∣
(
d

dx

)l
sinhx

x

∣∣∣∣∣ ≤ e|x| − 1

|x|

so that: ∣∣∣∣∣
(
d

dr

)l
sinhλr

λr

∣∣∣∣∣ ≤ |λ|l e|λr| − 1

|λr|

≤ (1 + |λ|)l e
|λr| − 1

|λr|
. (27)
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We can now see inductively that φλ,k will be a finite linear combination of terms of the form:

dλ,k

[(
d

dr

)l
sinh(λr)

λr

]
rag(r)

where:
dλ,k ≤

C

(1 + |λ|)2k−2
,

where a is either zero or one and where g(r) is a rational expression in sin r and cos r, with only sine
factors in the denominator. In the region Sε,A, the function g(r) will be bounded. Thus, by Equation
(27), we obtain the desired estimate.

We conclude this section with a simple estimate that will be used in both Sections 5 and 7.

Lemma 13. For any positive number a and positive integer m, there is a constant C, such that for all
λ > 0, we have:

sup
R

∣∣∣eλRRme−aR
2/2
∣∣∣ ≤ C(1 + λm)eλ

2/(2a),

where the supremum is taken over R in a region of the form Sε,A (Notation 2).

Proof. By completing the square and writing Rm = (R− λ/a+ λ/a)m, we obtain:

eλRRme−aR
2/2 = eλ

2/(2a)e−a(R−λ/a)2/2

m∑
l=0

(
m

l

)
(R− λ/a)l(λ/a)m−l.

Letting x = R − λ/a and noting that the function z 7→ zle−az
2/2 is bounded on Sε,A, we easily obtain

the desired bound.

5. The Isometry Formula

In this section, we provide the proof of Theorem 3. In simple terms, the theorem follows from the
isometry result of Krötz–Ólafsson–Stanton [20] by taking the adjoint of the operator D̃, which is done
by means of integration by parts. Some effort, however, is required to show that the boundary terms in
the integration by parts can be neglected.

Using Equation (18) in Proposition 8, the H2n+1 case of the isometry formula in Equation (4)
becomes, after taking into account the symmetry of the orbital integral,

‖f‖2 = lim
R→∞

2

∫ R

0

D̃
[
O|F |2(ir)

]
wt(r) dr

= lim
R→∞

(
B.T.+ cn

∫ R

0

O|F |2(ir)D̃
∗ [wt(r)] sin2n r dr

)
. (28)

Here, the orbital integral is computed using the group G equal to the identity component of
SO(2n + 1, 1). From the formulas for wt and D̃∗, we can see that D̃∗[wt(r)] coincides with ν2t(r),
the unwrapped heat kernel at time 2t.

Recall that for small R, the map (x, Y ) 7→ expx(iY ) is a diffeomorphism of the set:

{(x, Y )| |Y | < R} ⊂ T (H2n+1)
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onto its image in the complexification of H2n+1 and that the image of this diffeomorphism is called a
tube. Since H2n+1 has rank one, each G-orbit in a tube will correspond under the diffeomorphism to a
sphere bundle:

{(x, Y )| |Y | = a} ⊂ T (H2n+1). (29)

Now, in the definition of the orbital integral in Equation (3), the Haar measure dg on G should be
normalized so that the pushforward of dg to G/K coincides with the volume measure on G/K (that is
to say, when Y = 0, the orbital integral in Equation (3) should coincide with the L2 norm of F over
G/K). Meanwhile, each G-orbit carries a G-invariant volume form that is unique up to a constant. In
a local trivialization of the bundle Equation (29), a G-invariant volume form may be constructed as a
product of the volume form on the sphere and the volume form on the base. If the volume of the sphere
is normalized to one, the resulting volume form will coincide with the integral against the Haar measure
dg, where dg is normalized as described above.

Therefore, if we compute the quantity I(R) in the statement of Theorem 3 using polar coordinates,
the integral over the sphere will simply be an orbital integral. Thus,

I(R) = cn

∫ R

0

O|F |2(ir)D̃
∗ [wt(r)] sin2n r dr, (30)

where we recognize the right-hand side of Equation (30) as the second term on the right-hand side of
Equation (28). To prove Theorem 3, then, we need only show that the boundary term on the right-hand
side of Equation (28) tends to zero as R tends to infinity in Sε,A.

To analyze the boundary terms, we use the Gutzmer-type formula of Faraut, which also plays a key
role in the results of [20]. According to [21], the orbital integral may be computed as:

O|F |2(ir) =

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)φλ(ir) dµ(λ), (31)

where φλ is the spherical function with parameter λ. Here, f̂ is the Fourier transform of f , viewed as a
function a∗ × B, and

∥∥∥f̂(λ)
∥∥∥ is the L2 norm of f̂ over B, with λ ∈ a∗ fixed. As usual, δ denotes half

the sum of the positive roots with multiplicity, and we have used the action of the heat operator on the
Fourier transform:

F̂ (λ, b) = f̂(λ, b)e−t(|λ|
2+|δ|2)/2.

Finally, µ denotes a certain measure on a∗ ∼= R, which may be computed in terms of the c-function
(when r = 0, Equation (31) just gives the Plancherel theorem, expressing the L2 norm of F over H2n+1

in terms of its Fourier transform).
The rapidly decaying factor of e−t(|λ|

2+|δ|2) in Equation (31) makes it easy to justify interchanging the
operator D̃ with the integral, giving:

D̃
[
O|F |2(ir)

]
=

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)D̃[φλ(ir)] dµ(λ).

Thus,

2

∫ R

0

D̃
[
O|F |2(ir)

]
wt(r) dr

=

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)

[
2

∫ R

0

D̃[φλ(ir)]wt(r) dr

]
dµ(λ). (32)
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On the other hand, using Equation (31) in the expression of I(R) given in Equation (30) yields:

I(R) =

∫
R

∥∥∥f̂(λ)
∥∥∥2

e−t(|λ|
2+|δ|2)

[
cn

∫ R

0

φλ(ir)D̃
∗[wt(r)] sin2n(r) dr

]
dµ(λ). (33)

By Equation (18) in Proposition 8, the right-hand side of Equation (32) and the right-hand side of
Equation (33) differ just by a sequence of integrations by parts in the inner integral. Meanwhile, the
quantity on the right-hand side of Equation (32) admits an entire analytic continuation as a function
of R, since Proposition 10 confirms that D̃[φλ(ir)] is just the Euclidean spherical function cosh(λr),
which has no singularities. We must now analyze the boundary terms that arise if, say, we begin with
Equation (33) and integrate by parts repeatedly in the inner integral. We need to show that each boundary
term is a meromorphic function of R and that these terms tend to zero if R tends to infinity avoiding
the poles.

To analyze the boundary terms, it is convenient to introduce the operator:

L = − 1

2π

1

sin r

d

dr
, so that D̃∗ = Ln.

The boundary terms of the integral:∫ R

0

φλ(ir)D̃
∗[wt(r)] sin2n(r) dr, (34)

are determined by successive integration by parts that each remove a power of L from operation on wt.
Using induction and Equation (21) from the proof of Proposition 8, we find that each boundary term is a
linear combination of terms of the form:((

d

dr

)l
φλ(ir)

)∣∣∣∣∣
r=R

· sinj R · cosk R · (Lmwt)(R), (35)

where l + m ≤ n − 1 and where all of the exponents l, j, k and m are non-negative integers. Note,
however, that there are negative powers of sin r contained in the computation of Lmwt. It is easy to see
that the boundary terms tend to zero as R → ∞ for each fixed λ; what requires some effort is to justify
interchanging the limit as R→∞ with the integral over λ in Equation (33).

Since the only singularities in each boundary term are the negative powers of sin r arising from Lmwt,
we see that the boundary terms are meromorphic with poles only at integer multiples of π. Furthermore,
since wt(r) is an even function of r, it is straightforward to check by induction that Lmwt is even and
nonsingular at the origin. Thus, the singularities are only at nonzero integer multiples of π.

Now, another application of induction confirms that (Lmwt)(R) is a linear combination of terms of
the form:

e−
R2

4t · sinpR · cosq R ·Rd,

where d ≤ m. Here, the exponents q and d are positive, but the the exponent p of sinR may now be
negative. Within the region Sε,A, positive powers of cosR and arbitrary powers of sinR are bounded.
Thus, for |λ| ≥ 1, we can apply Equation (25) of Lemma 12 to show that each contribution to each
boundary term is bounded by:

C
e|λr|

|λ|l
Rde−R

2/(4t),
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where l + d ≤ l +m ≤ n− 1 and where C is a constant, independent of λ and R.
If we apply Lemma 13 with a = 1/(2t), we find that, for |λ| > 1 and R > 1, each term of the form

Equation (35) is bounded by:
Cet|λ|

2

/R.

Meanwhile, for |λ| ≤ 1, we may apply Equation (26) of Lemma 12 to bound Equation (35) by:

CRseRe−R
2/(4t)

for some s. Since
∥∥∥f̂(λ)

∥∥∥2

is integrable as a function of λ, it now follows by dominated convergence that
the boundary terms relating Equations (32) and (33) tend to zero as ReR→ +∞ in the region Sε,A.

6. The Surjectivity Theorem

We would like to establish a result showing that if F is any holomorphic function on a tube for which
I(R) has an analytic continuation with finite limit at infinity, then F must be in the image of the heat
operator. To approach such a result, we apply the Gutzmer formula of Faraut, which tells us that:

I(R) =

∫
R

∥∥∥F̂ (λ)
∥∥∥2

cn

∫ R

0

φλ(ir)D̃
∗[wt(r)] sin2n(r) dr dµ(λ). (36)

If we could interchange the limit as R tends to infinity (away from the poles) with the outer integral, we
could apply the rigorous version of Equation (12) to conclude that the limit of I(R) coincides with:∫

R

∥∥∥F̂ (λ)
∥∥∥2

et(|λ|
2+|δ|2) dµ(λ).

If we had this result and the limit of I(R) were finite, we would conclude that F = et∆/2f , where f is
the function whose Fourier transform is defined by f̂(λ, b) = F̂ (λ, b)e−t(|λ|

2+|δ|2).

In the complex case, the desired interchange of limit and integral can be justified by showing that
the analog of the inner integral in Equation (36) is positive and monotone as a function of R (see
the inner integral on the right-hand side of Equation (37) in Theorem 6 of [25]). We thus obtain a
“strong” surjectivity result in the complex case ([25] Theorem 8). In the case at hand, however, numerical
calculations indicate that the quantity:

cn

∫ R

0

φλ(ir)D̃
∗[wt(r)] sin2n(r) dr

is neither positive nor monotone, except when n = 1 (i.e., except in the H3 case, when G is complex).
We can still prove, however, a weaker form of the surjectivity theorem for H2n+1, as in Theorem 6.

Proof of Theorem 6. According to the results of [29], if I(R) exists and is finite, the restriction of F to
H2n+1 is square-integrable. It therefore makes sense to construct the function Fε. The function Fε is of
the form Fε = et∆/2fε, where fε is the L2 function with Fourier transform given by:

f̂ε(λ, b) = F̂ε(λ, b)e
t(|λ|2+|δ|2)/2.

We may therefore apply the isometry formula to Fε, giving:

lim
R→∞

I(R;Fε) = ‖fε‖2 =

∫
|λ|≤1/ε

∥∥∥F̂ (λ)
∥∥∥2

et(|λ|
2+|δ|2) dµ(λ).
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By monotone convergence, we have:

lim
ε→0

lim
R→∞

I(R;Fε) =

∫
R

∥∥∥F̂ (λ)
∥∥∥2

et(|λ|
2+|δ|2) dµ(λ).

If the above expression is finite, we have F = et∆/2f , where f is the L2 function with the Fourier
transform given by:

f̂(λ, b) = F̂ (λ, b)et(|λ|
2+|δ|2)/2,

thus establishing the claimed surjectivity result.

7. The Inversion Formula

In this section, we provide proofs of the general inversion formula (Theorem 4) and the inversion
formula for odd-dimensional hyperbolic spaces (Theorem 5).

Proof of Theorem 4. Fix a point x ∈ G/K; letAx be a maximal flat through x; and let ax be the tangent
space at x to Ax. Since f (x) is invariant under the action of Kx, we may expand the restriction of f (x) to
Ax in terms of the spherical functions (relative to the base point x):

f (x)(a) =

∫
a∗x

φλ(a)f̂ (x)(λ)
dλ

|c(iλ)|2
, a ∈ Ax.

(Since, after identifying ax with a, the spherical functions are independent of x, we suppress their
dependence on x in the notation.) Here, f̂ (x) denotes the spherical Fourier transform of f (x), which
is essentially just the Helgason–Fourier transform for G/K restricted to K-invariant functions, and c(·)
is the Harish-Chandra c-function.

Now, the Fourier transform “diagonalizes” the action of the Laplacian ∆ for G/K; specifically,

∆̂f(λ, b) = (|δ|2 + |λ|2)f̂(λ, b).

Thus, the Sobolev spaceHr(G/K) may be described as the space of functions f ∈ L2(G/K) for which:∫
a∗

∣∣∣f̂(λ, b)
∣∣∣2 (|δ|2 + |λ|2

)r
db

dλ

|c(iλ)|2
<∞.

Now, if f is in Hr(G/K), then f (x) is also in Hr(G/K). (This claim holds because averaging over the
action of K commutes with the Laplacian. Alternatively, averaging over the action of K has the effect
of averaging f̂ over the action of K on B, which only reduces the L2 norm of f̂ over B.) In that case,
the function:

[(I −∆)r/2f (x)]ˆ(λ) =
(
1 + |δ|2 + |λ|2

)r/2
f̂ (x)(λ)

belongs to L2(a, |c(λ)|−2). However, as a consequence of the Gindikin–Karpelevič formula (see, e.g.,
Section IV.6 of [32]), the function |c(iλ)|−2 has at most polynomial growth at infinity. Thus, the
Cauchy–Schwarz inequality tells us that:

f̂ (x)(λ) =
1(

1 + |δ|2 + |λ|2
)r/2 · (1 + |δ|2 + |λ|2

)r/2
f̂ (x)(λ)
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is in L1(ax, |c(iλ)|−2), assuming r is large enough.
Meanwhile, since F (x) = et∆/2(f (x)), we have:

F (x)(a) =

∫
a

φλ(a)e−t(|λ|
2+|δ|2)/2 f̂ (x)(λ)

dλ

|c(iλ)|2
. (37)

Thus, by the defining property of the shift operator (see Equations (3.11) and (3.12) in [20]),

D(F (x))(expx(Y )) =

∫
a

ψλ(expx(Y ))e−t(|λ|
2+|δ|2)/2 f̂ (x)(λ)

dλ

|c(iλ)|2
(38)

where ψλ is the Euclidean counterpart of the spherical function:

ψλ(expx(Y )) =
1

|W |
∑
w∈W

ei〈λ,Y 〉. (39)

Here, W is the Weyl group for the symmetric space G/K. We normalize the ψλ’s differently
from [20] by including a factor of |W | in the denominator in Equation (39). Our shift operator therefore
differs by a factor of |W | from that in [20].

Now, by direct calculation, ∫
a

e−〈λ,Y 〉
e−|Y |

2/(2t)

(2πt)k/2
dY = et|λ|

2/2.

Since f̂ (x)(λ) is in L1, we may expand ψλ as a linear combination of exponentials and apply Fubini’s
theorem to each of the |W | terms in Equation (38). The result is that:

et|δ|
2/2

∫
ax

D(F (x))(expx(iY ))
e−|Y |

2/(2t)

(2πt)k/2
dY

= et|δ|
2/2

∫
a

et|λ|
2/2e−t(|λ|

2+|δ|2)/2 f̂ (x)(λ)
dλ

|c(λ)|2

= f (x)(x)

= f(x),

with absolute convergence of the integral.

We now turn to the proof of the inversion formula for H2n+1.

Proof of Theorem 5. Let us now specialize Theorem 4 to the case of an odd-dimensional hyperbolic
space,H2n+1. Since the density against that we are integrating in the definition of J(R, x) isK-invariant,
the result is unchanged if we replace F by F (x). Thus, using polar coordinates and the definition of νt,
we have:

J(R, x) = cn

∫ R

0

F (x)(ir)νt(r) sin2n r dr

= cne
tn2/2

∫ R

0

F (x)(ir)D̃∗

(
e−r

2/(2t)

√
2πt

)
sin2n r dr. (40)
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Thus, by Proposition 8,

J(R, x) = B.T.+ etn
2/22

∫ R

0

D̃(F (x)(ir))
e−r

2/(2t)

(2πt)k/2
dr. (41)

After converting 2
∫ R

0
into

∫ R
−R and applying Theorem 4, we see that the last term on the right-hand side

of Equation (41) tends to f(x). It then remains only to show that the boundary terms tend to zero as R
tends to infinity in the region Sε,A.

We now turn to the analysis of the boundary terms. We start from the last expression in Equation (40)
and use the spherical Fourier transform to express F (x)(ir) as follows:

F (x)(ir) =

∫
R
f̂ (x)(λ)e−t(|λ|

2+|δ|2)/2φλ(ir)
dλ

|c(iλ)|2
(42)

(compare Equation (37) in the setting of general symmetric spaces of the non-compact type). It is then
straightforward to justify reversing the order of integration, provided that we stay away from the poles
in the r integral. Thus, we obtain that:

J(R, x)

=

∫
R
f̂ (x)(λ)e−t(|λ|

2+|δ|2)/2

[
cn

∫ R

0

φλ(ir)D̃
∗

(
etn

2/2 e
−r2/(2t)
√

2πt

)
sin2n r dr

]
dλ

|c(iλ)|2
. (43)

We now successively integrate by parts in the inner integral in Equation (43), and we must show that
the boundary terms can be neglected. Fortunately, the inner integral in Equation (43) is precisely the
same as the inner integral in Equation (33), except that t there has been replaced by t/2 here. Thus, by
the proof of Theorem 3, each boundary term can be bounded by a constant (independent of R and λ)
times et|λ|

2/2. Since, by our assumptions on f , the function f̂ (x)(λ) is in L1, we can apply dominated
convergence to move the limit as R tends to infinity inside the integral, at which point the boundary
terms certainly vanish.
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