
mathematics

Article

Optimal Control and Treatment of Infectious
Diseases. The Case of Huge Treatment Costs

Andrea Di Liddo

Department of Economics, University of Foggia, Largo Papa Giovanni Paolo II, Foggia 71121, Italy;
andrea.diliddo@unifg.it; Tel.: +39-0881-727181

Academic Editor: Bruno Buonomo
Received: 30 December 2015; Accepted: 21 March 2016; Published: 1 April 2016

Abstract: The representation of the cost of a therapy is a key element in the formulation of the
optimal control problem for the treatment of infectious diseases. The cost of the treatment is usually
modeled by a function of the price and quantity of drugs administered; this function should be the
cost as subjectively perceived by the decision-maker. Nevertheless, in literature, the choice of the
cost function is often simply done to make the problem more tractable. A specific problem is also
given by very expensive therapies in the presence of a very high number of patients to be treated.
Firstly, we investigate the optimal treatment of infectious diseases in the simplest case of a two-class
population (susceptible and infectious people) and compare the results coming from five different
shapes of cost functions. Finally, a model for the treatment of the HCV virus using the blowing-up cost
function is investigated. Some numerical simulations are also given.
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1. Introduction

According to [1], the main scope of mathematical modeling in epidemiology is “to develop models
that will assist the decision-making process by helping to evaluate the consequences of choosing one of
the alternative strategies available. Thus, mathematical models of the dynamics of a communicable
disease can have a direct bearing on the choice of an immunization program, the optimal allocation
of scarce resources, or the best combination of control or eradication techniques”. Starting from the
seminal paper by Kermack and McKendrick [2], a huge literature on dynamic models for infectious
diseases has been produced as evidenced by the numerous books on the subject (see, e.g., [3–7]).
Mathematical models of epidemics usually consist of a system of differential equations governing
the dynamics of the relevant state variables (susceptible, infective, recovered, etc.). The differential
equations can be ordinary, delay, partial or stochastic, according to the particular model or disease
investigated. Equilibria and their stability, as well as the asymptotic behavior of the solutions are
usually investigated.

A very interesting issue in the study of epidemic models is to identify therapeutic strategies that
minimize the relevant negative features of the disease at the minimum cost. This naturally leads to the
formulation and investigation of optimal control problems.

Confining ourselves to the epidemic compartment models, a typical optimal control problem
consists of the minimization of the infected part of a population by the administration of a therapy to
a part of the infected population. However, therapy is usually costly, and this poses a dilemma to the
social planner.

The main tools to solve optimal control problems are a number of necessary and sufficient
conditions characterizing the optimal solutions. Among the classical books on the optimal control
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theory, we cite [8,9]. More recently, optimal control monographs specifically oriented to the solution of
biological and epidemic problems appeared (see, e.g., [10,11]).

The representation of the cost of a therapy is a key element in the formulation of the optimal
control problem for the treatment of infectious diseases. For example, in the administration of
a drug for a certain number of patients, the most natural way to introduce the cost would be
cost = (price o f the drugs administered)× (number o f treated patients)(monetary cost). However, in
epidemic models, as well as in other economic applications, the cost is usually modeled by a function
representing the cost as subjectively perceived by the decision-maker. This approach stems from the
so-called utility theory, firstly introduced in a systematic way in the fundamental book [12].

On the other hand, the choice of the cost function is often simply done to make the problem
more tractable.

If we denote by u(t) the fraction of a population P(t) treated by some drug and by p the unitary
cost of the therapy, then the (monetary) cost of the treatment should be cM = pu(t)P(t). However, in
many papers, that cost is simply represented by u or by u2 without any reference to the price or to the
number of people treated. This seems a little bit surprising and needs at least further investigation.

A specific problem is also given by extremely expensive therapies in the presence of a very high
number of patients to be healed. To treat all infected patients would mean sometimes spending all
or a very large part of the national budget allocated to health (this is the case, for example, of the
treatment of hepatitis C virus (HCV) by a costly drug, such as sofosbuvir.). Such a choice is impractical
or, in other words, has a cost (in terms of utility) that is infinite. A cost function incorporating such
characteristics may be appropriate in this case.

The rest of the paper is organized as follows. In Section 2, we investigate the optimal treatment
of an infected population in the simplest case of a two-class population (susceptible and infectious
people), comparing the results coming from five different kinds of cost functions.

In Section 3, we discuss a model for the treatment of the HCV virus using the blowing-up cost
function and illustrate the result by some numerical simulations.

All of the proofs of the theorems are placed in Appendix B.

2. Comparing Different Cost Functions

In this section, we wish to highlight the role played by different cost expressions on the solutions
of the optimal control problem. For this purpose, it seems appropriate to test various cost functions
on the simplest epidemic model proposed in the literature: the Susceptible-Infective-Susceptible
(SIS) model. This model is appropriate for certain types of bacterial diseases, such as gonorrhea and
meningitis (see [13]).

Let us consider a population of N individuals, divided into two classes: the class S of those who
are healthy, but susceptible to contracting the infection, and the class I of those who have contracted
the infection and can transmit it to the susceptible individuals through interpersonal contacts. It is
N = S + I. In order to make the problem simple and meaningful at the same time, we neglect the
demographic processes and assume that the transmission coefficient is normalized to one, so that the
dynamics of S and I is governed by the system of differential equations:

dS
dt

= − IS
N

,

dI
dt

=
IS
N

.

(1)

Adding the two equation in Equation (1), we have dN/dt = 0, so that N is constant.
In the rest of this section, we are interested in the “worst” case in which the total population is

infected. Hence, let us assume that:

I(0) = 1; S(0) = 0.
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Then N(t) = 1 for any t ≥ 0. It follows that:

S(t) = 1− I(t), ∀t ≥ 0.

System (1) reduces to the scalar equation:

dI
dt

= (1− I)I. (2)

Equation (2) has only one stable feasible equilibrium I = 1.
Assume that a fraction u(t) ∈ [0, 1] of the infected population is treated, at the time t, by some

drug. Then, some of the healed infectives become susceptibles again. System (1) becomes:
dS
dt

= −IS + αu(t)I,

dI
dt

= IS− αu(t)I,

(3)

where α ≥ 0 measures the effectiveness of the treatment. Again, in Equation (3), it is S = 1− I, so that:

dI
dt

= (1− I − αu(t)) I.

A social planner wishes to minimize the number of infectives at the minimum cost. Let us assume
that, during any period of length τ, the budget of the social planner for the total health expenses
is given by B̂τ. The monetary cost of the treatment borne by the social planner is cM = pu(t)I(t),
where p is the cost of treating the entire population. Nevertheless, this cost is perceived through a cost
function:

c(u, I) ≥ 0

which is not decreasing in its arguments.
We solve the following optimal control problem:

min
0≤u≤1

∫ 1

0
(k1 I(t) + k2c (u(t), I(t))) dt + k3 I(1). (4)

The constants k1, k2 and k3 could be considered as values that will balance the units of
measurements and also indicate the importance of one type of aim over the others (see also [14]).
For the sake of simplicity, in this section, we assume k1 = k2 = k3 = 1.

Setting:

J(u) = −
∫ 1

0
(I(t) + c (u(t), I(t))) dt− I(1),

Equation (4) turns into the following maximization problem:

max
0≤u≤1

J(u), (5)

subject to the constraints:

dI
dt

= (1− I − αu) I, I(0) = 1, (6)

and:

B̂− pu(t)I(t) ≥ 0. (7)

In the rest of the section, we assume that:
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B̂− p ≥ 0, (8)

so that Equation (7) is always satisfied and can be left out.
We apply, in the subsequent analysis, the maximum Pontryagin principle (see Theorem 12 in

the Appendix).

Theorem 1 (Necessary conditions). Let (I∗(t), u∗(t)) be an admissible pair which solves Problems (5) and (6).
Then, a continuous and piecewise continuously differentiable function λ(t) exists, such that for all t ∈ [0, 1]:

H(I∗(t), u∗(t), λ(t)) ≥ H(I∗(t), u, λ(t)) (9)

for all u ∈ [0, 1], where H is defined by:

H(I, u, λ) = −I − c(u, I) + λ (1− I − αu) I. (10)

Except at the points of discontinuities of u∗(t), it is:

dλ

dt
= −∂H∗/∂I,

where:

∂H∗/∂I =
∂H(I∗(t), u∗(t), λ(t))

∂I
.

Hence:

dλ

dt
(t) = 1 +

∂c
∂I

(u∗(t), I∗(t))− λ(t) (1− αu∗(t)− 2I∗(t)) . (11)

Furthermore, the following transversality condition is satisfied:

λ(1) = −1.

Note that:

∂H
∂u

= − ∂c
∂u
− αλI, (12)

and that Equation (9) is equivalent to:

∂H
∂u

(I∗(t), u∗(t), λ(t)) ≤ 0; if u∗(t) = 0,

∂H
∂u

(I∗(t), u∗(t), λ(t)) = 0; if 0 < u∗(t) < 1,

∂H
∂u

(I∗(t), u∗(t), λ(t)) ≥ 0; if u∗(t) = 1.

(13)

We consider five cost functions as listed below:

1. c1 = pu, linear state independent cost (LSI);
2. c2 = puI, linear state dependent cost (LSD);
3. c3 = p2u2, quadratic state independent cost (QSI);
4. c4 = p2u2 I2, quadratic state dependent cost (QSD);

5. c5 =
B̂puI

B̂− puI
, blowing-up state dependent cost (BSD).
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The LSI and especially QSI cost functions are very frequently used in the literature (see, e.g., [15]
LSI and [16–20] QSI). They do not depend on the number of people treated, and this in some cases may
sound rather strange. LSD and QSD cost represent linear and quadratic monetary costs, respectively.
LSD costs are used, e.g., in [21,22].

A specific problem is given by extremely costly therapies in the presence of a very high number
of patients to be treated. To treat all infected patients would mean sometimes spending all or a very
large part of the national budget allocated to health. Such a choice is impractical or, in other words,
has a cost (in terms of utility) that is infinite. The BSD cost function incorporates such characteristics.
It approximates monetary costs when they are small and tends to infinity as the monetary costs
approach the available budget.

We prove the following result:

Theorem 2. Let c = ck, k = 1, ..., 5.

1. If k = 1, 2, 5, then u∗(t) ≡ 0 satisfies the maximum principle for Problems (5) and (6) if and only if:

p ≥ α.

2. If k = 3, 4, then it is never optimal to set u(t) = 0, and then, u∗(t) > 0, ∀t ∈ [0, 1].

Theorem 2 establishes that if the cost function is LSI, or LSD, or BSD, then it could be optimal to
not treat any infected people provided that the ratio price/effectiveness is too high. By contrast, if the
cost function is quadratic, then it is convenient to treat a positive fraction of the infected population at
any time, no matter the price of the drugs nor their effectiveness.

Now, we characterize the optimal solutions by means of the maximum principle for the
five different cost functions proposed above. In particular, we will establish conditions on the
parameter, such that the treatment of the total infected populations is optimal at any time.

2.1. Linear Density Independent Costs

In this section, we assume that:

c (u(t), I(t)) = pu(t).

Then:

J(u) = −
∫ 1

0
(I(t) + pu(t)) dt− I(1).

The Hamiltonian is:

H = −I − pu + λ [1− I − αu(t)] I.

It is:

∂H
∂u

= −p− αλI.

It follows from the maximum principle that:

u∗(t) =



0 if p + αλ(t)I(t) > 0,

û(t) ∈]0, 1[ if p + αλ(t)I(t) = 0,

1 if p + αλ(t)I(t) < 0.

(14)
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The adjoint equation is:

dλ

dt
= 1− λ (1− αu− 2I) ,

with λ(1) = −1.

Theorem 3. u∗(t) ≡ 1 satisfies the maximum principle if and only if:

p ≤ ψ1(α),

where:

ψ1(α) =


eα(α− 1)

αeα − e
if α 6= 1,

1
2

if α = 1.

Theorem 4. Let:

ψ1(α) < p < α, (15)

and let:

σ1(t) =


p + α

(α− 1)
(
αeαt(et − 2e)− αe2t + 2αet+1 − e2(α− 1)

)
(αeαt − αet + e(α− 1))2 if α 6= 1,

p +
te2t − 2tet+1 − e2

(tet + e)2 if α = 1.

(16)

A unique solution t̄ ∈]0, 1[ of the equation σ1(t) = 0 exists. Moreover:

u∗(t) =


1 if 0 ≤ t < t̄,

0 if t̄ < t ≤ 1.
(17)

Figure 1 illustrates the different optimal policies with respect to the price p and to the
effectiveness α.

Figure 1. Optimal treatment: the linear density independent (LDI) case.

2.2. Linear Density Dependent Costs

In this section, we assume that:
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c (u(t), I(t)) = pu(t)I(t).

Then:

J(u) = −
∫ 1

0
(I(t) + pu(t)I(t)) dt− I(1).

The Hamiltonian is:

H = −I − puI + λ [1− I − αu(t)] I.

It is:

∂H
∂u

= −pI − αλI.

It follows that:

u∗(t) =



0 if p + αλ(t) > 0,

û(t) ∈]0, 1[ if p + αλ(t) = 0,

1 if p + αλ(t) < 0.

The adjoint equation is:

dλ

dt
= 1 + pu− λ (1− αu− 2I) ,

with λ(1) = −1.

Theorem 5. u∗(t) ≡ 1 satisfies the maximum principle if and only if 0 ≤ p < α, for any α > 0.

If p ≥ α, we know from Theorem 2 that u∗ ≡ 0 satisfies the maximum principle.
Nevertheless, there is a value ψ2(α), such that for α < p < ψ2(α), there is also a bang-bang control,
which satisfies the maximum principle and which turns out to be the optimal solution. For the sake of
simplicity, we illustrate this point confining ourselves to the case α = 1.

Theorem 6. Let α = 1.

1. If 1 < p < p̂ ≈ 1.379, then the equation:

σ2(t) ≡ p +
(3t2 − 4t− 1)− 2et2e−t

(1 + t2)
= 0

has two solutions t1 and t2 in ]0, 1[. Moreover, the functions:

ûj(t) =


1 if 0 ≤ t < tj,

0 if tj < t ≤ 1,
j = 1, 2,

satisfy the maximum principle.
2. If p ≥ p̂, then u∗(t) ≡ 0 is the optimal control.
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The linear density independent LDI and linear density dependent LDD cost function cases exhibit
interesting differences. In both cases, it is optimal to not treat at all the infective population provided
that p is large enough, that is treatment is too costly. If p < α, then in the LDD case, it is optimal to
treat the total infective population, while in the LDI case, this is true only if p < ψ1(α) < α. The reason
lies in the fact that the cost of the treatment (in terms of utility function) is taken as c1 = pu(t) in the
LDI case and c2 = pu(t)I(t) in the LDD case. Since I(t) ≤ 1, it follows that c1 > c2.

2.3. Quadratic Density Independent Costs

In this section, we assume that:

c (u(t), I(t)) = p2u2(t).

Then:

J(u) = −
∫ 1

0

(
I(t) + p2u2(t)

)
dt− I(1).

The Hamiltonian is:

H = −I − p2u2 + λ [1− I − αu(t)] I

and:

∂H
∂u

= −2p2u− αλI.

The adjoint equation is:

dλ

dt
= 1− λ (1− αu− 2I) , (18)

with λ(1) = −1.
Let:

û(t) = −αλ(t)I(t)
2p2 .

Since from Equation (18), it can be proven that λ(t) < 0 for any t ∈ [0, 1], it follows that û(t) > 0
for any t ∈ [0, 1]. Therefore, it is never optimum to set u(t) = 0. It follows that:

u∗(t) =


û(t) if σ3(t) > 0,

1 if σ3(t) ≤ 0,

where:

σ3(t) = 2p2 + αλ(t)I(t).

Theorem 7. u∗(t) ≡ 1 satisfies the maximum principle if and only if 0 ≤ p < ψ3(α) for any α > 0,
where:

ψ3(α) =



√
eα(α− 1)
2(αeα − e)

if α 6= 1,

1
2

if α = 1.
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Note that ψ1(α) < ψ3(α) if 0 ≤ α < 1 and α > α̂, where α̂ ≈ 1.613. For these values of α, the
set of prices for which it is optimal to treat the whole infected population is larger in the case of QDI
compared to the LDI case. The opposite happens when 1 < α < α̂.

We conclude this section with the following:

Theorem 8. Let

p ≥ ψ3(α); α > 0.

Then, a unique solution t̄ ∈]0, 1[ of the equation σ3(t) = 0 exists. Moreover:

u∗(t) =


1 if 0 ≤ t < t̄,

û(t) if t̄ < t ≤ 1.

Figure 2 illustrates the different optimal policies with respect to the price p and to the
effectiveness α.

Figure 2. Optimal treatment: the quadratic density independent (QDI) case.

2.4. Quadratic Density Dependent Costs

In this section, we assume that:

c (u(t), I(t)) = p2u2(t)I2(t).

Then:

J(u) = −
∫ 1

0

(
I(t) + p2u2(t)I2(t)

)
dt− I(1).

The Hamiltonian is:

H = −I − p2u2 I2 + λ [1− I − αu(t)] I,

and:

∂H
∂u

= −2p2uI2 − αλI.

The adjoint equation is:

dλ

dt
= 1 + 2p2u2 I − λ (1− αu− 2I) , (19)

with λ(1) = −1.
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Let:

û(t) = − αλ(t)
2p2 I(t)

.

Since from Equation (19), it can be proven that λ(t) < 0 for any t ∈ [0, 1], it follows that û(t) > 0
for any t ∈ [0, 1]. Therefore, it is never optimum to set u(t) = 0. It follows that:

u∗(t) =


û(t) if σ4(t) > 0,

1 if σ4(t) ≤ 0,

where:

σ4(t) = 2p2 I(t) + αλ(t).

Theorem 9. u∗(t) ≡ 1 satisfies the maximum principle if and only if p < ψ4(α) for any α > 0, where:

ψ4(α) =



√
α
[
αe2α + αeα+1(α− 3) + e2]

α2e2α − 2αeα+1 + e2(α2 − 2α + 2)
if α 6= 1,

√
15
5
≈ 0.774 if α = 1.

Figure 3 illustrates the different optimal policies with respect to the price p and to the
effectiveness α.

Figure 3. Optimal treatment: the quadratic density dependent (QDD) case.

2.5. Blowing up Costs

As said above, to treat all infected patients would mean sometimes spending all or a very large
part of the national budget allocated to health. Such a choice would have a cost (in terms of utility)
that is infinite. A cost function incorporating such characteristics is the following one (note that if the

monetary cost puI is small, then:
B̂puI

B̂− puI
≈ puI):

c (u(t), I(t)) =
B̂puI

B̂− puI
.

Then:

J(u) = −
∫ 1

0

(
I(t) +

B̂puI
B̂− puI

)
dt− I(1).
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The Hamiltonian is:

H = −I − B̂puI
B̂− puI

+ λ [1− I − αu(t)] I,

and:

∂H
∂u

= − B̂2 pI
(B̂− puI)2

− αλI.

Let:

û(t) = B̂
√
−pαλ + αλ

αpλI
.

The adjoint equation is:

dλ

dt
= 1 +

B̂2 pu
(B̂− puI)2

− λ (1− αu− 2I) .

The characterization of the case in which full treatment is optimal is, in principle, possible also in
this case. However, due to the presence of one more parameter in the functional J, the computations
are really cumbersome. To make the results readable, we restrict our further analysis to the case:

α = 1.

Theorem 10. Let:
k = B̂/p; k ≥ 1.

Let:

L(k) = min
(

3(k− 1)2(2k− 1)
4k3 ,

(2k− 1)2

4k2

)
.

Then u∗(t) ≡ 1 satisfies the maximum principle if and only if:

p ≤ L(k). (20)

Note that L(k) is increasing and lim
k→+∞

L(k) = 1.

As an immediate consequence of the previous theorem, we have:

Theorem 11. If:
L(k) < p < 1,

then:
u∗(t) = û(t).

Remark 1. Assumption (8) is necessary to obtain some of the results illustrated in the subsections
above. If the price exceeds the budget, that is if p > B̂, then Theorem 2 still holds.

Moreover, it is never optimal to treat the entire population at any time. In fact at time t = 0, it is

I = 1, so that the budget constraint requires B̂− pu ≥ 0. Hence, u(0) ≤ B̂
p
< 1.

Let t̂ be characterized by u(t̂) = 1 and B̂− pI(t̂) = 0. It could be guessed that, if t̂ < 1, then
an optimal policy should be to use the entire budget for t ∈ [0, t̂] and then to switch to u∗ = 1.
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This is possible for all of the cost structure introduced above, except for blowing up costs. In such
a case, in fact, to use the entire budget leads the cost function to infinity. Nevertheless, it can be easily
proven that in the BSD case, if B̂ < p < 1, then û satisfies the maximum principle.

Remark 2. Note that Inequality (20) does not provide an explicit dependence of p with respect to the

budget. Since k =
B̂
p

, it seems more meaningful to write Equation (20) as:

p ≤ L(
B̂
p
).

Finally, Theorems 9 and 10 and Remark 1 are illustrated in Figure 4.

Figure 4. Optimal treatment: the blowing-up state dependent (BSD) case. α = 1.

3. The Hepatitis C Control

Let us consider a four-dimensional model with acute and chronic stages presented in [23].
The epidemic is transmitted through people’s direct contacts. We suppose that the disease has
an exposed period, and then, the patients enter into the acute stage, and finally, they undergo the
chronic stage. The patients have no immunity after recovering and become susceptible again. We
divide the population into four classes: S-susceptible, E-exposed, I-infected with acute hepatitis C and
V-infected with chronic hepatitis C. The total number at time t is N(t) = S(t) + E(t) + I(t) + V(t).

The basic assumptions are:

1. The birth rate of the population is b > 0, and the death rate is d > 0.
2. The disease cannot be transmitted during the exposure period.
3. Only the acute and chronic stages are differentiated. Patients with either acute or chronic

infections are capable of transmitting the disease. Once a person contacts a susceptible individual,
he or she must be infected.

4. Each acutely infective and each chronically infective makes β > 0 and γ > 0 contacts per unit
time, and then, the numbers of contacting susceptible individuals per unit time are, respectively,
βS/N and γS/N. Hence, the incidences caused by acutely infective and by chronically-infective
people are, respectively, βSI/N and γSV/N.

5. ε > 0 and k > 0 are, respectively, the rate of progression to the acute stage from the exposed and
the rate of progression to the chronic stage.

6. ξ > 0 is the recovery rate for the chronic state.
7. The acute stage of infection is short and often asymptomatic, and there is no possibility for

treatment during this state.
8. Since the disease-induced death rate is relatively low, it is ignored.

Under the assumptions above, we deal with the following model:
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Ṡ(t) = bN − (βI + γV)
S
N
− dS + ξV,

Ė(t) = (βI + γV)
S
N
− dE− εE,

İ(t) = εE− (d + k)I

V̇(t) = kI − (d + ξ)V.

(21)

Summing the equations of System (21), we obtain Ṅ(t) = (b− d)N. To simplify the subsequent
analysis, we assume that:

d = b.

Then, N is constant in time, and we set N(t) = N(0) = 1 for each t ≥ 0. System (21) becomes:

Ṡ(t) = b− (βI + γV)S− bS + ξV,

Ė(t) = (βI + γV)S− bE− εE,

İ(t) = εE− (b + k)I,

V̇(t) = kI − (b + ξ)V,

(22)

with initial conditions:

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, V(0) = V0 ≥ 0,

and:

S0 + E0 + I0 + V0 = 1.

Assume that a fraction u(t) ∈ [0, 1] of the chronic infected individuals V is treated at time t.
Then, a further progression from the class V to the class S occurs at a rate αu(t), where α > 0 measures
the effectiveness of the treatment. System (22) becomes:

Ṡ(t) = b− (βI + γV)S− bS + (ξ + αu(t))V,

Ė(t) = (βI + γV)S− bE− εE,

İ(t) = εE− (b + k)I,

V̇(t) = kI − (b + ξ + αu(t))V.

Let p > 0 be the cost of treating the entire population, so that the monetary cost at time t for the
treatment of the fraction u(t) of the chronic infected individuals V is given by pu(t)V(t).

The social planner wishes to minimize the infected population at the minimum cost. Let B̂ be
defined as in Section 2. Obviously, it must be:

B̂− pu(t)V(t) ≥ 0. (23)

In the following, we assume that:

B̂ ≥ p.
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Hence, Equation (23) is fulfilled for any u and V and can be dropped out. Let:

J(u) = −
∫ t1

0
(AE(t) + BI(t) + CV(t) + Dc (u(t), V(t))) dt− A1E(t1)− B1 I(t1)− C1V(t1),

where c(u, V) is the cost function in terms of the utility function. We assume that c(u, V) is a
non-negative smooth function and that it is increasing in its arguments.

A, B, C and D are the (non-negative) weights that the optimizer assigns to the different objects
he or she wishes to maximize. It is A + B + C + D = 1. A1, B1, C1 are the non-negative coefficients of
the scrap values.

The government solves the following optimal control problem:

max
0≤u≤1

J(u),

subject to Equation (23) and with initial conditions:

S(0) = S0 ≥ 0; E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, V(0) = V0 ≥ 0; S0 + E0 + I0 + V0 = 1.

An optimal control problem for the treatment of HCV virus is also investigated in [24].
We characterize the optimal solution by using the maximum principle. The Hamiltonian H is

given by:

H = −(AE + BI + CV + Dc)+

λ1(bN − (βI + γV)S− bS + (ξ + αu(t))V)+

λ2((βI + γV)S− bE− εE)+

λ3(εE− (b + k)I)+

λ4(kI − (b + ξ + αu(t))V).

Since the treatment of the HCV-infected population is really expensive for the health social system,
it seems appropriate to model the cost function as a blowing-up function. Let:

c(u, V) =
B̂puV

B̂− puV
.

It is:

∂H
∂u

=

(
−D

B̂2 p
(B̂− puV)2

+ (λ1 − λ4)α

)
V.



∂H
∂S

= (λ2 − λ1)(βI + γV)− bλ1,

∂H
∂E

= −A + λ3ε− λ2(b + ε),

∂H
∂I

= −B + (λ2 − λ1)βS− λ3(b + k) + λ4k,

∂H
∂V

= −C− D
B̂2 pu

(B̂− puV)2
+ (λ2 − λ1)γS + λ1(ξ + αu)− λ4(b + ξ + αu).
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The adjoint equations are given by:

∂λ1

∂t
= −(λ2 − λ1)(βI + γV) + bλ1,

∂λ2

∂t
= A− λ3ε + λ2(b + ε),

∂λ3

∂t
= B− (λ2 − λ1)βS + λ3(b + k)− λ4k,

∂λ4

∂t
= C + D

B̂2 pu
(B̂− puV)2

− (λ2 − λ1)γS− λ1(ξ + αu) + λ4(b + ξ + αu),

with terminal conditions:

λ1(t1) = 0, λ2(t1) = −A1, λ3(t1) = −B1, λ4(t1) = −C1.

If λ1(t)− λ4(t) ≤ 0), then ∂H/∂u < 0; otherwise, the equation ∂H/∂u = 0 has a solution:

û(t) =
B̂−

√
DB̂2 p

(λ1 − λ4)α

pV
.

Therefore, the maximum principle gives:

u∗(t) =



0 if (λ1(t)− λ4(t)) ≤ 0) or û(t) ≤ 0,

û(t) if (λ1(t)− λ4(t)) > 0) and 0 < û(t) < 1,

1 if (λ1(t)− λ4(t)) > 0) and û(t) ≥ 1.

Numerical Experiments

In this section, we illustrate some numerical simulations of the solution of the optimal HCV
treatment problem. We use a fourth-order Runge–Kutta solver for the system of differential equations.

Let:

b = 0, β = 1, γ = 1, ε = 2, k = 5, ξ = 0.01;

A = 0.2, B = 0.2, C = 0.2, D = 0.4; A1 = B1 = C1 = 1; t1 = 1;

S0 = E0 = I0 = 0, V0 = 1.

In this scenario, we assume that initially, the total population is infected and is at the chronic
stage. In order to emphasize the role of the treatment on the population dynamics, we neglect births
and deaths setting b = 0.

The cost functional assigns the same weight 0.2 to the objective of minimizing the number of
exposed, acute and chronic individuals. The scrap values are equally weighted.

As we mentioned above, the treatment of some infectious diseases is extremely costly, and this is
the case of hepatitis C, for example. Therefore, in our simulations, we assume that the treatment of the
total infected population at the initial time would require the entire budget and a consequent infinite
disutility for the social planner. Precisely, we assume:
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B̂ = 1; p = 1.

If α ≤ α̂ ≈ 0.4, then it is optimal to not treat any person, that is u∗(t) ≡ 0. The population remains
at the equilibrium V(t) ≡ 1.

If α = 0.5, then it is optimal to not treat any individual at the beginning and to start the treatment
(and to increase it in time) at a time t̄ ≈ 0.7, reaching at the final time t = 1 the 10% of the chronic
population treated. The total infected population at the final time is greater than 99%. The percentage
of the total budget used for the treatment goes from zero to 10% (see Figure 5).
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Figure 5. Optimal treatment of an infectious disease with chronic stage.

If the effectiveness α is equal to one, then it is optimal to treat an increasing percentage of the
chronic population, starting with 20% and terminating with 50%. The total infected population at the
final time is around 80%. The percentage of the total budget used for the treatment goes from 20% to
38% (see Figure 6).

If α = 5, then it is optimal to treat an increasing percentage of the chronic population, starting
with 45% and treating the total chronic population after a short time (t ≈ 0.2). The total infected
population at the final time is around 10%. The percentage of the total budget used for the treatment
starts at 45% and approximates 5% at the end, reaching a maximum of around 50% at t ≈ 0.2
(see Figure 7).
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Figure 6. Optimal treatment of an infectious disease with chronic stage.
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Figure 7. Optimal treatment of an infectious disease with chronic stage.

If α = 100 (that is extremely effective drugs), then the treatment of the total chronic population is
still not immediate and starts after a very short time. The total infected population rapidly tends to
zero while the percentage of the total budget used for the treatment starts at 45% and approximates
zero at the end, reaching a maximum of around 50% (see Figure 8).
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Figure 8. Optimal treatment of an infectious disease with chronic stage.

Figures 9 and 10 illustrate again the case α = 1, but with E(0) = 1 and I(0) = 1, respectively.
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Figure 9. Optimal treatment of an infectious disease with chronic stage.
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Figure 10. Optimal treatment of an infectious disease with chronic stage.

4. Conclusions

A very interesting issue in the study of epidemic models is to identify therapeutic strategies that
minimize the relevant negative features of the disease at the minimum cost. The shape of the cost
function significantly affects the choice of the optimal treatment. In this paper we compared five
different cost functions, testing them on the SIS model: linear and quadratic density independent;
linear and quadratic density dependent; blowing-up. The last one is particularly appropriate in the
case of extremely expensive therapies and in the presence of a very high number of patients to be
healed. Consequently, we discussed a model for the treatment of the HCV virus using the blowing-up
cost function and illustrated the result by some numerical simulations. In this paper the price of the
treatment is exogenously given. Strategic interactions between pharmaceutical companies and public
authorities constitute an interesting issue which will be investigated in a subsequent paper.
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Appendix A. Theoretical Results

In this section, we provide necessary conditions for the solutions of optimal control problems
(see, e.g., ([8]).

Consider the following problem:

max
u∈[0,1]

∫ t1

t0

f0(x(t), u(t))dt + g(x(t1)) (t0, t1 fixed), (A1)

subject to the vector differential equation and the initial condition:
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ẋ(t) = f (x(t), u(t)), x(t0) = x0 (x0 fixed), (A2)

and to the terminal condition:
x(t1) free. (A3)

g is referred to as a scrap value function and is assumed to be a C1 function.
Assume that fi and ∂ fi/∂xj are continuous with respect to all of their variables. We call (x(t), u(t))

an admissible pair if u(t) is piecewise continuous, x(t) is continuous and piecewise continuously
differentiable and Equations (A2) and (A3) are satisfied.

Theorem 12 (Necessary conditions: the maximum principle). Let (x∗(t), u∗(t)) be an admissible pair,
which solves Problems (A1)–(A3). Then, there exist a number λ0 and vector functions λ(t) = (λ1(t), ..., λn(t)),
where λ(t) is continuous and piecewise continuously differentiable, such that for all t ∈ [t0, t1]:

(λ0, λ1(t), ..., λn(t)) 6= (0, 0, ..., 0),

H(x∗(t), u∗(t), λ(t)) ≥ H(x∗(t), u, λ(t)),

for all u ∈ [0, 1], where H is defined by:

H(x, u, λ) = λ0 f0(x, u) +
n

∑
i=1

λi fi(x, u).

Except at the points of discontinuities of u∗(t), for i = 1, ..., n:

λ̇i(t) = −∂H∗/∂xi, i = 1, ..., n, almost everywhere,

where:

∂H∗/∂xi =
∂H(x∗(t), u∗(t), λ(t))

∂xi
.

Furthermore:

λ0 = 0 or λ0 = 1,

and the following transversality conditions are satisfied:

λj(t1) = λ0
∂g(x∗(t1))

∂xj
.

Appendix B. Proofs of the Theorems

Proof of Theorem 2. We apply Theorem 12 in the Appendix A.
We check the necessary conditions for u∗(t) ≡ 0. The state equations become dI/dt = (1− I) I,

and because of the initial condition I(0) = 1, it follows that I∗(t) = 1, ∀t ∈ [0, 1].
Note that (∂ck/∂I)(0, 1) = 0, ∀k = 1, ..., 5. Substituting in Equation (11), we obtain:

dλ

dt
= 1 + λ, t ∈ [0, 1],

with final condition λ(1) = −1. It follows that λ(t) = −1; ∀t ∈ [0, 1]. From Equation (13), we have
that u∗(t) = 0 satisfies the necessary condition if:

∂H
∂u

(I∗(t) = 1, u∗(t) = 0, λ(t) = −1) ≤ 0) ≤ 0, ∀t ∈ [0, 1],
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or, from Equation (12),

− ∂c
∂u

(0, 1) + α ≤ 0, ∀t ∈ [0, 1]. (B1)

It is:

∂ck
∂u

(0, 1) =


p if k = 1, 2, 5;

0 if k = 3, 4.

It follows that Equation (B1) is satisfied for p ≥ α if k = 1, 2, 5, and it is never satisfied if k = 3, 4.

Proof of Theorem 3. We check the necessary conditions for u∗(t) ≡ 1. The state equations become:

dI
dt

= (1− α− I) I,

and, because of the initial condition I(0) = 1, it follows that:

I(t) =


(1− α)et

et − αeαt if α 6= 1,

1
t + 1

if α = 1,

∀t ∈ [0, 1]. (B2)

Substituting I(t) in:

dλ

dt
= 1− λ(1− α− 2I),

with final condition λ(1) = −1, we obtain:

λ(t) =


e−(α+1)t (αeαt − et) (eαt (αeα+1(α− 2) + e2)+ αe2α+t − αeα+t+1)

(1− α)(αeα − e)2 if α 6= 1,

(t + 1)(t− 3)
4

if α = 1,

∀t ∈ [0, 1]. (B3)

It is:

∂H
∂u

= −p− αλI.

u∗(t) = 1 satisfies the necessary condition if:

∂H
∂u
≥ 0, ∀t ∈ [0, 1]

or:

− p− αλI ≥ 0, ∀t ∈ [0, 1]. (B4)

Replacing Equations (B2) and (B3) in Equation (B4), we obtain:

p ≤ φ(t; α), ∀t ∈ [0, 1], (B5)

where:
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φ(t; α) =


αe−αt (eαt (αeα+1(α− 2) + e2)+ αe2α+t − αeα+t+1)

(αeα − e)2 if α 6= 1,

3− t
4

if α = 1,

∀t ∈ [0, 1].

Note that lim
α→1

φ(t; α) = φ(t; 1). Since φ is decreasing with respect to t, Equation (B5) is equivalent to:

p ≤ φ(1; α) ≡ ψ1(α),

where:

ψ1(α) =


eα(α− 1)

αeα − e
if α 6= 1,

1
2

if α = 1.

Proof of Theorem 4. It is easy to prove that σ1 is strictly increasing in [0, 1] and, as a consequence of
Assumption (15), σ1(0) < 0 and σ1(1) > 0. It follows that a unique solution t̄ ∈]0, 1[ of the equation
σ1(t) = 0 exists.

Now, we prove that u∗(t) defined in Equation (17) satisfies the necessary conditions. It is:

dI
dt

=


(1− I − α) I if 0 ≤ t < t̄,

(1− I) I if t̄ < t ≤ 1,
(B6)

with I(0) = 1. The adjoint equation is:

dλ

dt
=


1− λ (1− α− 2I) if 0 ≤ t < t̄,

1− λ (1− 2I) if t̄ < t ≤ 1,
(B7)

with λ(1) = −1. Solving Equations (B6) and (B7), we obtain that:

p + αλ(t)I(t) = σ1(t),

where σ1 is defined in Equation (16). The thesis then follows from Equation (14).

Proof of Theorem 5. We check the necessary conditions for u∗(t) ≡ 1. The state equations become:

dI
dt

= (1− α− I) I,

and, because of the initial condition I(0) = 1, it follows that:

I(t) =


(1− α)et

et − αeαt if α 6= 1,

1
t + 1

if α = 1,

∀t ∈ [0, 1]. (B8)

Substituting in:

dλ

dt
= 1 + p− λ(1− α− 2I)
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and using the final condition λ(1) = −1, it follows that:

λ(t) =


e−(α+1)t (αeαt − et) (eαt (αeα+1(α− p− 2) + e2(1 + p)

)
+ αe2α+t(1 + p)− αeα+t+1(α + p)

)
(1− α)(αeα − e)2 if α 6= 1,

(t + 1)((1 + 2p)t− (3 + 2p))
4

if α = 1.

∀t ∈ 0, 1. (B9)

It is:

∂H
∂u

= −pI − αλI.

u∗(t) = 1 satisfies the necessary conditions if:

∂H
∂u
≥ 0, ∀t ∈ [0, 1],

or:

− p− αλ ≥ 0, ∀t ∈ [0, 1]. (B10)

Replacing Equation (B9) in Equation (B10), we obtain:

p ≤ φ(t; α); ∀t ∈ [0, 1], (B11)

where:

φ(t; α) =


−αe−(α+1)t (αeαt − et) (eαt (αeα+1(α− p− 2) + e2(1 + p)

)
+ αe2α+t(1 + p)− αeα+t+1(α + p)

)
(1− α)(αeα − e)2 if α 6= 1,

− (t + 1)((1 + 2p)t− (3 + 2p))
4

if α = 1.

Note that lim
α→1

φ(t; α) = φ(t; 1). It can be proven that φ is increasing with respect to t ∈ [0, 1] or φ

is increasing and then decreasing with respect to t ∈ [0, 1]. Then, φ(·; α) takes its minimum at t = 0 or
at t = 1. Therefore, Equation (B11) is equivalent to:

p ≤ min (φ(0; α), φ(1; α)). (B12)

It is φ(1; α) = α and φ(0)− φ(1) > 0 if and only if p > ψ2(α), where:

ψ2(α) =


eαα(α− 1)

αeα − e
if α 6= 1,

1
2

if α = 1.

Therefore, Equation (B12) is equivalent to:
p < φ(0; α) if p ≤ ψ2(α),

p < α if p > ψ2(α).

Since it is easy to show that for any p ≤ α, it is also p < φ(0; α), we conclude that Equation (B10)
is fulfilled for any p < α.

Proof of Theorem 6. We look for solutions û of the maximum principle, such that:
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û(t) =


1 if 0 ≤ t < t̄,

0 if t̄ < t ≤ 1.

Solving the state and the adjoint equations and requiring the continuity of λ(t) at t = t̄, we obtain:

λ(t̄) =
3t̄2 − 4t̄− 1− 2e−t̄+1 t̄2

(1 + t̄)2 .

The equation σ2(t̄) = p + λ(t̄) = 0 has two solutions t1, t2 ∈]0, 1[ for p ∈]1, p̂[. This completes
the proof.

Lemma 13. σ3(t) is an increasing function.

Proof. σ3(t) = 2p2 + αµ(t), where µ(t) = λ(t)I(t). Then, it is sufficient to prove that µ is an increasing
function. By:

dI
dt

= (1− I − αu(t)) I

and:

dλ

dt
= 1− λ (1− αu− 2I)

we have:

dµ

dt
= λ

dI
dt

+ I
dλ

dt

= λ((1− I − αu(t)) I) + I(1− λ (1− αu− 2I))

= I(1 + µ).

It follows that:

dµ

1 + µ
= I.

Integrating between t and one and using µ(1) = −I(1), we have:

1 + µ(t) = (1− I(1))e−
∫ 1

t I(s)ds.

Since 0 ≤ I ≤ 1, we have that:

dµ

dt
≥ 0.

Proof of Theorem 7. u∗(t) ≡ 1 satisfies the maximum principle if and only if σ3(t) < 0 for any
t ∈ [0, 1]. Since σ3 is increasing, this is equivalent to requiring σ3(1) < 0. I(t) can be computed as in
the Theorem 5 leading to Formula (B8). Hence:

I(1) =


(1− α)e
e− αeα

if α 6= 1,

1
2

if α = 1,

∀t ∈ 0, 1.



Mathematics 2016, 4, 21 25 of 27

σ3(1) < 0 means 2p2 − αI(1) < 0 or p < ψ3(α).

Proof of Theorem 8. It is an immediate consequence of the proof of Theorem 7.

Proof of Theorem 9. We check the necessary conditions for u∗(t) ≡ 1. The state equations become:

dI
dt

= (1− α− I) I,

and because of the initial condition I(0) = 1, it follows that:

I(t) =


(1− α)et

et − αeαt if α 6= 1,

1
t + 1

if α = 1,

∀t ∈ [0, 1]. (B13)

The adjoint equation, since u∗ ≡ 1, is:

dλ

dt
= 1 + 2p2 I − λ(1− α− 2I),

with final condition λ(1) = −1. It follows that:

λ(t) =


M(t, α, p)

(1− α)(αeα − e)2 if α 6= 1,

p2(t2 + 2t− 3) + t2 − 2t− 3
4

if α = 1,

∀t ∈ [0, 1], (B14)

where:
M = M1 + M2 + M3,

with:
M1 = αeαt−t+1

[
αeα(α− 2)− e(αp2 − p2 − 1)

]
,

M2 = eα(1−t)+t
[
αeα(ep2 − p2 − 1)− e(α(2p2 − 1)− 2p2)

]
,

M3 = α2e2α + 2αeα+1(1− α) + e2(2αp2 − 2p2 − 1).

u∗(t) = 1 satisfies the necessary condition if:

∂H
∂u
≥ 0, ∀t ∈ [0, 1],

or:

σ4(t) ≡ 2p2 I(t) + αλ(t) ≤ 0, ∀t ∈ [0, 1]. (B15)

Replacing Equations (B13) and (B14) in Equation (B15), we obtain:

p ≤ φ(t; α), ∀t ∈ [0, 1], (B16)

where:

φ(t; α) =



√
P(t; α)

Q(t; α)
if α 6= 1,

√
(3− t)(t + 1)2

t3 + 3t2 − t + 5
if α = 1,
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and:

P = α(αeαt − et)2
[
eαt(αeα+1(α + 2) + e2) + αe2α+t − αeα+t+1

]
,

Q = (α− 1)(Q1 + Q2 + Q3),

Q1 = α3e3αt+2 − 3α2e2αt+t+2,

Q2 = eαt
[
α2e2(α+t)(α− 2) + 2αeα+2t+1(2− α) + 2e2t+2(2α− 1)

]
,

Q3 = α2e2α+3t − 2αeα+3t+1.

Note that lim
α→1

φ(t; α) = φ(t; 1). It can be proven that φ is increasing with respect to t ∈ [0, 1] or φ

is increasing and then decreasing with respect to t ∈ [0, 1]. Then, φ(·; α) takes its minimum at t = 0 or
t = 1. Therefore, Equation (B16) is equivalent to:

p ≤ min (φ(0; α), φ(1; α)). (B17)

It is easy to prove that φ(0; α) ≤ φ(1; α) for any α ≥ 0, so that Equation (B17) reduces to:

p ≤ φ(0; α) ≡ ψ4(α).

Proof of Theorem 10. u∗(t) ≡ 1 satisfies the maximum principle if û ≥ 1 for any t ∈ [0, 1] and the
pair (I∗(t), u∗(t)) satisfies the state and the adjoint equations with the initial and terminal condition,
respectively. Solving the state equation (with u = u∗ = 1 and initial condition I(0) = 1), we have:

I∗(t) =
1

t + 1
, t ∈ [0, 1].

Solving the adjoint equation (with λ(1) = −1), we obtain:

λ(t) =
(t + 1)

{
2B̂2(t + 1) (2p(t− 1) + t− 3) + B̂p(3− t2) + p2(t− 3)

}
4(2B̂− p)(B̂(t + 1)− p)

.

Note that û ≥ 1 means:

pB̂2 + (B̂− pI∗)2λ ≤ 0.

Substituting the values of I∗ and λ in the previous inequality, we have that it is equivalent to:

p < φ(t; k), ∀t ∈ [0, 1],

where:

φ(t; k) =
(3− t)

[
2k3(t + 1)2 − k2(t + 1)(t + 5) + 2k(t + 2)− 1

]
4k2(t + 1) (k(t2 + 1)− t) .

It can be proven that φ is increasing with respect to t ∈ [0, 1] or φ is increasing and then decreasing
with respect to t ∈ [0, 1]. Then, φ(·; k) takes its minimum at t = 0 or t = 1. Therefore, we need:

p ≤ min (φ(0; k), φ(1; k)) = L(k).
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