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Abstract: Alfes, Griffin, Ono, and Rolen have shown that the harmonic Maass forms arising
from Weierstrass ζ-functions associated to modular elliptic curves “encode” the vanishing and
nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions for elliptic curves.
Previously, Martin and Ono proved that there are exactly five weight 2 newforms with complex
multiplication that are eta-quotients. In this paper, we construct a canonical harmonic Maass form
for these five curves with complex multiplication. The holomorphic part of this harmonic Maass
form arises from the Weierstrass ζ-function and is referred to as the Weierstrass mock modular form.
We prove that the Weierstrass mock modular form for these five curves is itself an eta-quotient or
a twist of one. Using this construction, we also obtain p-adic formulas for the corresponding weight
2 newform using Atkin’s U-operator.
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1. Introduction

In a recent paper, Alfes, Griffin, Ono, and Rolen [1] obtain canonical weight 0 harmonic Maass
forms that arise from Eisenstein’s corrected Weierstrass zeta-function for elliptic curves over Q.
The holomorphic part of this harmonic Maass form is a mock modular form, referred to as the
Weierstrass mock modular form. The harmonic Maass form for a specific elliptic curve E encodes the
central L-values and L-derivatives that occur in the Birch and Swinnerton-Dyer Conjecture for elliptic
curves in a family of quadratic twists [1,2]. Guerzhoy [3] has studied the construction of harmonic
Maass forms using the Weierstrass ζ function in his work on the Kaneko-Zagier hypergeometric
differential equation.

In [4], Martin and Ono prove that there are exactly twelve weight 2 newforms FE(τ) that are
products and quotients of the Dedekind eta-function

η(τ) := q1/24
∞

∏
n=1

(1− qn)

where q := e2πiτ . By the modularity of elliptic curves, there is an isogeny class of E/Q for each of these
eta-quotients. Martin and Ono present a table of elliptic curves E corresponding to these cusp forms
and describe the Grössencharacters for the five curves with complex multiplication.

In this paper, we prove that the derivative of the Weierstrass mock modular form of each
such elliptic curve E is a weight 2 weakly holomorphic modular form which also turns out to be
an eta-quotient or a twist of one. We also obtain p-adic formulas for the corresponding weight
2 newforms using Atkin’s U-operator.
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Let E be one of the five elliptic curves with complex multiplication whose associated newform,
FE(τ), is an eta-quotient. Let NE denote the conductor of this curve and label its coefficients ai such
that they belong to the Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

The following Table 1 contains a strong Weil curve for each of the weight 2 newforms with
complex multiplication that are eta-quotients.

Table 1. Table of five elliptic curves.

NE FE(τ) a1 a2 a3 a4 a6

27 η2(3τ)η2(9τ) 0 0 1 0 −7

32 η2(4τ)η2(8τ) 0 0 0 4 0

36 η4(6τ) 0 0 0 0 1

64
η8(8τ)

η2(4τ)η2(16τ)
0 0 0 −4 0

144
η12(12τ)

η4(6τ)η4(24τ)
0 0 0 0 −1

Let Ẑ+E (τ) denote the Weierstrass mock modular form of E, and let ZNE(τ) := q · d
dq Ẑ

+
E (τ) denote

the derivative of the Weierstrass mock modular form (see Section 2.1 for details). Let χD :=
(

D
·

)
denote the usual Kronecker symbol so that

(
∑ a(n)qn) |χD = ∑ χD(n)a(n)qn.

Theorem 1. The derivative of the Weierstrass mock modular form for each of the five elliptic curves E given in
Table 1 is an eta-quotient or a twist of one, as described below.

Z27(τ) = −η(3τ)η6(9τ)η−3(27τ)

Z32(τ) = −η2(4τ)η6(16τ)η−4(32τ)

Z36(τ) = −η3(6τ)η(12τ)η3(18τ)η−3(36τ)

Z64(τ) = −η2(4τ)η6(16τ)η−4(32τ)|χ8

Z144(τ) = −η3(6τ)η(12τ)η3(18τ)η−3(36τ)|χ12

We also obtain p-adic formulas for the corresponding weight 2 newform using Atkin’s U-operator,

∑ a(n)qn|U(m) := ∑ a(mn)qn

By taking a p-adic limit, we can retrieve the coefficients of the original cusp form, FE(τ), of the

elliptic curve. Let ZNE(τ) =
∞

∑
n=−1

d(n)qn be the derivative of the Weierstrass mock modular form

as before.

Theorem 2. For each of the five elliptic curves listed in Table 1, if p is inert in the field of complex multiplication,
then as a p-adic limit we have

FE(τ) = lim
ω→∞

ZNE(τ)|U(p2ω+1)

d(p2ω+1)
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Example 1. Here we illustrate Theorem 2 for the prime p = 5 and the newform with conductor 27. Let

ZE,ω(p, τ) =
ZNE(τ)|U(p2ω+1)

d(p2ω+1)

If p = 5, then we have

ZE,0(5, τ) = q + 8q4 + 49q7 + 75q10 + . . . ≡ FE(z) (mod 5)

ZE,1(5, τ) = q +
195040

480
q4 +

6821395
480

q7 − 114840625
480

q10 + . . . ≡ FE(z) (mod 52)

We prove this theorem using techniques outlined in [5]. Similar results can be found in both [1,6].
In [6], El-Guindy and Ono study a modular function that arises from Gauss’s hypergeometric function
that gives a modular parameterization of period integrals of E32, the elliptic curve with conductor 32.
In [1], Theorem 1.3 builds p-adic formulas for the corresponding weight 2 newforms using the action
of the Hecke algebra on the Weierstrass mock modular forms.

2. Background

2.1. Weierstrass Mock Modular Forms

Let E be an elliptic curve over Q such that E ' C/ΛE, where ΛE is a two-dimensional lattice in C.
By the modularity of elliptic curves over Q, we have the modular parameterization

φE : X0(NE)→ C/ΛE ' E

where NE is the conductor of E. Suppose E is a strong Weil curve and let

FE(z) =
∞

∑
n=1

aE(n)qn ∈ S2(Γ0(NE))

be the associated newform where q = e2πiz.
Let ℘(ΛE; z) be the usual Weierstrass ℘-function given by

℘(ΛE; z) :=
1
z2 + ∑

ω∈ΛE\{0}

(
1

(z−ω)2 −
1

ω2

)

All elliptic functions with respect to ΛE are naturally generated from the Weierstrass ℘-functions.
While there can never be a single-order elliptic function, Eisenstein constructed a simple function
with a single pole that can be modified, at the expense of holomorphicity, to become lattice-invariant
(see [7]). Eisenstein began with the Weierstrass zeta-function denoted ζ(ΛE, z) for ΛE, the function
whose derivative is −℘(ΛE; z). The Weierstrass zeta-function is defined for z /∈ ΛE by

ζ(ΛE; z) :=
1
z
+ ∑

ω∈ΛE\{0}

(
1

z−ω
+

1
ω

+
z

ω2

)
=

1
z
− ∑

n≥1
G2n+2(ΛE)z

2n+1

Eisenstein’s corrected ζ-function is given by

ZE(z) := ζ(ΛE; z)− S(ΛE)z−
deg(ŒE)

4π||FE||2
z̄,

where S(ΛE) := lim
s→0+

∑
0 6=ω∈ΛE

1
ω2|ω|2s , deg(ŒE) is the degree of the modular parameterization and

||FE|| is the Petersson norm of FE. In [8], Rolen provides a new, direct proof of the lattice-invariance of
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ZE(z) using the standard theory of differential operators for Jacobi forms.

The canonical harmonic Maass form arises from the corrected Weierstrass zeta-function.
Define Z+E (z) := ζ(ΛE; z)− S(ΛE)z. Let EE(z) be the Eichler integral of FE defined by

EE(z) := −2πi
∫ i∞

z
FE(τ)dτ =

∞

∑
n=1

aE(n)
n

qn

The nonholomorphic function ẐE(z) is given by

ẐE(z) = Ẑ+E (z) + Ẑ−E (z) = ZE(E(z))

Alfes, Griffin, Ono, and Rolen proved the following.

Theorem 3 (Theorem 1.1 of [1]). Assume the notation and hypotheses above. Then the following are true:

1. The poles of Ẑ+E (z) are precisely those points z for which EE(z) ∈ ΛE.
2. If Ẑ+E (z) has poles inH, then there is a canonical modular function ME(z) with algebraic coefficients on

Γ0(NE) for which Ẑ+E (z)−ME(z) is holomorphic onH.
3. We have that ẐE(z)−ME(z) is a weight 0 harmonic Maass form on Γ0(NE).

In particular, the holomorphic part of ẐE(z) is Ẑ+E (z) = Z+E (EE(z)), where Ẑ+E (z) is a weight 0
mock modular form known as the Weierstrass mock modular form for E.

We are interested in computing the Weierstrass mock modular form for the elliptic curves with
conductors 27, 32, 36, 64, and 144 given by Table 1. The value of S(ΛE) is 0 for each of these curves
and so the Weierstrass mock modular form Ẑ+E (z) is ζ(ΛE; EE(z)). Bruinier, Rhoades, and Ono [2], and
Candelori [9] proved that if a normalized newform has complex multiplication then the holomorphic
part of a certain harmonic Maass form has algebraic coefficients; in particular, the coefficients of Ẑ+E (z)
are algebraic.

Relabeling z as τ so that q = e2πiτ , we can now define the derivative of the Weierstrass mock
modular form as ZNE(τ) = q · d

dq Ẑ
+
E (τ). The list below (Table 2) gives the first few terms of the

q-expansion for the derivative of the Weierstrass mock modular form for each of the five curves.

Table 2. Table of ZNE .

NE q-Expansion for ZNE(τ)

27 −q−1 + q2 + q5 + 6q8 − 6q11 − 7q14 − 9q17 + 8q20 + 15q23 − 13q26 + 19q29 + . . .

32 −q−1 + 2q3 + q7 − 2q11 + 5q15 − 14q19 − 4q23 + 12q27 − 5q31 + . . .

36 −q−1 + 3q5 + q11 − 5q17 − 8q23 − q29 + 28q35 + . . .

64 −q−1 − 2q3 + q7 + 2q11 + 5q15 + 14q19 − 4q23 − 12q27 − 5q31 + . . .

144 −q−1 − 3q5 + q11 + 5q17 − 8q23 + q29 + 28q35 + . . .

2.2. Eta-Quotient

After the proof of Fermat’s Last Theorem and the subsequent expository articles describing the
modularity theorem, Martin and Ono wrote an article compiling the complete list of all weight 2
newforms that are eta-quotients. Five of these curves have complex multiplication, and using q-series
infinite product identities, they described the Grössencharacters for these curves. The curves with
conductors 27, 36, and 144 have complex multiplication by Q(

√
−3) and the curves with conductors

32 and 64 have complex multiplication by Q(i). In addition, Martin and Ono in [4] proved that the
curves with NE = 36 and NE = 144 are quadratic twists of each other.
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If the derivative of the Weierstrass mock modular form, ZNE(τ), is an eta-quotient, certain
properties must hold. In [10], Ono described the following result of Gordon, Hughes, and Newman
on eta-quotients.

Theorem 4 (Theorem 1.64 of [10]). If f (τ) = ∏
δ|N

η(δτ)rδ is an eta-quotient with k = 1
2 ∑δ|N rδ ∈ Z, with

the additional properties that

∑
δ|N

δrδ ≡ 0 (mod 24)

and

∑
δ|N

N
δ

rδ ≡ 0 (mod 24)

then f (τ) satisfies

f
(

aτ + b
cτ + d

)
= χ(d)(cτ + d)k f (τ)

for all (
a b
c d

)
∈ Γ0(N)

Here the character χ is defined for χ(d) :=
(
(−1)ks

d

)
, where s = ∏

δ|N
δrδ .

In Section 3.6, we will prove that the derivative of the Weierstrass mock modular form ZNE(τ)

is an eta-quotient or a twist of one. In order to help us identify plausible eta-quotients to describe
ZNE(τ), note that any such eta-quotient ∏

δ|NE

η(δτ)rδ must satisfy the following:

∑
δ|NE

rδ = 4

∑
δ|NE

δrδ = −24

∑
δ|NE

NE
δ

rδ ≡ 0 (mod 24)

∏
δ|NE

δrδ = a2 for some integer a

(1)

This description follows from Theorem 4, together with the fact that ZNE(τ) has weight 2, level
NE and leading term q−1.

3. Examples and Proof

3.1. NE = 27

Consider the curve E : y2 + y = x3 − 7, which has conductor NE = 27. The eta-quotient
η(3τ)η6(9τ)η−3(27τ) satisfies the four properties described in Equation (1) for NE = 27 and its initial
terms match with those of Z27(τ), as shown below:

η(3τ)η6(9τ)η−3(27τ) = q−1 − q2 − q5 − 6q8 + 6q11 + 7q14 + 9q17 − 8q20 − 15q23 + O(q26)

Z27(τ) = −q−1 + q2 + q5 + 6q8 − 6q11 − 7q14 − 9q17 + 8q20 + 15q23 −O(q26)

Thus we define η27 = −η(3τ)η6(9τ)η−3(27τ) and guess that Z27 = η27. This will be proven in
Section 3.6 in order to establish Theorem 1.
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3.2. NE = 32

Consider the curve, E : y2 = x3 + 4x. The eta-quotient η2(4τ)η6(16τ)η−4(32τ) satisfies the
four properties described in Equation (1) for NE = 32 and its initial terms match with those of Z32(τ),
as shown below:

η2(4τ)η6(16τ)η−4(32τ) = q−1 − 2q3 − q7 + 2q11 − 5q15 + 14q19 + 4q23 − 12q27 + 5q31 −O(q35)

Z32(τ) = −q−1 + 2q3 + q7 − 2q11 + 5q15 − 14q19 − 4q23 + 12q27 − 5q31 + O(q35)

Letting η32 = −η2(4τ)η6(16τ)η−4(32τ), we will later prove Z32 = η32 in Section 3.6 to establish
Theorem 1.

3.3. NE = 36

Consider the curve with level 36, E : y2 = x3 + 1. The eta-quotient η3(6τ)η(12τ)η3(18τ)η−3(36τ)

satisfies the four properties described in Equation (1) for NE = 36 and its initial terms match with
those of Z36(τ), as shown below:

η3(6τ)η(12τ)η3(18τ)η−3(36τ) = q−1 − 3q5 − q11 + 5q17 + 8q23 + q29 − 28q35

− 11q41 + 10q47 + O(q53)Z36(τ)

= −q−1 + 3q5 + q11 − 5q17 − 8q23 − q29 + 28q35

+ 11q41 − 10q47 −O(q53)

(2)

Letting η36 = −η3(6τ)η(12τ)η3(18τ)η−3(36τ), we will later prove Z36 = η36.

3.4. NE = 64

Consider the curve with level 64, E : y2 = x3 − 4x. The eta-quotient η2(4τ)η6(16τ)η−4(32τ)

satisfies the four properties described in Equation (1) for NE = 64. Note −η2(4τ)η6(16τ)η−4(32τ) =

η32. The initial terms of this eta-quotient match with those of Z64(τ), as shown below:

η2(4τ)η6(16τ)η−4(32τ) = q−1 − 2q3 − q7 + 2q11 − 5q15 + 14q19 + 4q23 − 12q27 + 5q31 −O(q35)

Z64(τ) = −q−1 − 2q3 + q7 + 2q11 + 5q15 + 14q19 − 4q23 − 12q27 − 5q31 −O(q35)

Letting η64 = η32|χ8 , we will later prove Z64 = η64.

3.5. NE = 144

Consider the curve with level 144, E : y2 = x3 − 1. The eta-quotient
η3(6τ)η(12τ)η3(18τ)η−3(36τ) satisfies the four properties described in Equation (1) for NE = 144.
Note −η3(6τ)η(12τ)η3(18τ)η−3(36τ) = η36. The initial terms of this eta-quotient match with those of
Z144(τ), as shown below:

η3(6τ)η(12τ)η3(18τ)η−3(36τ) = q−1 − 3q5 − q11 + 5q17 + 8q23 + q29 − 28q35 − 11q41 + 10q47 + O(q53)

Z144(τ) = −q−1 − 3q5 + q11 + 5q17 − 8q23 + q29 + 28q35 − 11q41 − 10q47 + O(q53)

Letting η144 = η36|χ12 , we will later prove Z144 = η144.

3.6. Proof of Theorems 1 and 2

Proof of Theorem 1. When the conductor of E is 27, 32, and 36, the modular parameterization of
these 3 curves has degree 1 (as computed in Sage [11]) and each Weierstrass mock modular form
has only a single pole at infinity. Let SNE denote Sturm’s bound for the space of modular forms on
Γ0(NE) of weight 2, and let ηNE denote the eta-quotient described in Section 3. For example, recall
η27 = −η(3τ)η6(9τ)η−3(27τ). Consider the difference of the eta-quotients, ηNE , and the derivatives



Mathematics 2016, 4, 5 7 of 8

of the Weierstrass mock modular form, ZNE(τ). Both q-expansions have a simple pole at infinity.
The principal part of ZNE(τ) for NE = 27, 32, 36 is constant at every cusp except infinity because the
degree of modular parameterization for E27, E32 and E36 is 1. Using the following formula, one can
verify with a few Sage computations that the order of vanishing of ηNE is nonnegative at each cusp
c/d (except at infinity, where there is a simple pole) [11].

Theorem 5 (Theorem 1.65 of [10]). Let c, d and N be positive integers with d|N and gcd(c, d) = 1. If f (z)
is an eta-quotient satisfying the conditions of Theorem 1.64 for N, then the order of vanishing of f (z) at the
cusp c

d is
N
24 ∑

δ|N

gcd(d, δ)2rδ

gcd(d, N
d )dδ

Since the difference ZNE(τ)− ηNE is holomorphic, as shown above, if ZNE(τ)− ηNE is 0 for SNE

coefficients, the identities claimed for NE = 27, 32, 36 are correct. The following table (Table 3) gives
Sturm’s bound for the space of modular forms on Γ0(NE) of weight 2.

Table 3. Table of SNE .

NE SNE

27 13
32 17
36 25

After checking the coefficients of the expansions up to the corresponding bound, we see
Z27(τ) = η27 = −η(3τ)η6(9τ)η−3(27τ), Z32(τ) = η32 = −η2(4τ)η6(16τ)η−4(32τ), and Z36(τ) =

η36 = −η3(6τ)η(12τ)η3(18τ)η−3(36τ), as claimed.
The modular parametrization for E64 has degree 2, and the modular parametrization for E144 has

degree 4 (as computed in Sage [11]); therefore we cannot apply Sturm’s bound to the difference of
the associated Weierstrass mock modular forms and eta-quotients. Instead we prove Z64 is a twist
of Z32 by χ8, and Z144 is a twist of Z36 by χ12. Consider first Z64, Z32, and χ8, where χ8 denotes the
Kronecker symbol as before. We have already shown (Z32− η32)|χ8 = 0. Therefore, Z32|χ8 − η32|χ8 = 0.
Since Z32|χ8 − η32|χ8 is a twist of a holomorphic difference, we can use Sturm’s bound to check up
to S32 coefficients and confirm Z32|χ8 = η32|χ8 = η64. To prove Z32|χ8 = Z64, note the q-expansions
are equal up to 17 coefficients and their difference is holomorphic (as the principal part of each is
constant at every cusp except infinity as shown before). Therefore, Z32|χ8 = Z64 so Z64 = η32|χ8 =

η64 = −η2(4τ)η6(16τ)η−4(32τ)|χ8 . The proof for Z36|χ12 = Z144 is similar, giving us the equality
Z144 = η36|χ12 = η144 = −η3(6τ)η(12τ)η3(18τ)η−3(36τ)|χ12 .

Proof of Theorem 2. Theorem 2 is a consequence of Theorem 6 of Guerzhoy, Kent, and Ono.

Let g(τ) =
∞

∑
n=1

b(n)qn ∈ S2(Γ0(NE)) denote the normalized newform and EE(τ) its Eichler integral.

Recall, g has rational coefficients. Let f = f+ + f− denote a weight-0 harmonic Maass form where
f+ is the holomorphic part. If ξ = ξ2 := 2iy2 d̄

dτ̄ , then we say that g is a shadow of f+ if ξ( f ) = g.
We say f ∈ H0(Γ0(NE)) is good for g(τ) if the following hold;

1. The principal part of f at the cusp ∞ belongs to Q[q−1].
2. The principal part of f at other cusps is constant.
3. ξ( f ) = g

<g,g> where < ·, · > denotes the usual Petersson inner product.
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Let D denote the operator D := 1
2πi

d
dτ so that D( f+) =

∞

∑
n=1

d(n)qn is the derivative of the

holomorphic part of the harmonic Maass form, i.e. the mock modular form. Guerzhoy, Kent, and Ono
relate the coefficients of g and f using the following theorem.

Theorem 6 (Theorem 1.2 (2) of [5]). Suppose g(τ) ∈ S2(Γ0(N)) has CM and g is good for f . If p is inert in
the field of complex multiplication, then we have that

g = lim
ω→∞

D( f+)|U(p2ω+1)

d(p2ω+1)
.

Consider FE(τ) ∈ S2(Γ0(NE)), the normalized newform equal to an eta-quotient for one of the
elliptic curves E with complex multiplication listed in Table 1, ẐE(z) the canonical harmonic Maass
form and ZNE(τ) the derivative of the Weierstrass mock modular form. The harmonic Maass form
ẐE(z) is good for FE as follows:

1. The principal part of ẐE(z) at ∞ belongs to Q[q−1].
2. There are no poles at other cusps for NE = 27, 32, 36. Since Z64 is a twist of Z32 and Z144 is a

twist of Z36, the principal parts of ẐE(z) for E64 and E144 must have constant principal parts at
other cusps.

3. By definition of ẐE(z), we have ξ( f ) = g
<g,g> .

Therefore, ẐE(z) is good for FE and we can apply Theorem 6 to show the p-adic limit holds for
the derivative of the Weierstrass mock modular form.
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