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Abstract: In this article, we study the following fractional boundary value problem
D (t)+2r Dy tu(t) + 72 Dy u(t) = f(Lu(t), r>0, 0<t<l,

w@=u(), WO =u@), v@+ru@=y &1

Where 2 < a < 3, CD(”)‘:i (i =0,1,2) are the standard Caputo derivative and # is a positive real
number. Some new existence results are obtained by means of the contraction mapping principle and
Schauder fixed point theorem. Some illustrative examples are also presented.
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1. Introduction

In the recent years, fractional calculus has been one of the most interesting issues that have
attracted many scientists, specially in mathematics and engineering sciences. Many natural phenomena
can be presented by boundary value problems of fractional differential equations. Many authors in
different fields such as chemical physics, fluid flows, electrical networks, viscoelasticity, try to model
these phenomena by boundary value problems of fractional differential equations [1-4]. To achieve
extra information in fractional calculus, specially boundary value problems, readers can refer to
valuable papers or books [5-27].

In this paper, we investigate the existence and uniqueness of solution for the following new class
of fractional boundary value problem

‘Dou(t)+2r Dyt u(t) +r* Dy u(t) = f(Lu(t), r>0, 0<t<l 1)
with the boundary conditions
u(©@) =u(), w0 =uQ), W (@+ru@=n (01 @

where CDS‘Ii (i =0,1,2) are the standard Caputo derivative and f : [0,1] x R — R is a continuously
differentiable function satisfying the following assumptions:
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(Ag) f € C([0,1] x R, R) and there exists a constant L > 0 so that
If (t,u)—f(t,v)|<Llu—v, te(0,1), VuvekR,

2 _
in which L satisfies the condition L < &;1).

(A1) feC([0,1] xR, R), pe C([0,1]) and A is a constant, so that
f(t,u)<pt)+Alul, te(0,1), VuelR,

2 —
it satisfies the condition 0 < A < M

Because the boundary conditions u (0) = u (1) and ' (0) = ’ (1) in (1.2) involve periodicity, it is
not possible to directly transform the boundary value into integral equation. To overcome this problem,
presenting a suitable substitution is needed. It is worth saying that Lemma 2.7 (see Lemma 2.3 in [17]
and Lemma 2.6 in [21]) is an important and valuable tool to achieve the new result. The contraction
mapping principle and fixed point theorem play the main role in finding new existence results for
the problem.

The main result of this paper can be seen in two Theorems; 3.1 and 3.2. In Theorem 3.1,
the uniqueness of solution is proved by using Banach contraction principle. In Theorem3.2, we present
an existence theorem by means of Schauder fixed point theorem.

We can extend the result even for the following boundary value problem

n—1
Z<n;1)rchg:ku(t)—f(t,u(t)), r>0, 0<t<l1 ©)

k=0

where n — 1 < a< n, n >4, with the boundary conditions

u©) =u(), O =u@0),..., u"20) =ul2@1)

2\

%2 1’1; > r un—k—Z (é‘) =1, r> 0, (: € (Orl) (4)

The plan of this paper is as follows:
In Section 2, we give some basic definitions and technical lemmas. Section 3 contains the proofs
of our main results. Finally, we provide two examples to show the applicability of the results.

2. Basic Definitions and Preliminaries

In this section, we present some definitions and technical lemmas which will be used in
the remainder of this paper. These and the related results and proofs can be found in the
literature [6-8,17,21].

Definition 2.1. ([7,8]) The Riemann-Liouville fractional integral of order « > 0, of a function
u:RT — R is defined by

t
Ig+u(t)=$fo(t—s)“_lu(s)ds, n—l<a<n (5)
whenever the right-hand side is defined on R*.

Definition 2.2. ([7,8]) The Riemann-Liouville fractional derivative of order « > 0, of a function
u:R* — R is given by

1 an t
% _ _ o\n—a—1 _
Dy u(t) = Gi—a)ar Jo (t—s) u(s)ds, n—l<a<n (6)
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where n = [a] + 1, and [«] denotes the integer part of real number «.

Definition 2.3. ([7,8]) The Caputo fractional derivative of order « > 0, of a function u : Rt — R
is defined by

1 t
‘Dyu(t) = G(l’l—lX)Jo (t—s)""* 1y (s)ds, n—1<a<n (7)

whenever the right-hand side is defined on R™.

Definition 2.4. ([7,8]) The Caputo fractional derivative of order « > 0, of a function u : Rt — R
is defined via the Riemann-Liouville fractional derivative by

n—1_(k) (0+
W=y ”‘k(!(J)skD (0 ®)

k=0

(Dgew) (1) = (D3+

Wheren = afora e N;n = [a] + 1 fora ¢ N.
Lemma 2.5. ([6]) Let e N,a > 0.If (Dg‘+ u) (t) and (Dgflu) (t) exist, then

(D'Dgen) (1) = (D5 M) (1 ©)
Lemma 2.6. ([6]) Letn e N, a € (n—1,n].Ifue C"[0,b) (b > 0 is real number), then

n—=1_ (k) ot
(I§+ D) (1) =u(t) = ] ”ki(,)tk (10)
k=0 ’

holds on (0, b) .
Lemma 2.7. ([17,21]) Letn e N,a € (n —1,n].Ifu € C*~1[0,b) and ‘Di,u e C(0,b), then

o 1 (0F) 4

(I3+ “Dfu) (1) =u ()= > — ! (11)
k=0 ’
holds on (0,b).
Lemma 2.8. Letr >0, g € C[0,1].If u € C3[0,1] is a solution of BV P
‘D u(t)+2r ‘D3 u(t) + 7 Dy u(t) =g(t), r>0, 0<t<l (12)
w0 =u), w©=u@1)), v@+rmu@=n ¢ec01) (13)

r(t=¢)

- geﬂ (e —61> T(x—2) fofo' e (m —7)* 7> g()drdm
T (a—2) Sg S(Sﬂ et (m— 1) 3 g(t)dtdm

1+t(e"—1)

(e" —1)°T (& —

1clem €t (m—1)

+ SO S() 0 m

wom €t (m—1)%3
+ S(t] SO 0 1(—‘(0(—2))g(~[)d’rdmdn

(14)

2) §o et (m — )" 3 g(t)ddm

a—3
g(t)dtdmdn

Conversely, if v (t) is given by (14), then u = ve™™ e C?[0,1] and u is a solution of
BVP(12) — (13).
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Proof. Let u € C2[0,1] be a solution of BVP (12) — (13) . Since u” € C [0, 1], Def. (2.3) show that
Dy *ue C[0,1] and Dy 'u e C1[0,1]

From the relation ‘Dj u = g(t) — 2r2 "'D"‘+ u—r CDS‘IZu and ¢ € CJ0,1], we have
‘Dg,u e C(0,1). Thus, by Lemma 2.7, we have the following relations

Igy “Doru(t) = u(t) —ag—art — amt?, te(0,1) (15)
I D u () = u(t) — by —bot, te(0,1) (16)
and
IS DS 2u(t) = u(t) —cy, te(0,1) (17)
therefore . ) )
2 DS () = IL ST eDA N (t)
0+ + 0+ o+
' ! P (18)

_SO dsfbofbltffhf

I8, CDATPu(t) = I3, 1372 DS 2u (t)

0t+-0t

£ (19)
= SOSO dsdr—co—clt—czz
now, from (12), (13),(18) and (19), we have
12
(t)+2rJ ds+r J f s) dsdr —do+d1t+d2 + 15+ 8 (1) (20)

where dy, dq,d> € R.
It is easy to see that ¢ () = S(t) (t—s)"3g(s)ds € C[0,1]. Since u” e CJ[0,1], it follows
from (20) that

dZ
" 2 / 2 — 710{
u” () + 2ru (t)1+ reu(t) =do + T lo+8 (t) a2
_ oy \a—3
*d2+7G(1x—2)SO(t s)* 7 g (s)ds
assuming v = ue'!, the formulas (21) yield
d rt el’t ! a—3 d
v" (t) = dge +mfo(t—s) g(s)ds (22)
by integrating both sides of (22) twice, we obtain
dy (e — t— e ( )e3
o(t) = 0(0) 40/ (0 1 2L == JJ J Gy () dvdmdn (23)
thus, it follows boundary conditions u (0) = u (1) and u’ (0) = u’ (1), that
v(l)=0v(0)e (24)
v (1) =o' (0)e" (25)
now, the formulas (24) and (25) imply that
v(0) = ‘Lg - 21 gg §o e (m— 1) g (1) dtdm
rl (e’—l) G(Dé— (26)
+ SO 5o 50 ™ ( )43 ¢ (1) drdmdn

(er—=1)G(a—
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and
— d2 1 L rm x—3
v(o)—7+mj;) fo e (m—1)""" g (t)dtdm (27)

respectively. Substituting (26), and (27) into (23), we have

o (t) - fg : (er1_+1§2(el—v (_0(1) SO SO rm m T) g (T) dtdm
1 - _ a3
+W S(l) Sé 0 Mg(T) dtdmdn (28)
SO §o S0 e™ (m—1)"" 3g (t)dtdmdn

by differentiating both sides of (23) and using the condition u’ (¢) + ru (¢), ¢ € (0,1), we have

o (@)= () =1 @) F +ru (@)t = [W (@) +ru@]ef = et 29)
thus,
Lot s @ —1) é =2 §o 5o e (m —1)* 3 g (1) drdm
) §5 St e (m — )3 g (v) drdm (30)

= 17@76 .
Hence, it follows from (30) that

re~ "¢

dy =11 — @ DFa_2 S(l] §orer™ (m — )" 3 g (1) drdm

re” (31)
¢ oM _rm a3
Fa—2) §6 50 €™ (m—1)"7 g (7) drdm.
Substituting, (31) into (28), the relation (14) is obtained.
Conversely, since Sé (t —5)* 73 g (s) ds is continuous on [0, 1], by differentiating both sides of (14),

we obtain
e (t=0)

Z)’(t)=17€rt_(eril—sos‘o rm )04 Sg(T)dem
e (t=0) Eom o o
_1“(7,2% §o 50 ¢ (m—1)""7 g (1) drdm o
+m § 5 e (m —1)* 3 ¢ (1) drdm
Ta—2) §o So' ™ (m — )" g (7) dvdm.

By differentiating both sides of (32), we will get

r(t=¢)
v” (t )(= rye’t — Mm Sé §ore™ (m— 1) g (1) drdm
r(t
So §ore™ (m— 1) g (1) drdm (33)

m So —17)* g (t)dt
e+ 1 (1),

where d, is described as in (31), and so v € C?[0,1]. Furthermore, from (32) together with (23)
and (31), we ensure that (24) holds on [0, 1], and

v(1) =0 (0)e, o' (1) = (0)e, o' (&) = ne’®, Ze(0,1), (34)
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Now, assume that u = ve~ . Keeping in mind that u” € C[0,1], because v € C2 [0, 1], it follows (32)

and (33) that
w42+ =dy + 1528 (1)

Therefore,
Dy u’ +2r ‘DA + 72 DY Pu = CDSTPIN g (1) = g (1),

on (0,1). From the fact that u” € C[0,1], and Def. (2.4) we get

Dy u(t) = [Dg+ {u (s) —u(0) —u'(0)s — u;())sz}] (t)

= |D¥ u@ o W) 4, w0 5,
- [D‘””] W-ci-o' " cr-w 1 TCG-w e
and : E
[DS+”] ) = CG-w)dB §o (t—s)> " u(s)ds
B ()(1;(;5014(8)!10—5)3_“
1 P& .
= R G B m dE PO S = (5 ds)
1 43 .
- (0&—4)(3—0()G( —pap (e HuOF
S t—S)4 IX}
- G(51—¢x)dtB{(4 w (0) 3% 4’ (0) 4
+ 5o (t—s)* (s)ds}
1 LI Lo
_(M{Zol‘Q1(i_a)] ul (U + (4= a) 3—a)
j=0 Li=j
H L 9w (5 ds}
Consequently,

[sz ] ( ) o u (0) t—lX ul (0) tl—a

t
g TT(1-a) T(2-a) +WELU—S)2 “u” (s)ds.

It follows (37) and (38) that

D5 @] 0 = [D32e )] (- g5 o

= DG [ (s) —w (0)] (1)

— Dy (s)] (t).

Similarly, we can show that [C Dg:lu] (t) = CDS‘ 2 ] (t) . Moreover, it follows (36) that
‘Dgyu(t) +2r CDS‘jlu (t) + 12 CDS‘jzu (t)=g(), te(0,1).
On the other hand, the relation (34) implies that

w0 =u(), w©)=u'@1), u'(@)+ru(g) =1

Then, u € C?[0,1] is a solution of BVP (12) — (13) . Thus, this ends the proof.

(35)

(36)

(37)

(38)
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3. Main Result

Let U = C[0,1] be a Banach space with the norm [[u|| = maxe[o 1] {u (f)} . Consider the space U

with the norm |[ul[, = max,co1) {# (t) e~} in which r is described as in (1). It is well known that the
norm ||u||, is equivalent to the norm ||u||.

For the forthcoming analysis, we need the assumptions (A0) and (A1) .

Theorem 3.1. Let the assumption (A0) hold. Then, the boundary value problem (1) — (2) has a
unique solution.

Proof. Define the operator T : U — U by

Tolt) = gert_r(er e;(;_rc()a 77 J0 86 ¢ (m =) g (1) ddm
ke 0 g (@) e
(6,1_+1t)(e —1) So " (1 — 1)%3 ¢ (7) drdm
S mgm dedmn
TR ik M p—

I'(a—2)

where the function g (t) = f (t,v (t)e~"") is continuous on [0,1], for any v € U (from (Ay)). It is easy
to see that the operator T maps U into U.

In view of Lemma (2.10), the operator T has a fixed point v € V if and only if u = ve™ " is a
solution of BVP (1.1) — (1.2) with u € C?[0,1]. So, it is sufficient to show that the operator T has a
fixed point on U. For v1,v; € U and for s € C [0, 1], we obtain

If (s,02(s)e™™) — f (s,v1(s)e™"™)| < L|va(s)e™™ — vy (s) e

(39
< Lljos—tn]l, )

Hence, from (39) , we have the following inequality

L
|Tvy (t) — Toy ()] < m”vz—vlﬂ*
e'\i— _
TT Jo S e (m — )" dvdm

e (m—1)* 3 drdm
1+ (e —1)

J’,i
(e" —

+ﬁgogo fo e (m—1)"" 3 drdmdn

SO SO e ( ) 3 drdm

+ 55 50 S0 er™ (m — )3 drdmdn

:OI lseq uelltl Yr

By the Banach contraction principle, it follows that T has an unique fixed point v € U. Therefore,
u = e~ v is a unique solution of FBVP (1) — (2).

Now, we prove the existence of solutions of (1) — (2) by applying Schauder fixed point theorem.
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Theorem 3.2. Let the assumption (A1) hold. Then, the boundary value problem (1) — (2) has at
least one solution u € C2 [0, 1].
Proof. Let us consider P = sup{|p(t)|;t€[0,1]} and Br = {ve U;||v — vp||+« < R} in which

0o = Lo and R > 22(Pr A1) .Forve U, by (A1), we find that
r r (2T (a — 1) 2A)

f (s0(5)e™™)| < P+ Alfoll, < P+ A(llooll, + R) < P+ A (T +R),

and so,

P+a (g " R) [gr(f—i) +e (=0 (erg - 1) + ert] . (41)

To (t) —vo (£)] < T AT (w—1)

From (41), we have

2[P+A(Z+R)]
2G (a — 1)

Thus, T maps By into Bg, i.e. T (Br) < Br. Now, we prove that T is completely continuous on Bg.

[|Tv — vp|s < <R.

We will give the proof in the case that U is equipped with the usual norm, since the norm ||u||, is
equivalent to the usual norm. Since T (Br) < Bg, we have ||Tu|| < ||Tu||.e” < (vg+ R)e" for any
u € Bg,and so {z;z € T (Bgr)} is uniformly bounded. On the other hand, for any v € By, it follows from

(40) and (A1) that
P+A (ﬁ + R)
(TU), (t) < n + W 67’ te [0, 1]

and this shows that T (Br) is equicontinuous. Thus, by Arzella-Ascoli theorem, it implies that T (Bg)
is relatively compact. Finally, we show that T is continuous on Bg. Let (v,;) be an arbitrary sequence
in Br and v € Bgso that ||v, — v|| — 0 as n — . Therefore, ||v, — v||+ — 0, as n — oo and so there
exists two constants ky,ky so that v, (t)e™"* (n =1,2,...) and v (t)e~"* € [kq,k;], for each t € [0,1].
Since f is uniformly continuous on [0, 1] x [kq, kp], it follows that for any € > 0, there exists 6 > 0
whenever |u; — up| < 6, uq, up € [k1, k] then,

[f (tu2) = f (L ur)| < de, te0,1], (42)

T ( —1)

here ¢ =
where 7

. Since v, — v, there exists N > 1, such that the following relation

lon (e ™" —o(t)e | <5, te[0,1],

satisfies for n > N. Now, for any n > N (3.5) yields

e er(t=¢ e i
Ton (t) = To(H)] < Gla—2) [r(a §o Sore dtdm
r(t=¢)

56 e (m— s) > dedm

+u So Xo e ( )“—3 dtdm

(e

So So fo e )*"drdmdn

+ go I go e (m — T )“ 3drdmdn]
- 20e .
T rT(a—1)

rt
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Consequently
20e

rzr(oc—l)e

s

I Ton () = To (1) || < —e.

Thus, all the assumptions of the Schauder fixed point theorem are satisfied. Then, there exists a point
v € Bg with v = Tv In view of Lemma (14) , we conclude that u = ve™"* (1 € C%[0,1]) is a solution of
boundary value problem (1) — (2). As a result, the proof is complete.

4. Tllustrative Examples

Example 4.1. Consider the boundary value problem

5 3
DZu(t) +2r' D2 u (t) +r2u(t) = f(Lu(t), 0<t<l, (43)

u(@=u(), w(©0)=u@1), u(@+ru(@)=n

wherer >0, f (t,u) = h(t) HLuz with

. (G-Y) e

2e" o et
It is easy to see that the assumption (Ao) holds. So, by Theorem 3.1, BVP (43) has a unique solution.
Example 4.2. Consider the boundary value problem

5 3

D2 1 () + 2°D2 u (t) + Pu () = f(Lu(t), 0<t<1, (44)
u@ =u(), w0 =u1), w(@E)+ru()=n

2
where r > 0, f(t,u) = p1(t) + p2 (t) u with p1, p2 € C[0,1] and max |p, (t)|te[0’1] < d f Thus,

the conclusion of Theorem 3.2 applies to the problem.
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