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Abstract: In this paper, we have presented a family of fourth order iterative methods, which uses
weight functions. This new family requires three function evaluations to get fourth order accuracy.
By the Kung–Traub hypothesis this family of methods is optimal and has an efficiency index of
1.587. Furthermore, we have extended one of the methods to sixth and twelfth order methods
whose efficiency indices are 1.565 and 1.644, respectively. Some numerical examples are tested to
demonstrate the performance of the proposed methods, which verifies the theoretical results. Further,
we discuss the extraneous fixed points and basins of attraction for a few existing methods, such as
Newton’s method and the proposed family of fourth order methods. An application problem arising
from Planck’s radiation law has been verified using our methods.
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1. Introduction

One of the best root-finding methods for solving nonlinear scalar equation f (x) = 0 is Newton’s
method. In recent years, numerous higher order iterative methods have been developed and analyzed
for solving nonlinear equations that improve classical methods, such as Newton’s method (NM),
Halley’s iteration method, etc., which are respectively given below:

xn+1 = xn −
f (xn)

f ′(xn)
(1)

and:

xn+1 = xn −
2 f (xn) f ′(xn)

2 f ′(xn)2 − f (xn) f ′′(xn)
. (2)

The convergence order of Newton’s method is two, and it is optimal with two function evaluations.
Halley’s iteration method has third order convergence with three function evaluations. Frequently,
f ′′ is difficult to calculate and computationally more costly, and therefore, f ′′ in Equation (2) is
approximated using the finite difference; still, the convergence order and total number function
evaluation are maintained [1]. Such a third order method similar to Equation (2) after approximating
f ′′ in Halley’s iteration method is given below:

yn = xn − β
f (xn)

f ′(xn)
, xn+1 = xn −

2β f (xn)

(2β− 1) f ′(xn) + f ′(yn)
, β 6= 0. (3)
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In the past decade, a few authors have proposed third order methods with three function
evaluations free from f ′′; for example, [2,3] and the references therein. The efficiency index (EI) of
an iterative method is measured using the formula p

1
d , where p is the local order of convergence and d

is the number of function evaluations per full iteration cycle. Kung–Traub [4] conjectured that the order
of convergence of any multi-point without the memory method with d function evaluations cannot
exceed the bound 2d−1, the “optimal order”. Thus, the optimal order for three evaluations per iteration
would be four. Jarratt’s method [5] is an example of an optimal fourth order method. Recently, some
optimal and non-optimal multi-point methods have been developed in [6–15] and the references
therein. A non-optimal method [16] has been recently rediscovered based on a quadrature formula,
which can also be obtained by giving β = 2

3 in Equation (3). In fact, each iterative fixed-point method
produces a unique basins of attraction and fractal behavior, which can be used in the evaluation
of algorithms [17]. Polynomiography is defined to be the art and science of visualization in the
approximation of zeros of complex polynomials, where the created polynomiography images satisfy
the mathematical convergence properties of iteration functions.

This paper considers a new family of optimal fourth order methods, which is an improvement of
the method given in [16]. We study extraneous fixed points and basins of attraction for two particular
cases of the new family of methods and a few equivalent available methods. The rest of the paper is
organized as follows. Section 2 presents the development of the methods, their convergence analysis
and the extension of new fourth order methods to sixth and twelfth order. Section 3 includes some
numerical examples and results for the new family of methods along with some equivalent methods,
including Newton’s method. In Section 4, we obtain all possible extraneous fixed points for these
methods as a special study. In Section 5, we study basins of attraction for the proposed fourth order
methods, Newton’s method and some existing methods. Section 6 discusses an application on Planck’s
radiation law problem. Finally, Section 7 gives the conclusions of our work.

2. Development of the Methods and Convergence Analysis

Noor et al. [16] consider the following third order method for the value of β = 2
3 in Equation (3):

yn = xn −
2
3

f (xn)

f ′(xn)
, xn+1 = xn −

4 f (xn)

f ′(xn) + 3 f ′(yn)
. (4)

This Method (4) is of order three with three evaluations per full iteration having EI = 1.442.
To improve the order of the above method with the same number of function evaluations leading
to an optimal method, we propose the following without memory method, which includes
weight functions:

yn = xn −
2
3

f (xn)

f ′(xn)

xn+1 = xn −
4 f (xn)

f ′(xn) + 3 f ′(yn)
×
(

H(τ)× G(η)
)

,
(5)

where H(τ) and G(η) are two weight functions with τ = f ′(yn)
f ′(xn)

and η = f ′(xn)
f ′(yn)

.

2.1. Convergence Analysis

The proofs for Theorems 1 and 2 are worked out with the help of Mathematica.

Theorem 1. Let f : D ⊂ R → R be a sufficiently smooth function having continuous derivatives up to
fourth order. If f (x) has a simple root x∗ in the open interval D and x0 is chosen in a sufficiently small
neighborhood of x∗, then the family of Method (5) is of local fourth-order convergence, when:

H(1) = G(1) = 1, H′(1) = G′(1) = 0, H′′(1) =
5
8

, G′′(1) =
1
2

, |H′′′(1)| = |G′′′(1)| < ∞ (6)
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and it satisfies the error equation:

en+1 =
1

81

(
−81c2c3 + 9c4 + c3

2

(
147 + 32H′′′(1)− 32G′′′(1)

))
e4

n + O(e5
n),

where cj =
f (j)(x∗)
j! f ′(x∗)

, j = 2, 3, 4, ... and en = xn − x∗.

Proof. Taylor expansion of f (xn) and f ′(xn) about x∗ gives:

f (xn) = f ′(x∗)
[
en + c2e2

n + c3e3
n + c4e4

n + . . .
]

(7)

and:
f ′(xn) = f ′(x∗)

[
1 + 2c2en + 3c3e2

n + 4c4e3
n + . . .

]
(8)

so that:

yn = x− 2
3

f (xn)

f ′(xn)
= x∗ +

en

3
+

2
3

c2e2
n −

4
3

(
c2

2 − c3

)
e3

n +
2
3

(
4c3

2 − 7c2c3 + 3c4

)
e4

n + . . . . (9)

Again, using Taylor expansion of f ′(yn) about x∗ gives:

f ′(yn) = f ′(x∗)
[
1 +

2
3

c2en +
1
3

(
4c2

2 + c3

)
e2

n +
4
27

(
− 18c3

2 + 27c2c3 + c4

)
e3

n + . . .
]
. (10)

Using Equations (8) and (10), we have:

τ = 1− 4
3

c2en +
(

4c2
2 −

8
3

c3

)
e2

n −
8

27

(
36c3

2 − 45c2c3 + 13c4

)
e3

n + . . . (11)

and:
η = 1 +

4
3

c2en +
4
9

(
− 5c2

2 + 6c3

)
e2

n +
8

27

(
8c3

2 − 21c2c3 + 13c4

)
e3

n + . . . (12)

Using Equations (7), (8) and (10), then we have:

4 f (xn)

f ′(xn) + 3 f ′(yn)
= en − c2

2e3
n +

(
3c3

2 − 3c2c3 −
1
9

c4

)
e4

n + . . . . (13)

Expanding the weight function H(τ) and G(η) about 1 using Taylor series, we get:

H(τ) = H(1) + (τ − 1)H′(1) +
1
2
(τ − 1)2H′′(1) +

1
6
(τ − 1)3H′′′(1) + O(H(4)(1)),

G(η) = G(1) + (η − 1)G′(1) +
1
2
(η − 1)2G′′(1) +

1
6
(η − 1)3G′′′(1) + O(G(4)(1)).

(14)

Using Equations (13) and (14) in Equation (5), such that the conditions in Equation (6) are satisfied,
we obtain:

en+1 =
1

81

(
−81c2c3 + 9c4 + c3

2

(
147 + 32H′′′(1)− 32G′′′(1)

))
e4

n + O(e5
n). (15)

Equation (15) shows that Method (5) has fourth order convergence.

Note that for each choice of |H′′′(1)| < ∞ and |G′′′(1)| < ∞ in Equation (15) will give rise
to a new optimal fourth order method. Method (5) has efficiency index EI = 1.587, better than
Method (4). Two members in the family of Method (5) satisfying Condition (6), with corresponding
weight functions, are given in the following:
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By choosing H′′′(1) = G′′′(1) = 0, we get a new Proposed method called as PM1 :

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
4 f (xn)

f ′(xn) + 3 f ′(yn)

(
1 +

5
16

(
τ − 1

)2
)(

1 +
1
4

(
η − 1

)2
)

,
(16)

where its error equation is:

en+1 =
(49

27
c3

2 − c2c3 +
1
9

c4

)
e4

n + O(e5
n).

By choosing H′′′(1) = 0, G′′′(1) = 1, we get another new Proposed method called as PM2 :

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
4 f (xn)

f ′(xn) + 3 f ′(yn)

(
1 +

5
16

(
τ − 1

)2
)(

1 +
1
4

(
η − 1

)2
+

1
6

(
η − 1

)3
)

,
(17)

where its error equation is:

en+1 =
(115

81
c3

2 − c2c3 +
1
9

c4

)
e4

n + O(e5
n).

Remark 1. By this way, we can propose many such fourth order methods similar to PM1 and PM2.
Further, the methods PM1 and PM2 are equally good, since they have the same order of convergence
and efficiency. Based on the analysis done using basins of attraction, we find that PM1 is marginally
better than PM2, and hence, we have considered PM1 to propose a higher order method, namely PM3.

2.2. Higher Order Methods

We extend the method PM1 to a new sixth order method called as PM3:

yn = xn −
2
3

f (xn)

f ′(xn)
,

zn = xn −
4 f (xn)

f ′(xn) + 3 f ′(yn)

(
1 +

5
16

(
τ − 1

)2
)(

1 +
1
4

(
η − 1

)2
)

,

xn+1 = zn −
1
2

f (zn)

f ′(xn)

(
3η − 1

)
.

(18)

The following theorem gives the proof of convergence for Method (18).

Theorem 2. Let f : D ⊂ R → R be a sufficiently smooth function having continuous derivatives up to
fourth order. If f (x) has a simple root x∗ in the open interval D and x0 is chosen in a sufficiently small
neighborhood of x∗, then Method (18) is of local sixth order convergence, and it satisfies the error equation:

en+1 =
1
81

(
10c2

2 − 3c3

)(
49c3

2 − 27c2c3 + 3c4

)
e6

n + O(e7
n).

Proof. Taylor expansion of f (zn) about x∗ gives:

f (zn) = f ′(x∗)

[(
49
27 c3

2 − c2c3 +
1
9 c4

)
e4

n − 2
81

(
403c4

2 − 522c2
2c3 + 81c2

3 + 90c2c4 − 12c5

)
e5

n

+ 2
243

(
4529c5

2 − 8835c3
2c3 + 2343c2

2c4 − 891c3c4 + 135c2(25c2
3 − 3c5) + 63c6)e6

n

]
.

(19)



Mathematics 2016, 4, 22 5 of 20

By using Equations (8), (12) and (19) in Equation (18), we obtain:

en+1 =
1
81

(
10c2

2 − 3c3

)(
49c3

2 − 27c2c3 + 3c4

)
e6

n + O(e7
n). (20)

Equation (20) shows that Method (18) has sixth order convergence.

Babajee et al. [7] improved a sixth order Jarratt method to a twelfth order method. Using their
technique, we obtain a new twelfth order method called as PM4:

yn = xn −
2
3

f (xn)

f ′(xn)
,

zn = xn −
4 f (xn)

f ′(xn) + 3 f ′(yn)

(
1 +

5
16

(
τ − 1

)2
)(

1 +
1
4

(
η − 1

)2
)

,

wn = zn −
1
2

f (zn)

f ′(xn)

(
3η − 1

)
,

xn+1 = wn −
f (wn)

f ′(wn)
,

(21)

where f ′(wn) is approximated as follows: in order to reduce one function evaluation, we replace:

f ′(wn) ≈
1

zn − wn

(
f ′(xn)(zn − wn) + 2 f [wn, xn, xn](zn − xn)(wn − xn)

+ ( f [zn, xn, xn]− 3 f [wn, xn, xn])(wn − xn)
2

)
,

f [zn, xn, xn] =
f [zn, xn]− f ′(xn)

zn − xn
, f [zn, xn] =

f (zn)− f (xn)

zn − xn
,

f [wn, xn, xn] =
f [wn, xn]− f ′(xn)

wn − xn
, f [wn, xn] =

f (wn)− f (xn)

wn − xn
.

The following theorem is given without proof, which can be worked out with the help of
Mathematica.

Theorem 3. Let f : D ⊂ R → R be a sufficiently smooth function having continuous derivatives up to
fourth order. If f (x) has a simple root x∗ in the open interval D and x0 is chosen in a sufficiently small
neighborhood of x∗, then Method (21) is of local twelfth order convergence, and it satisfies the error equation:

en+1 =
1

6561

(
10c2

2 − 3c3

)(
49c3

2 − 27c2c3 + 3c4

)2(
10c3

2 − 3c2c3 + 3c4

)
e12

n + O(e13
n ).

Remark 2. The efficiency indices for the methods PM3 and PM4 are EI = 1.565 and
EI = 1.644, respectively.

2.3. Some Existing Fourth Order Methods

Consider the following fourth order optimal methods for the purpose of comparing results:

Jarratt method (JM) [5]:

yn = xn −
2
3

f (xn)

f ′(xn)
, xn+1 = xn −

3 f ′(yn) + f ′(xn)

6 f ′(yn)− 2 f ′(xn)

f (xn)

f ′(xn)
. (22)
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Method of Sharifi-Babajee-Soleymani (SBS1) [12]:

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)

4

(
1

f ′(xn)
+

3
f ′(yn)

)(
1 +

3
8

( f ′(yn)

f ′(xn)
− 1
)2
− 69

64

( f ′(yn)

f ′(xn)
− 1
)3

+
( f (xn)

f ′(yn)

)4
)

.
(23)

Method of Sharifi-Babajee-Soleymani (SBS2) [12]:

yn = xn −
2
3

f (xn)

f ′(xn)
, xn+1 = xn −

f (xn)

4

(
1

f ′(xn)
+

3
f ′(yn)

)(
1 +

3
8

( f ′(yn)

f ′(xn)
− 1
)2

+
1
81

( f (xn)

f ′(yn)

)3
)

. (24)

Method of Soleymani-Khratti-Karimi (SKK) [15]:

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(yn)

(
1 +

( f (xn)

f ′(xn)

)4
)(

2− 7
4

f ′(yn)

f ′(xn)
+

3
4

( f ′(yn)

f ′(xn)

)2
)

.
(25)

Method of Singh-Jaiswal (SJ) [14]:

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
(

17
8
− 9

4
f ′(yn)

f ′(xn)
+

9
8

( f ′(yn)

f ′(xn)

)2
)(

7
4
− 3

4
f ′(yn)

f ′(xn)

)
f (xn)

f ′(xn)
.

(26)

Method of Sharma-Kumar-Sharma (SKS) [13]:

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn −
(
−1

2
+

9
8

f ′(xn)

f ′(yn)
+

3
8

f ′(yn)

f ′(xn)

)
f (xn)

f ′(xn)
.

(27)

Furthermore, consider the following non-optimal method found in Divya Jain (DJ) [10]:

yn = xn −
f (xn)

f ′(xn)
,

zn = xn −
2 f (xn)

f ′(xn) + f ′(yn)
,

xn+1 = zn −
zn − xn

f (zn)− f (xn)
f (zn).

(28)

3. Numerical Examples

In this section, we give numerical results on some test functions to compare the efficiency of
the proposed family of methods with some known methods. Numerical computations have been
carried out in the MATLAB software, rounding to 500 significant digits. Depending on the precision of
the computer, we use the stopping criteria for the iterative process: error = |xN − xN−1| < ε, where
ε = 10−50 and N is the number of iterations required for convergence. d1 represents the total number
of function evaluations. The computational order of convergence (COC) denoted as ρ is given by
(see [18]):

ρ =
ln |(xN − xN−1)/(xN−1 − xN−2)|

ln |(xN−1 − xN−2)/(xN−2 − xN−3)|
.
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Functions taken for our study are mostly used in the literature [7,11], and their simple zeros are
given below:

f1(x) = sin(2 cos x)− 1− x2 + esin(x3), x∗ = −0.7848959876612125352...

f2(x) = xex2 − sin2x + 3 cos x + 5, x∗ = −1.2076478271309189270...

f3(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457...

f4(x) = sin(x) + cos(x) + x, x∗ = −0.4566247045676308244...

f5(x) =
x
2
− sin x, x∗ = 1.8954942670339809471...

f6(x) =
√

x2 + 2x + 5− 2 sin x− x2 + 3, x∗ = 2.3319676558839640103...

f7(x) =
√

x− cos x, x∗ = 0.6417143708728826583...

f8(x) = x2 + sin (
x
5
)− 1

4
, x∗ = 0.4099920179891371316...

f9(x) = e−x sin x + log (1 + x2)− 2, x∗ = 2.4477482864524245021...

f10(x) =
√

x3 + sin x− 30, x∗ = 9.7165019933652005655...

From Tables 1 and 2, we observe that PM1 and PM2 converge in a lesser number of iterations and
with low error when compared to Methods (1) and (4). For equivalent fourth order methods, PM1 and
PM2 converge in a lesser number of iterations for certain functions, for example PM2 performs better
compared to Method (25) for the functions f2, f7, f8, f9 and f10. In terms of the number of iterations
for convergence, PM1 and PM2 are equivalent to JM. Tables 3 and 4 displays the total number of
function evaluations (d1) and the computational order of convergence (COC) ρ for the methods taken
for our study.

Table 1. Comparison of the results for some known methods and proposed methods.

f x0
NM (1) Noor et al. (4) JM (22) SBS1 (23) SBS2 (24) PM1 (16)

N Error N Error N Error N Error N Error N Error

f1
−0.9 7 7.7e – 074 5 2.5e – 093 4 1.6e – 067 4 2.1e – 074 4 4.0e – 063 4 4.4e – 065
−0.7 7 1.0e – 074 5 3.3e – 094 4 1.4e – 070 4 1.2e – 083 4 4.2e – 063 4 7.2e – 066

f2
−1.7 9 4.3e – 054 6 7.2e – 051 5 1.4e – 085 5 2.4e – 072 6 4.3e – 179 5 4.2e – 058
−1.0 8 1.1e – 064 6 6.0e – 123 5 2.0e – 199 5 5.0e – 081 5 1.4e – 097 5 3.8e – 116

f3
1.6 7 7.7e – 063 5 2.0e – 079 4 2.4e – 065 4 5.3e – 059 4 5.6e – 057 4 1.2e – 059
1.0 8 2.8e – 088 5 5.5e – 056 5 1.4e – 187 5 1.3e – 161 5 2.7e – 135 5 2.5e – 149

f4
−0.2 7 6.8e – 096 5 6.5e – 121 4 2.1e – 077 4 1.0e – 058 4 2.9e – 070 4 5.4e – 076
−0.6 6 1.5e – 061 4 6.9e – 052 4 4.3e – 100 4 8.8e – 079 4 2.4e – 090 4 1.2e – 099

f5
1.6 8 6.8e – 087 5 5.4e – 055 5 5.7e – 169 5 4.9e – 148 5 5.5e – 124 5 7.9e – 137
2.0 7 1.8e – 080 5 1.0e – 101 4 7.4e – 079 4 1.3e – 096 4 2.9e – 072 4 1.2e – 074

f6
2.1 6 1.5e – 055 5 1.2e – 142 4 6.5e – 096 4 2.7e – 062 4 5.3e – 080 4 6.3e – 097
2.5 6 9.6e – 055 5 1.3e – 138 4 4.5e – 094 4 7.1e – 073 4 6.1e – 087 4 7.8e – 096

f7
0.2 7 2.0e – 074 5 2.2e – 090 4 8.7e – 063 5 9.5e – 142 4 2.8e – 054 4 2.5e – 060
0.9 7 3.0e – 094 5 7.3e – 121 4 3.5e – 079 4 5.9e – 055 4 1.8e – 073 4 6.9e – 081

f8
0.2 8 8.2e – 076 6 2.8e – 143 5 7.4e – 151 5 1.0e – 118 5 1.0e – 100 5 3.8e – 114
1.5 9 2.7e – 074 6 1.5e – 070 5 3.1e – 074 5 1.3e – 104 5 1.8e – 061 5 5.6e – 065

f9
1.9 7 2.9e – 088 5 4.5e – 110 4 1.0e – 084 5 4.7e – 119 4 9.7e – 057 4 3.1e – 108
2.7 6 5.9e – 058 5 6.1e – 149 4 5.8e – 102 4 7.8e – 066 4 2.9e – 078 4 1.3e – 100

f10
9.9 6 9.5e – 059 5 1.9e – 149 4 3.3e – 100 4 7.7e – 072 4 3.1e – 086 4 1.7e – 101
9.2 6 3.1e – 052 5 3.3e – 131 4 1.9e – 078 5 5.3e – 128 4 3.0e – 058 4 9.4e – 079



Mathematics 2016, 4, 22 8 of 20

Table 2. Comparison of the results for some known methods and proposed methods.

f x0
SKK (25) SJ (26) SKS (27) PM2 (17)

N Error N Error N Error N Error

f1
−0.9 4 4.6e – 062 4 3.0e – 062 4 9.7e – 064 4 2.7e – 066
−0.7 4 9.9e – 060 4 2.9e – 062 4 5.4e – 064 4 1.5e – 067

f2
−1.7 6 6.4e – 147 6 3.9e – 153 6 2.9e – 186 5 6.9e – 075
−1.0 5 1.3e – 075 5 1.9e – 149 5 4.1e – 106 5 9.8e – 127

f3
1.6 4 9.6e – 061 4 1.6e – 054 4 4.6e – 057 4 2.0e – 062
1.0 5 9.5e – 102 5 4.2e – 142 5 1.7e – 140 5 1.7e – 157

f4
−0.2 4 3.5e – 056 4 2.1e – 074 4 3.0e – 075 4 1.3e – 076
−0.6 4 1.7e – 078 4 5.0e – 099 4 2.2e – 099 4 7.4e – 100

f5
1.6 5 3.6e – 101 5 1.0e – 134 5 2.4e – 129 5 1.5e – 143
2.0 4 2.0e – 070 4 1.6e – 070 4 1.2e – 072 4 1.2e – 076

f6
2.1 4 3.8e – 063 4 1.3e – 098 4 1.2e – 097 4 1.9e – 096
2.5 4 1.5e – 075 4 2.0e – 099 4 3.2e – 097 4 6.7e – 095

f7
0.2 5 4.6e – 159 4 1.2e – 057 4 5.2e – 059 4 1.2e – 061
0.9 4 4.8e – 057 4 1.4e – 084 4 2.8e – 082 4 5.9e – 080

f8
0.2 5 1.6e – 082 5 3.7e – 132 5 3.5e – 107 5 1.2e – 120
1.5 6 2.1e – 150 5 3.0e – 054 5 1.2e – 059 5 8.6e – 071

f9
1.9 5 3.2e – 126 4 3.1e – 080 4 3.5e – 086 4 5.9e – 089
2.7 4 2.5e – 064 4 5.7e – 099 4 7.6e – 100 4 3.2e – 101

f10
9.9 4 1.3e – 073 4 7.2e – 104 4 1.9e – 102 4 8.0e – 101
9.2 5 8.0e – 127 4 2.9e – 079 4 5.7e – 079 4 1.3e – 078

Table 3. Total number of function evaluations (d1) and COC (ρ).

f x0
NM (1) Noor et al. (4) JM (22) SBS1 (23) SBS2 (24) PM1 (16)

d1 ρ d1 ρ d1 ρ d1 ρ d1 ρ d1 ρ

f1
−0.9 14 1.99 15 2.99 12 3.99 12 4.00 12 3.99 12 3.99
−0.7 14 1.99 15 2.98 12 3.99 12 3.99 12 3.99 12 3.99

f2
−1.7 18 2.00 18 2.99 15 4.00 15 4.00 18 3.99 15 3.99
−1.0 16 2.00 18 3.00 15 3.99 15 4.00 15 4.00 15 3.99

f3
1.6 14 2.00 15 2.98 12 3.99 12 3.99 12 3.99 12 3.99
1.0 16 1.99 15 2.99 15 4.00 15 3.98 15 3.99 15 3.99

f4
−0.2 14 2.00 15 3.00 12 3.99 12 4.00 12 3.99 12 3.99
−0.6 12 2.01 12 3.01 12 3.98 12 4.00 12 3.99 12 3.99

f5
1.6 16 1.98 15 3.00 15 4.00 15 3.99 15 3.99 15 3.99
2.0 14 1.99 15 2.99 12 3.99 12 3.98 12 4.00 12 3.99

f6
2.1 12 1.99 15 3.00 12 3.99 12 3.99 12 3.99 12 4.00
2.5 12 1.98 15 3.00 12 4.00 12 4.00 12 3.99 12 3.99

f7
0.2 14 2.00 15 2.99 12 4.00 15 4.00 12 3.98 12 3.99
0.9 14 2.00 15 2.98 12 3.98 12 3.99 12 4.00 12 4.01

f8
0.2 16 2.00 18 3.00 15 3.99 15 3.99 15 4.01 15 3.98
1.5 18 1.99 18 2.99 15 3.99 15 4.00 15 3.98 15 3.99

f9
1.9 14 1.98 15 2.99 12 3.98 15 4.00 12 3.99 12 3.99
2.7 12 2.00 15 2.98 12 4.00 12 3.99 12 3.99 12 3.99

f10
9.9 12 1.99 15 3.00 12 4.00 12 3.98 12 3.99 12 3.99
9.2 12 2.00 15 2.99 12 3.99 15 3.99 12 4.00 12 3.99
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Table 4. Total number of function evaluations (d1) and COC (ρ).

f x0
SKK (25) SJ (26) SKS (27) PM2 (17)

d1 ρ d1 ρ d1 ρ d1 ρ

f1
−0.9 12 3.99 12 3.99 12 3.99 12 3.99
−0.7 12 3.99 12 3.99 12 3.99 12 3.99

f2
−1.7 18 3.99 18 3.99 18 3.99 15 3.99
−1.0 15 3.99 15 4.00 15 3.99 15 3.99

f3
1.6 12 3.99 12 4.00 12 3.99 12 4.00
1.0 15 4.00 15 3.99 15 4.00 15 3.99

f4
−0.2 12 4.00 12 4.00 12 3.98 12 3.99
−0.6 12 3.98 12 3.99 12 3.99 12 4.00

f5
1.6 15 3.99 15 3.99 15 3.99 15 3.99
2.0 12 3.99 12 3.99 12 3.99 12 3.99

f6
2.1 12 3.98 12 4.00 12 3.99 12 3.99
2.5 12 4.00 12 4.00 12 3.99 12 3.99

f7
0.2 15 3.99 12 3.99 12 3.98 12 3.99
0.9 12 3.98 12 3.98 12 3.99 12 4.00

f8
0.2 15 4.01 15 3.98 15 4.00 15 3.98
1.5 18 4.00 15 3.99 15 3.99 15 3.99

f9
1.9 15 3.99 12 3.99 12 3.98 12 3.99
2.7 12 3.99 12 4.00 12 3.99 12 3.99

f10
9.9 12 3.99 12 3.99 12 3.99 12 3.99
9.2 15 3.99 12 3.99 12 3.98 12 3.99

Table 5 displays the results for the “ f zero” command in MATLAB, where N1 is the number of
iterations to find the interval containing the root and f (xn) is the error after N number of iterations.
For the f zero command, zeros are considered to be points where the function actually crosses, not just
touches the x-axis. It is observed that the present methods (PM1 and PM2) converge with a lesser
number of total function evaluations than the f zero solver.

Table 5. Results for the f zero command in MATLAB.

f x0 N1 N d1 f (xn) x∗

f1 −0.7 6 6 19 −1.1102e – 016 −0.7849
f2 −1.7 8 7 23 −2.6645e – 015 −1.2076
f3 1.0 9 6 25 0 1.3652
f4 −0.2 13 6 33 −5.5511e – 017 −0.4566
f5 1.6 7 6 21 0 1.8955
f6 2.1 5 5 16 8.8818e – 016 2.3320
f7 0.9 8 4 20 0 0.6417
f8 0.2 12 7 32 −2.7756e – 017 0.4100
f9 1.9 8 4 21 0 2.4477
f10 9.2 3 3 10 0 9.7165

4. A Study on Extraneous Fixed Points

Definition 4. A point z0 is a fixed point of R if R(z0) = z0.
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Definition 5. A point z0 is called attracting if |R′(z0)| < 1, repelling if |R′(z0)| > 1 and neutral if
|R′(z0)| = 1. If the derivative is also zero, then the point is super attracting.

It is interesting to note that all of the above discussed methods can be written as:

xn+1 = xn − G f (xn)u(xn), u =
f
f ′

. (29)

As per the definition, x∗ is a fixed point of this method, since u(x∗) = 0. However, the points
ξ 6= x∗ at which G f (ξ) = 0 are also fixed points of the method, since G f (ξ) = 0; the second term on
the right side of Equation (29) vanishes. Hence, these points ξ are called extraneous fixed points.

Moreover, for a general iteration function given by:

Rp(z) = z− G f (z)u(z), z ∈ C, (30)

the nature of extraneous fixed points can be discussed. Based on the nature of the extraneous fixed
points, the convergence of the iteration process will be determined. For more details on this aspect, the
paper by Vrcsay et al. [19] will be useful. In fact, they investigated that if the extraneous fixed points
are attractive, then the method will give erroneous results. If the extraneous fixed points are repelling
or neutral, then the method may not converge to a root near the initial guess.

In this section, we will discuss the extraneous fixed points of each method for the polynomial
z3 − 1. As G f does not vanish in Theorem 6, there are no extraneous fixed points.

Theorem 6. There are no extraneous fixed points for Newton’s Method (1) and Method (4).

Theorem 7. There are six extraneous fixed points for Jarratt Method (22).

Proof. The extraneous fixed point of Jarratt method for which

G f =
3 f ′(y(z)) + f ′(z)
6 f ′(y(z))− 2 f ′(z)

are found. Upon substituting y(z) = z− 2 f (z)
3 f ′(z) , we get the equation 1+7z3+19z6

2+14z3+11z6 = 0. The extraneous
fixed points are found to be 0.411175± 0.453532i, − 0.598358± 0.129321i, 0.187183± 0.582854i. All of
these fixed points are repelling (since |R′(z0)| > 1).

Theorem 8. There are fifty two extraneous fixed points for Method (23).

Proof. We found for Method (23),

G f =
(

1 + 3 f ′(z)
f ′(y(z))

)(
f ′(z) + 69

64
( f ′(z)− f ′(y(z)))3

f ′(z)2 + f (z)4 f ′(z)
f ′(y(z))4 + 3

8
( f ′(y(z))− f ′(z))2

f ′(z)

)
.

The extraneous fixed points are at found to be

0.385139± 0.301563i, − 0.453731± 0.182759i, 0.0685914± 0.484322i,
− 0.461227, 0.690937, − 1.38146± 1.63298i, − 0.888193± 0.382434i,
− 0.626419± 0.447214i, − 0.616918± 0.228042i, − 0.546519± 0.138633i,
− 0.504031± 0.0757213i, − 0.483094± 0.0349619i, − 0.345468± 0.598527i,
− 0.0785635± 0.774853i, 0.0935008± 0.707441i, 0.140045± 0.571188i,
0.177037± 0.495057i, 0.200558± 0.445297i, 0.205838± 1.20668i,
0.229093± 0.403647i, 0.253758± 0.407757i, 0.299419± 0.396038i,
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0.365488± 0.402274i, 0.461153± 0.411868i, 0.659879± 0.470766i,
0.704721± 0.329989i, 1.56532± 0.938337i.

All of these fixed points are repelling (since |R′(z0)| > 1).

Theorem 9. There are thirty nine extraneous fixed points for Method (24).

Proof. For Method (24),

G f =
(

1 + 3 f ′(z)
f ′(y(z))

)(
f ′(z) + + f (z)3 f ′(z)

81 f ′(y(z))3 +
3
8
( f ′(y(z))− f ′(z))2

f ′(z)

)
.

The extraneous fixed points are at

0.385139± 0.301563i, − 0.453731± 0.182759i, 0.0685914± 0.484322i
3.98917± 6.90945i, − 7.97834, 0.41942± 0.726456i, − 0.838839,
0.277253± 0.480215i, − 0.554505, 0.46341± 0.53288i, − 0.693192± 0.134885i,
0.229782± 0.667764i, 0.367096± 0.467142i, − 0.588105± 0.0843435i,
0.221009± 0.551486i, 0.280074± 0.381388i, − 0.470329± 0.0518574i,
0.190255± 0.433246i, 0.615945± 0.214444i, − 0.493687± 0.426202i,
− 0.122258± 0.640646i.

All of these fixed points are repelling (since |R′(z0)| > 1).

Theorem 10. There are twenty four extraneous fixed points for Method (25).

Proof. We found for Method (25),

G f =
(

1
1+ f ′(y(z))

f ′(z)

)(
f ′(z) + + f (z)4

f ′(z)3

)(
2 f ′(z)− 7

4 f ′(y(z)) + 3
4

f ′(y(z))2

f ′(z)

)
.

The extraneous fixed points are found to be

0.272187± 0.394392i, 0.20546± 0.432916i, − 0.477646± 0.0385246i,
0.676726± 0.202542i, − 0.513769± 0.484791i, − 0.162957± 0.687333i,
− 2.12619± 2.22671i, − 0.51922± 0.277607i, − 0.217805± 0.487789i,
0.210804± 0.604566i, 0.524089± 0.172222i, 2.12832± 2.00454i.

All of these fixed points are repelling (since |R′(z0)| > 1).

Theorem 11. There are eighteen extraneous fixed points for Method (26).

Proof. For Method (26),

G f =
(

17
8 −

9
4

f ′(y(z))
f ′(z) + 9

8

(
f ′(y(z))

f ′(z)

)2)(
7
4 −

3
4

f ′(y(z))
f ′(z)

)
.

The extraneous fixed points are at

−0.333371± 0.577415i, 0.666742, 0.229257± 0.397085i, − 0.458515,
0.710065± 0.231721i, − 0.555709± 0.499074i, − 0.154356± 0.730795i,
0.275117± 0.402579i, − 0.486202± 0.0369693i, 0.211085± 0.439548i.

All of these fixed points are repelling (since |R′(z0)| > 1).

Theorem 12. There are twelve extraneous fixed points for Method (27).
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Proof. For Method (27),

G f =
(
− 1

2 + 9
8

f ′(z)
f ′(y(z)) +

3
8

f ′(y(z))
f ′(z)

)
.

The extraneous fixed points are at

0.289483± 0.382811i, 0.186782± 0.442105i, − 0.476265± 0.0592945i,
0.605298± 0.2466i, − 0.516211± 0.400903i, − 0.0890867± 0.647503i. All of these fixed points

are repelling (since |R′(z0)| > 1).

Theorem 13. There are twenty four extraneous fixed points for Method (16).

Proof. For Method (16),

G f =
(

1
1+3 f ′(y(z))

f ′(z)

)(
f ′(z) + 5

16
( f ′(y(z))− f ′(z))2

f ′(z)

)(
f ′(z) + 1

4 f ′(z) ( f ′(z)− f ′(y(z)))2

f ′(y(z))2

)
.

The extraneous fixed points are at

0.622907± 0.52714i, − 0.767969± 0.275883i, 0.145063± 0.803023i,
0.310217± 0.445061i, − 0.540543± 0.0461255i, 0.230326± 0.491187i,
0.280277± 0.377418i, 0.186715± 0.431436i, − 0.466992± 0.0540183i,
0.602147± 0.210285i, − 0.483186± 0.416332i, − 0.118961± 0.626617i.

All of these fixed points are repelling (since |R′(z0)| > 1).

Theorem 14. There are thirty extraneous fixed points for Method (17).

Proof. For Method (17),

G f =
( 1

1 + 3 f ′(y(z))
f ′(z)

)(
f ′(z) +

5
16

( f ′(y(z))− f ′(z))2

f ′(z)

)
(

f ′(z) +
1
4

f ′(z)
( f ′(z)− f ′(y(z)))2

f ′(y(z))2 +
1
6

f ′(z)
( f ′(z)− f ′(y(z)))3

f ′(y(z))3

)
.

The extraneous fixed points are at

0.280277± 0.377418i, 0.186715± 0.431436i, − 0.466992± 0.0540183i,
0.602147± 0.210285i, − 0.483186± 0.416332i, − 0.118961± 0.626617i,
0.701957± 0.574647i, − 0.848638± 0.320589i, 0.146681± 0.895237i,
0.296076± 0.447202i, − 0.535326± 0.0328086i, 0.23925± 0.48001i,
0.414766± 0.407081i, 0.145159± 0.562739i, − 0.559926± 0.155658i.

All of these fixed points are repelling (since |R′(z0)| > 1).

5. Basins of Attraction

Sections 2 and 3 discussed methods whose roots are in the real domain, that is f : D ⊂ R→ R.
The study can be extended to functions defined in the complex plane f : D ⊂ C→ C having complex
zeros. From the fundamental theorem of algebra, a polynomial of degree n with real or complex
coefficients has n roots, which may or may not be distinct. In such a case, a complex initial guess is
needed for the convergence of complex zeros. Note that we need some basic definitions in order to
study functions for the complex domain with complex zeros. We give below some definitions required
for our study, which are found in [20–22]. Let R : C→ C be a rational map on the Riemann sphere.
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Definition 15. For z ∈ C, we define its orbit as the set orb(z) = {z, R(z), R2(z), ..., Rn(z), ...}.

Definition 16. A periodic point z0 of the period m is such that Rm(z0) = z0, where m is the
smallest integer.

Definition 17. The Julia set of a nonlinear map R(z) denoted by J(R) is the closure of the set of its
repelling periodic points. The complementary of J(R) is the Fatou set F(R).

Definition 18. If O is an attracting periodic orbit of period m, we define the basins of attraction to be
the open set A ∈ C consisting of all points z ∈ C for which the successive iterates Rm(z), R2m(z), ...
converge towards some point of O.

Lemma 19. Every attracting periodic orbit is contained in the Fatou set of R. In fact, the entire basins of
attraction A for an attracting periodic orbit is contained in the Fatou set. However, every repelling periodic orbit
is contained in the Julia set.

In the following subsections, we produce some beautiful graphs obtained for the proposed
methods and for some existing methods using MATLAB [23,24]. In fact, an iteration function is a
mapping of the plane into itself. The common boundaries of these basins of attraction constitute the
Julia set of the iteration function, and its complement is the Fatou set. This section is necessary in this
paper to show how the proposed methods could be considered in polynomiography. In the following
section, we describe the basins of attraction for Newton’s method and some higher order Newton type
methods for finding complex roots of polynomials p1(z) = z3 − 1 and p2(z) = z4 − 1.

5.1. Polynomiographs of p1(z) = z3 − 1

We consider the square region [−2, 2]× [−2, 2], and in this region, we have 160,000 equally-spaced
grid points with mesh h = 0.01. It is composed of 400 columns and 400 rows, which can be related to
the pixels of a computer display, which would represent a region of the complex plane [25]. Each grid
point is used as an initial point z0, and the number of iterations until convergence is counted for each
point. Now, we draw the polynomiographs of p1(z) = z3− 1 with roots α1 = 1, α2 = −0.5000− 0.8660i
and α3 = −0.5000 + 0.8660i. We assign “red color” if each grid point converges to the root α1, “green
color” if they converge to the root α2 and “blue color” if they converge to the root α3 in at most 200
iterations and if |zn − αj| < 10−4, j = 1, 2, 3. In this way, the basins of attraction for each root would be
assigned a characteristic color. If the iterations do not converge as per the above condition for some
specific initial points, we assign “black color”.

Figure 1a–j shows the polynomiographs of the methods for the cubic polynomial p1(z). There are
diverging points for the method of Noor et al., SBS1, SBS2 and SKK. All starting points are converging
for the methods NM, JM, SJ, SKS, PM1 and PM2. In Table 6, we classify the number of converging and
diverging grid points for each iterative method. Note that a point z0 belongs to the Julia set if and only
if the dynamics in a neighborhood of z0 displays sensitive dependence on the initial conditions, so that
nearby initial conditions lead to wildly different behavior after a number of iterations. For this reason,
some of the methods are getting many divergent points. The common boundaries of these basins of
attraction constitute the Julia set of the iteration function.
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Figure 1. Polynomiographs of p1(z). (a) Newton’s method (NM) (1); (b) method of Noor et al. (4);
(c) Jarratt method (JM) (22); (d) method of Sharifi et al. (SBS1) (23); (e) method of Sharifi et al. (SBS2) (24);
(f) method of Soleymani et al. (SKK) (25); (g) method of Singh et al. (SJ) (26); (h) method of Sharma et al.
(SKS) (27); (i) proposed method (PM1) (16); (j) proposed method (PM2) (17).
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Table 6. Comparison of convergent and divergent grids for polynomiographs of p1(z).

Methods Convergent Grid Points Divergent Grid Points
Real Root (α1) Complex Roots (α2 and α3)

NM (1) 56,452 103,548 0
Noor et al. (4) 52,372 98,670 8958

JM (22) 56,474 103,526 0
SBS1 (23) 23,174 44,160 92,666
SBS2 (24) 48,018 91,308 20,674
SKK (25) 34,722 82,590 42,688

SJ (26) 52,587 107,143 0
SKS (27) 55,178 104,822 0
PM1 (16) 55,892 104,108 0
PM2 (17) 54,622 105,378 0

5.2. Polynomiographs of p2(z) = z4 − 1

Next, we draw the polynomiographs of p2(z) = z4 − 1 with roots α1 = 1, α2 = −1, α3 = i and
α4 = −i. We assign yellow color if each grid point converges to the root α1, red color if they converge
to the root α2, green color if they converge to the root α3 and blue color if they converge to the root
α4 in at most 200 iterations and if |zn − αj| < 10−4, j = 1, 2, 3, 4. Therefore, the basins of attraction for
each root would be assigned a corresponding color. If the iterations do not converge as per the above
condition for some specific initial points, we assign black color.

Figure 2a–j shows the polynomiographs of the methods for the quartic polynomial p2(z). There are
diverging points for the method of Noor et al., SBS1, SBS2, SKK, SJ, SKS, PM1 and PM2. All starting
points are convergent for NM and JM. In Table 7, we classify the number of converging and diverging
grid points for each iterative methods. Furthermore, we observe that the SKS, PM1 and PM2 methods
are divergent at a lesser number of grid points than the method of Noor et al., SBS1, SBS2, SKK and SJ.
Table 8 shows that the proposed methods are better than or equal to other comparable methods with
respect to the number of iterations, computational order convergence and error. All of the methods
applied on the cubic and quartic polynomials p1(z) and p2(z) are convergent with real roots as the
starting point.

Table 7. Comparison of convergent and divergent grids for polynomiographs of p2(z).

Methods Convergent Grid Points Divergent Grid Points
Real Roots (α1 and α2) Complex Roots (α3 and α4)

NM (1) 80,010 79,990 0
Noor et al. (4) 68,133 68,120 23,747

JM (22) 80,001 79,999 0
SBS1 (23) 53,792 53,792 52,416
SBS2 (24) 60,098 60,466 39,436
SKK (25) 54,584 54,584 50,832

SJ (26) 79,427 79,427 1146
SKS (27) 79,961 79,959 80
PM1 (16) 79,962 79,979 59
PM2 (17) 79,968 79,954 78
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Figure 2. Polynomiographs of p2(z). (a) Newton’s method (NM) (1); (b) method of Noor et al. (4);
(c) Jarratt method (JM) (22); (d) method of Sharifi et al. (SBS1) (23); (e) method of Sharifi et al. (SBS2) (24);
(f) method of Soleymani et al. (SKK) (25); (g) method of Singh et al. (SJ) (26); (h) method of Sharma et al.
(SKS) (27); (i) proposed method (PM1) (16); (j) proposed method (PM2) (17).
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Table 8. Results for polynomials p1(z), p2(z) with real roots.

Methods p1(z) = z3 − 1 p2(z) = z4 − 1

z0 M ρ Error z0 M ρ Error

NM (1) 1.6 9 1.99 3.3751e – 098 0.7 9 1.99 3.1014e – 066
Noor et al. (4) 1.6 6 3.00 3.5077e – 093 0.7 6 3.00 6.2225e – 061

JM (22) 1.6 5 3.99 2.1482e – 108 0.7 6 4.00 2.0563e – 089
SBS1 (23) 1.6 5 4.00 9.3378e – 099 0.7 7 4.00 3.3321e – 110
SBS2 (24) 1.6 5 3.99 9.4664e – 083 0.7 6 3.99 6.2610e – 055
SKK (25) 1.6 5 3.99 1.6780e – 081 0.7 7 3.99 1.7649e – 092

SJ (26) 1.6 5 3.99 8.5156e – 076 0.7 8 3.99 3.9861e – 076
SKS (27) 1.6 5 3.99 9.3481e – 084 0.7 6 3.99 4.7052e – 093
PM1 (16) 1.6 5 3.99 3.1169e – 092 0.7 6 3.99 2.4833e – 099
PM2 (17) 1.6 5 3.99 2.5579e – 102 0.7 6 3.99 3.4840e – 120

From this comparison based on the basins of attractions for cubic and quartic polynomials, we
could generally say that NM, JM, PM1 and PM2 are more reliable in solving nonlinear equations.
Furthermore, by observing the polynomiographs of p1(z) and p2(z), we find certain symmetrical
patterns for the x-axis and y-axis, where the starting point z0 leads to convergent real or complex pair
of roots of the respective polynomials.

6. An Application Problem

To test our methods, we consider the following Planck’s radiation law problem found in [10,26]:

ϕ(λ) =
8πchλ−5

ech/λkT − 1
, (31)

which calculates the energy density within an isothermal blackbody. Here, λ is the wavelength of
the radiation; T is the absolute temperature of the blackbody; k is Boltzmann’s constant; h is the
Planck’s constant; and c is the speed of light. Suppose we would like to determine wavelength λ,
which corresponds to maximum energy density ϕ(λ). From Equation (31), we get:

ϕ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5
)
= A · B.

It can be checked that a maxima for ϕ occurs when B = 0, that is when:

( (ch/λkT)ech/λkT

ech/λkT − 1

)
= 5.

Here, putting x = ch/λkT, the above equation becomes:

1− x
5
= e−x. (32)

Define:
f (x) = e−x − 1 +

x
5

. (33)

The aim is to find a root of the equation f (x) = 0. Obviously, one of the roots x = 0 is not
taken for discussion. As argued in [26], the left-hand side of Equation (32) is zero for x = 5 and
e−5 ≈ 6.74× 10−3. Hence, it is expected that another root of the equation f (x) = 0 might occur
near x = 5. The approximate root of the Equation (33) is given by x∗ ≈ 4.96511423174427630369.
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Consequently, the wavelength of radiation (λ) corresponding to which the energy density is maximum
is approximated as:

λ ≈ ch
(kT)4.96511423174427630369

.

We apply the methods NM, DJ, PM1, PM2, PM3 and PM4 to solve Equation (33) and compared
the results in Tables 9 and 10. From these tables, we note that the root x∗ is reached faster by the
method PM4 than by other methods. This is due to the fact that PM4 has the highest efficiency index
EI = 1.644.

Table 9. Comparison of the results.

x0
NM (1) DJ (28) PM1 (16)

N d1 ρ Error N d1 ρ Error N d1 ρ Error

4.0 7 14 2.00 1.4e – 101 4 16 4.00 3.3e – 086 4 12 3.99 2.2e – 069
4.5 6 12 1.99 4.5e – 063 4 16 4.00 9.1e – 110 4 12 3.99 2.1e – 093
5.0 6 12 2.00 1.4e – 101 4 16 3.99 8.5e – 185 4 12 3.99 1.3e – 168
5.5 6 12 1.99 5.4e – 066 4 16 4.00 9.9e – 112 4 12 3.99 1.6e – 095

Table 10. Comparison of the results.

x0
PM2 (17) PM3 (18) PM4 (21)

N d1 ρ Error N d1 ρ Error N d1 ρ Error

4.0 4 12 3.99 1.4e – 069 4 16 5.99 3.3e – 224 3 15 12.11 7.7e – 144
4.5 4 12 3.99 1.6e – 093 4 16 5.99 3.3e – 306 3 15 12.03 6.4e – 198
5.0 4 12 3.99 1.1e – 168 3 12 5.99 3.7e – 093 3 15 12.00 0
5.5 4 12 3.99 1.4e – 095 3 12 5.95 3.2e – 052 3 15 11.96 3.2e – 203

Results for the f zero command in MATLAB for this application problem are given in Table 11.

Table 11. Results for Planck’s radiation law problem in f zero.

x0 N1 N d1 f (xn) x∗

4.0 8 6 23 1.1102e – 016 4.9651
4.5 5 5 16 −1.1102e – 016 4.9651
5.0 1 4 6 1.1102e – 016 4.9651
5.5 5 5 15 −1.1102e – 016 4.9651

7. Conclusions

In this work, we have proposed a family of fourth order methods using weight functions.
The fourth order methods are found to be optimal as per the Kung–Traub conjuncture. Further,
we have extended one of the methods to sixth and twelfth order methods with four and five function
evaluations, respectively. The extraneous fixed points for the fourth order methods and for some
existing methods are discussed in detail. By analysis using basins of attraction, our methods PM1 and
PM2 are found to be superior to the methods of Noor et al. [16], SBS1, SBS2, SKK and SJ; specifically,
the methods of SBS1, SBS2 and SKK are very badly scaled in both cubic and quartic polynomials.
Moreover, PM1 and PM2 are better than other compared methods, except Newton’s method and
Jaratt’s method, which perform equally well. We have also verified our methods (PM1, PM2, PM3,
PM4), NM and DJ on Planck’s radiation law problem, and the results show that PM4 is more efficient
than other compared methods.
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