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Abstract: It is shown in literature that sensor placement at the extrema of Proper Orthogonal
Decomposition (POD) modes is efficient and leads to accurate reconstruction of the field of quantity of
interest (velocity, pressure, salinity, etc.) from a limited number of measurements in the oceanography
study. In this paper, we extend this approach of sensor placement and take into account measurement
errors and detect possible malfunctioning sensors. We use the 24 hourly spatial wind field simulation
data sets simulated using the Weather Research and Forecasting (WRF) model applied to the Maine
Bay to evaluate the performances of our methods. Specifically, we use an exclusion disk strategy to
distribute sensors when the extrema of POD modes are close. We demonstrate that this strategy can
improve the accuracy of the reconstruction of the velocity field. It is also capable of reducing the
standard deviation of the reconstruction from noisy measurements. Moreover, by a cross-validation
technique, we successfully locate the malfunctioning sensors.

Keywords: proper orthogonal decomposition; sensor placement; uncertainty; anomaly detection

1. Introduction

Recently, a great effort has been carried out by scientists in developing efficient methods for sensor
placement and ocean state reconstruction based on limited measurements that can be used to improve
ocean forecasting, at least for regional modelling. One of the efficient methods is the Proper Orthogonal
Decomposition (POD), see [1–5], also known as the method of Empirical Orthogonal Functions (EOFs),
which have been applied to analyze the measurement data and to develop reconstruction procedures
for gappy data sets, see [6–16].

The success of POD approaches depends on a low-dimensional representation of the ocean
processes, given the wide spatio-temporal scales, from 1 mm for molecular processes to more than
10 km for fronts, eddies and filaments, and corresponding characteristic times from 1 s to several
months ([17]). In [18], the authors showed that only a few spatio-temporal POD modes are sufficient
to describe the most energetic ocean dynamics. In particular, they demonstrated that the extrema of
the POD spatial modes are very good locations for sensor placement and accurate field reconstruction
given a limited number of observing stations and assuming perfect measurements. In [19], the authors
proposed to place sensors at extrema but away from each other within a given distance as they found
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that the extrema of POD spatial modes can be very close and thus produce redundant measurements.
See also [20] for a similar approach.

The objective of this paper is to extend the method developed in [19] by investigating the effect
of noisy/bad measurements as well as detecting malfunctioning sensors, when POD basis is known.
As in [19], we will also impose “declustering” constraints on the sensors as we have observed to
avoid redundant measurements at near-by points. Because we use the extrema of the first few
modes, empirically, the condition number of the matrix in the linear system of gappy pod method
is reduced as shown in [18,19]. We find that this strategy also helps to reduce the reconstruction
error. We will consider realistic scenarios, such as measurement uncertainty and bad data from
malfunctioning sensor(s). In order to demonstrate the new ideas, we will test our method with
the 24 hourly spatial wind field simulation data sets for the Maine Bay. For simplicity, we assume
that the noisy measurement data is perturbed by some Gaussian processes. When the perturbation
is at the magnitude of the measurements, we assume that the sensor is malfunctioning and thus
will be excluded from reconstruction. With a heuristic cross-validation technique, we can locate the
malfunctioning sensor effectively.

We remark that there are many other ways to accommodate noise into models and predict the state
space from reconstruction—for example, Kalman filtering [21], empirical interpolation method [22,23],
and proper generalized decomposition [24,25]. The purpose of our paper is to understand the effect
of noisy and bad measurements within the POD framework. Here, we first obtain POD modes from
exact complete field and use these POD modes to perform a least square fitting of limited data with
the noise in the measurement. This procedure of reconstructing missing or gappy data with POD
basis was developed by Everson and Sirovich [26]. While not discussed here, we also note that if the
original snapshot ensemble has incomplete data, the POD basis vectors can be computed using an
iterative gappy approach [19,27,28]. For bad measurements, we do not perform a Gappy-POD analysis.
Instead, we still use the POD modes obtained from the exact field. We alter some measurements
of a certain sensor which is regarded as malfunctioning. This is definitely an ideal case for the
POD analysis since the bad measurements may significantly change the POD basis. Nevertheless,
this ideal testbed provides a basic understanding of the robustness of POD analysis for functioning
sensor measurements.

The rest of the paper is organized as follows. In Section 2, we first review the sensor placement
strategy based on POD and introduce how to apply an exclusion disk approach to avoid redundant
measurements. We discuss in Section 3 the effects of noisy measurements and the effects of exclusion
disk approach. In Section 4, we show how to detect a malfunctioning sensor before we summarize and
end the paper.

2. A POD-Based Sensor Placement Strategy

The key idea of the POD method is to expand a state variable u(x, t) at certain time t in a spatial
domain X as an orthogonal series

u (x, t) =
∞

∑
k=1

ak (t)Φk (x) , (1)

where Φk (x)’s are orthonormal spatial modes in L2(X). Expansion (1) is normally truncated after K
terms, which represents the dimensionality of the system. Then, number K is usually small so that
we have a low dimensional representation of the process u(x, t) while ||u(·, t)−∑K

k=1 ak (t)Φk|| ≤
ε||u(·, t)|| and ε is small, say ε = 0.1.

In this paper, we will use POD modes obtained from the exact complete field and hence they
are “perfect” POD modes. We first review the Gappy-POD before we discuss our sensor placement
strategy and the effect of noisy measurements.
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2.1. A Review of Gappy-POD

In practice, u (x, t) may be only obtained at limited locations. To deal with such data (called
gappy data), a so-called Gappy-POD was proposed in [7] in order to reconstruct gappy flow fields
from a limited number of measurements. As a brief review, we adopt the introduction in [19,27].
Consider a scalar gappy field ũ (x, t) as a point-wise product of an indicator function m (x, t) and a
complete field u (x, t), i.e.,

ũ (x, t) def
= m (x, t) u (x, t) . (2)

The indicator function m (x, t) has values 0 or 1 depending on whether we have data at the
corresponding space-time location or not. The goal is to construct a reliable estimator û (x, t) of u (x, t)
in the space-time regions where m (x, t) = 0. In the Gappy-POD framework, it is done applying the
method of least-squares: we look for a representation of û in the form

û (x, t) =
K

∑
k=1

bk (t)Φk (x) , (3)

where Φk are normalized POD spatial modes of û and bk are unknown coefficients. Note that in
practice, Φk’s, are extracted from simulation or data assimilation results, and in this paper they are
from the perfect model (1). Then, for each snapshot (e.g., each time t), we minimize the approximation
error between u and û in the gappy norm

‖u− û‖2
m

def
= (u− û, u− û)m = (u, u)m − 2

K

∑
k=1

bk(u, Φk)m +
K

∑
k=1

K

∑
j=1

bkbj(Φk, Φj)m, (4)

where the (gappy) inner product (·, ·)m is defined as

(a, b)m
def
=
∫

X
m (x, t) a (x) b (x) dX, ∀a, b ∈ L2 (X) . (5)

Minimizing Equation (4) with respect to bk yields the linear system

Mb = f , (6)

where Mkj
def
= (Φk, Φj)m and f j

def
= (u, Φj)m. Then, we can obtain time-coefficient vector b =

[b1(t), ..., bK(t)] from Equation (6).

Remark 1. One should be careful to solve Equation (6) efficiently as the condition number of M varies
with m(x, t). The matrix M reduces to a K× K identity matrix in case of complete data, i.e., m(x, t) = 1.
For gappy data, the condition number of M can be small or large depending on the m(x, t). When the
condition number of M is large, we still formally write Equation (6), but we will solve its corresponding
overdetermined system rather than Equation (6). If M is singular, we seek the pseudoinverse. From
now on, we keep this notation and will not state it explicitly.

Based on the aforementioned POD modes and the reconstruction procedure, the authors in [27,29]
demonstrated that effective sensor placement strategies can be designed. In this case, the indicator
function m(x, t) is defined through sensor locations, i.e., m(lj, t) = 1 if there is a (working) sensor at
position lj—zero otherwise. The only difference is that the complete field u is now substituted by
sensor measurements d

(
lj, t
)

(j = 1, ..., Ns), where lj denotes the position of the j-th sensor and Ns is
the total number of sensors. The resulting linear system will be also denoted by Equation (6).

In this work, we use the 24 hourly spatial wind field simulation data sets in Maine Bay
simulated from the Weather Research and Forecasting (WRF) model. The data we use contain 24
snapshots of the wind field within an area of about 35 km × 25 km from 13 July 2004 00:00 a.m.
to 14 July 2004 00:00 a.m. The computation domain and grid are illustrated in Figure 1. The time
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difference between two successive snapshots is 1 h, namely, snapshot 1 corresponds to data on 13
July 2004 at 0:00 a.m., snapshot 2 corresponds to the data on 13 July 2004 at 1:00 a.m., etc. The
temporal average of the window field is subtracted from the field, hence we concentrate on the
fluctuation. By cross-correlating different snapshots obtained from the wind simulations, we construct
the covariance matrix and its eigen-decomposition. From the eigen-decomposition, we obtain the
POD eigenvalues and corresponding hierarchical modes. Here, we use Equations (2)–(6) to obtain
Gappy-POD modes. We note that in [27], the procedure Equations (2)–(6) is iterated when the
measurement data is incomplete. Here, we focus on complete data but with noise.
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Figure 1. Computation domain and discretization mesh.

In Figure 2, we show the normalized POD eigenvalue spectra of total velocity. For illustration, in
Figure 3, we show the contour plots of the first and second POD spatial modes for total velocity.
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Figure 2. Normalized POD spectra of total velocity.
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In case of complete data, e.g., m(x, t) = 1, the L2 error of the truncated approximation for each
snapshot in Equation (4) is:

εc
def
= ‖u− û‖2 =

∥∥∥∥∥ N

∑
k=1

akΦk −
K

∑
k=1

akΦk

∥∥∥∥∥
2

=

∥∥∥∥∥ N

∑
k=K+1

akΦk

∥∥∥∥∥
2

=
N

∑
k=K+1

a2
k , (7)

due to the orthogonality of Φk and N is the total number of snapshots, i.e., N = 24. We note that the εc

is the lower bound of the error by Gappy-POD method. Since we use gappy data to reconstruct the
entire field, the coefficients for the POD models may not be optimal, the coefficients bk’s in Equation (3)
are not equal to ak’s in Equation (1). Therefore, the reconstruction error for a fixed snapshot (fixed t) is:

εg
def
=

∥∥∥∥∥ N

∑
k=1

akΦk −
K

∑
k=1

bkΦk

∥∥∥∥∥
2

=

∥∥∥∥∥ K

∑
k=1

akΦk −
K

∑
k=1

bkΦk

∥∥∥∥∥
2

+

∥∥∥∥∥ N

∑
k=K+1

akΦk

∥∥∥∥∥
2

=
K

∑
k=1

(ak − bk)
2 +

N

∑
k=K+1

a2
k .

(8)
In [18,19], the authors demonstrate numerically the convergence of the reconstruction error of the

Gappy-POD method: εg becomes closer to εc as the number of sensors increases. More specifically,
∑K

k=1(ak − bk)
2 → 0 as number of sensors increases. In our data, the first six POD modes (K = 6)

capture more than 90% percent of the total energy. Throughout the paper, we set K = 6 and we select
locations for sensors based on these six modes.
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Figure 3. Contour plots of the first (left) and second (right) POD mode.

2.2. Constrained Sensor Placement

We first consider the problem of finding the best possible locations where to deploy a limited
number of sensors to reconstruct the entire field with existing exact POD modes. Authors in [18,30]
demonstrate that the extrema of POD modes are very good locations, when examining reconstruction
error in l2 norm, see Equations (10) and (11), to place the sensors for regional ocean forecasting.
Yang et al. [19] further introduced the exclusion cylinder to further increase the accuracy of the
reconstruction by reducing the redundancy as locations of extrema of different POD modes can
be very close. As shown in [19], the exclusion cylinder also helps to reduce the variance of the
reconstructed field if the measurement is polluted by the noise. In this paper we employ the exclusion
disk instead of the exclusion cylinder for a 2D model. Specially, we impose the following constraint
that the distances between each two sensors are larger than R. That is, if we place two sensors at the
point (x1, y1) and another point (x2, y2), then the following restraint is imposed:√

(x1 − x2)2 + (y1 − y2)2 > R. (9)
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In our wind model, the radius R will be expressed in kilometers. This is achieved by a greedy algorithm:
we start with a empty set F = ∅, then for the next candidate location (x∗, y∗) of the sensor (an extrema
of a specific mode), we examine whether

√
(x∗ − xi)2 + (y∗ − yi)2 > R holds for each point (xi, yi)

in F. If not, we neglect this location and examine the next candidate. When a qualified new sensor
location (x̃, ỹ) is found, we expand F as F ← F ∪ (x̃, ỹ).

We distribute the sensors evenly according to the extrema of the POD modes we use to reconstruct
the field. In Table 1, we provide examples of sensor distribution for a fixed number of sensors with
different numbers of POD modes reconstructing the field. With a configuration denoted as “2s-2s-2s-2s”
with s = 1, we distribute 2, 2, 2 and 2 sensors associated with the POD modes 1, 2, 3 and 4, respectively.
Similarly a configuration denoted as “4s-4s-4s-4s-4s-4s” with s = 2 means that we use eight sensors in
connection with each POD mode from 1 to 6. Here, we employ this even distribution to demonstrate
our idea. The numerical results in [18,19] demonstrate that different configuration of sensor placement
will not induce significant difference in the reconstruction.

Table 1. Sensor network configurations in modal space with a fixed number of sensors. A configuration
denoted as “4s-4s-4s-4s-4s-4s” with s = 2 means that we are using 8 sensors in connection with each
POD mode from 1 to 6.

Four Modes Six Modes Eight Modes

6s-6s-6s-6s 4s-4s-4s-4s-4s-4s 3s-3s-3s-3s-3s-3s-3s-3s

In our numerical tests, we fix the number of sensors to 24 and use six modes (hence the
configuration is “4-4-4-4-4-4”) to reconstruct the entire field to see the effect of the exclusion disk
size in reconstructing the total velocity. Figure 4 presents the locations of the sensors with different
sizes of the exclusion disk. The contour is for the first POD mode. With larger R, the radius of the disk,
the sensors are distributed further away from each other.

Remark 2. To avoid redundant measurements, the authors [25] suggested an approach without using
the exclusion disk strategy. However, the approach therein only allows one sensor per mode.

To determine the effect of the different exclusion disk size, we define the reconstruction error as
(for each flow snapshot)

e2
i

def
=

∫
X
(Ûi −Ui)

2dX∫
X
(U)2

i dX
, (10)

where Ui is the measurement of total velocity at the i-th snapshot and Ûi denotes the estimator of the
i-th snapshot obtained by solving Equation (6). Here, the integration is performed on the computational
domain in physical space. To measure the reconstruction error within the whole period of interest, we
also define the time-averaged error as

e2
avg

def
=

1
S

S

∑
i=1

e2
i , (11)

where S denotes the total number of available snapshots within the considered time interval.
The time-averaged error for R = 0, 0.5, 1, 2 are presented in Table 2. Similar to the cases studied in [19]
a proper selection of the size of exclusion disk helps to improve the accuracy of the reconstruction.
In addition, the size of the exclusion disk need not be very large as we can observe that the error for
R = 0.5, 1, 2 are quite close. In addition, the condition number of matrix M in Equation (6) decreases as
R increases, which is consistent with the results reported in [18,19]. As an illustration, we compare the
exact velocity field of the first snapshot (13 July 2004 00:00 a.m.) with those reconstructed with R = 0
and R = 2, respectively in Figure 5. It is demonstrated in Figure 5 that the reconstruction of the wind
field at the first snapshot is more accurate with the exclusion disk than that without the exclusion disk.
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Figure 4. Location of 24 sensors placed on the extrema of the first six modes superimposed on the
contour of the first mode with different size of the exclusion disk. (a) R = 0; (b) R = 0.5; (c) R = 1;
(d) R = 2.

Table 2. e2
avg and condition number of M (Cond(M)) for different exclusion disk size R.

R Value R = 0 R = 0.5 R = 1 R = 2

e2
avg 17.27% 10.11% 9.26% 9.02%

Cond(M) 83.34 22.01 16.45 10.10
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Figure 5. Comparison of the reconstructed field of the first snapshot with different sizes of exclusion
disks. (a) exact; (b) R = 0, absolute errors; (c) R = 2, absolute errors.

3. Uncertainty in Measurements

In this section, we investigate the uncertainty of the reconstructed field assuming that the sensor
signals are perturbed by random noise. Specifically, we assume that the total velocity detected by the
sensors has the form

d(li, t; ξ) = U(li, t) + ξ(li, t), (12)

where U(li, t) is a total velocity to be evaluated and ξ(li, t) are Ns i.i.d. zero-mean Gaussian
processes with standard deviation σξ(li, t). To accommodate the measurement uncertainty, we
look for an estimation of the total velocity by random temporal modes and deterministic spatial
modes [19,31,32] as:

Uest(x, tj; ξ) =
K

∑
k=1

ηk
(
tj; ξ

)
Φk (x) . (13)

Here, Φk are obtained by decomposing full wind field perfect data from Equation (3). The notation
Uest(x, tj; ξ) emphasizes that the stochastic total velocity Equation (13) depends on all random variables

ξ
def
= [ξ(l1, t1), ..., ξ(lNs , tS)], (14)

characterizing the measurement errors. Now, let us consider the following functional (more general
data assimilation schemes based on quadratic regularization functionals can be considered).

J [ηk] = 〈
Ns

∑
i=1

[d(li, t; ξ)−
K

∑
j=1

ηj(t; ξ)Φj(li)]
2〉, (15)
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where 〈·〉 denotes an average with respect to the joint probability density of the random vector ξ.
Minimization of Equation (15) with respect to ηk (t; ξ) yields the following Euler-Lagrange equations

K

∑
k=1

ηk(t; ξ)
Ns

∑
i=1

Φk(li)Φm(li) =
Ns

∑
i=1

d(li, t; ξ)Φm(li). (16)

This system can be recast in same form as Equation (6), i.e.,

K

∑
j=1

(Φi, Φj)mηj = (d, Φi)m, (17)

provided the gappy inner product Equation (5) is defined in terms of the sensor locations; that is,
m(x, t) = 1 if x = lj—zero otherwise. Denote by M−1 the (pseudo)inverse of M, then we obtain a
unique solution to Equation (17) in the form

ηi(t; ξ) =
K

∑
j=1

(M−1)ij(d, Φj)m. (18)

Next, we calculate the standard deviation of the estimate Equation (13) based statistical
assumption of the measurements errors. Specifically, by using the independence hypothesis of the
measurement errors, we obtain

σUest(x, t) def
=

√√√√ K

∑
i=1

K

∑
k=1

(〈(ηi − 〈ηi〉)(ηk − 〈ηk〉)〉Φi(x)Φk(x), (19)

where we have from Equations (6), (18) and (12) that

〈ηi〉 =
K

∑
j=1

(M−1)ij(〈d〉, Φj)m, ηi − 〈ηi〉 =
K

∑
j=1

(M−1)ij(ξ(li, t), Φj(x))m. (20)

Substituting Equations (20) into (19) yields the following final formula

σUest(x, t) =

√√√√ K

∑
i=1

K

∑
k=1

K

∑
l=1

K

∑
n=1

Ns

∑
j=1

σ2
ξ (lj, t)(M−1)il(M−1)knΦl(lj)Φn(lj)Φi(x)Φk(x). (21)

3.1. Results for Uniform Measurement Errors

Let us assume that the standard deviation of the measurement errors is a constant, i.e., σξ(x, t) = σξ .
In this case, Equation (21) simplifies to

σUest(x) = σξ

√√√√ Ns

∑
j=1

( K

∑
n=1

K

∑
k=1

(M−1)knΦn(lj)Φk(x)
)2

, (22)

yielding to a time-independent standard deviation of the estimate Equation (13).
Figure 6 reports on results of standard deviation calculations given σξ = 1.0 for different sensor

placement strategies. In particular, we fix the POD modes used to reconstruct the field and compare
the standard deviation of the reconstructed field with different sizes of exclusion disks. The results of
reconstructing the first snapshot are presented. As the reconstructions of all snapshots are similar, we
will not present the corresponding results here.
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In Table 3, we compare the averages and the maximum of σUest(x) over all x. Numerical results
indicate that the exclusion disk method indeed yields smaller standard deviations of the reconstructed
field. Clearly, a suitable R helps to reduce the standard deviation Equation (22) in the prediction.

Table 3. Average and maximum of σUest (x, t) over all snapshots given σξ = 1 for different R.

R Value R = 0 R = 0.5 R = 1 R = 2

maximum of σUest (x, t) 1.383 0.9868 0.9305 0.6744
average of σUest (x, t) 0.1781 0.1104 0.1100 0.1031
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Figure 6. Standard deviation of the reconstructed snapshot 1 based on noisy measurement which does
not depends on the wind field. (a) R = 0; (b) R = 0.5; (c) R = 1; (d) R = 2.

3.2. Results for Non-Uniform Measurement Errors

Next, we study a more realistic case in which the standard deviation of ξ(x, t) is functionally
dependent on the total velocity U(x, t). The simplest case is σξ(x, t) = αU(x, t), where α is a positive
constant (U ≥ 0 by construction). From Equation (21), we readily derive the following analytical
expression for the standard deviation of Uest

σUest(x, t) = α

√√√√ Ns

∑
j=1

U2(lj, t)
( K

∑
n=1

K

∑
k=1

(M−1)knΦn(lj)Φk(x)
)2

. (23)



Mathematics 2016, 4, 26 11 of 15

Here, we obtain numerical results with a typical value α = 1.0 corresponding to 100% errors
in measuring velocity. We can then compute the average and maximum standard deviation of the
estimate Uest. As an illustration, the results of these calculations are summarized in Figure 7 for the
snapshot 1.

Similarly, the exclusion disk indeed yields smaller standard deviations of the reconstructed as the
results shown in Table 4. Here, the results indicate that suitable R also helps to reduce the standard
deviation in the prediction. We note that here σUest(x, t) is linearly dependent on α. For smaller α, the
results can be obtained by simply scaling the numbers in Table 4 and the patterns of the distribution of
the deviation is the same as those shown in Figure 7. In the next section, we discuss the case that the
measurement error from a sensor is considerably large which means the sensor is malfunctioning.
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Figure 7. Standard deviation of the reconstructed snapshot 1 based on noisy measurement which
depends on the wind field. (a) R = 0; (b) R = 0.5; (c) R = 1; (d) R = 2.

Table 4. Average and maximum of σUest (x, t) over all snapshots given σξ(li, t) = U(li, t) for different R.

R Value R = 0 R = 0.5 R = 1 R = 2

maximum of σUest (x, t) 9.147 7.756 5.929 5.820
average of σUest (x, t) 1.694 1.296 1.294 1.098
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4. Detecting the Malfunctioning Sensor

In this section, we assume that one sensor is not functioning correctly, and all the other sensors
provide accurate data. Specifically, we assume that the observed gappy field for each snapshot is
ũ(t) = u(t) + δl∗u(t), where δl∗u(t) has only one non-zeros entry corresponding to the contaminated
sensor at location l∗. The coefficients b̃ for the POD modes minimize the gappy norm ‖ũ− ˜̂u‖m, where
˜̂u is the reconstruction from the Gappy-POD. For each snapshot, given sufficient number of sensors as
well as appropriate exclusive disk radius, we have that at each sensor location lj, |u(lj)− û(lj)|2 ∼

O
(

1
Ng

∑N
k=K+1 a2

k

)
, where Ng is the number of grid on the computational domain. Hence, if |δl∗u|2 is

much larger than O( 1
Ng

∑N
k=K+1 a2

k), we can expect big discrepancy between u and û at l∗. We thus

propose the following heuristic cross-validation method to detect the malfunctioning sensor :

1. For each sensor location li, we use the data from l1, l2, . . ., li−1, li+1, . . ., lNs to reconstruct the
field and denote the reconstructed valued at this point as Û(li, t). Here, we take Ns = 24 as we
consider only the first 24 snapshot from our data.

2. Compute the difference between the reconstructed value and the observed value at each li:
ε(li, tj) = |Û(li, tj)−U(li, tj)|, j = 1, 2, · · · , Ns.

3. Compare the sum of ε(li, t) over all snapshots at each li. When εi =
√

∑Ns
j=1 ε2(li, tj) is large, we

claim that the i-th sensor is not functioning well.

Remark 3. The sensors identified by the aforementioned method are candidates for erroneous sensors.
Even if only one of the sensors is not working, we can select more than one sensors as candidates for
further check. In addition, this method can be applied to the case when more than one sensors are
not working.

As a demonstration, we consider a case when Ns = 24 sensors are located based on the extrema
of the first six POD modes with the exclusion disk of radius R = 2.0. To test our cross-validation
method, we perturb the measurement from the third sensor with noise and keep the measurements
from the rest of sensors unaltered. Moreover, we consider a scenario that this third sensor is working
properly from t = 1 until t = 5, then for the remaining time, the error of this sensor is (1) 25% and
(2) 50% for our perturbation. We intend to examine whether our method is capable of identifying
the malfunctioning sensor. Figure 8a demonstrates that when the error of the sensor is 25%, ε3 is
apparently much larger than other εi, which implies that the third sensor may be malfunctioning (after
certain snapshot). By examining ε(l3, t) for each t as in Figure 8b, we are also able to identify the time
when this sensor starts to malfunction. Figure 9 demonstrates similar results when the error of the
sensor is 50%. Comparing Figures 8 and 9, we observe that when the error becomes larger, the anomaly
of this third sensor becomes easier to detect with our approach. Notice that more numerical results (not
shown here) imply that the cross-validation method works when any of the sensor is malfunctioning.
We select the third sensor to be anomaly only for demonstration purpose.
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Figure 8. Detecting the malfunctioning sensor by examining ε(li, t) when the error of the sensor is 25%.
(a) εi for all i; (b) ε(l3, t) for all t.
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Figure 9. Detecting the malfunctioning sensor by examining ε(li, t) when the error of the sensor is 50%.
(a) εi for all i; (b) ε(l3, t) for all t.

5. Conclusions

In this work, we extended the exclusion cylinder strategy to sensor placements for reconstructing
two-dimensional wind fields. Our numerical tests suggested that a proper size of area exclusion
could improve the quality of the field reconstruction from measurements. We addressed the issue
of uncertainty in the measurements by adding Gaussian noise in the 24 hourly spatial wind field
simulation data sets in Maine Bay simulated from the WRF model that provided the testbed for
our work. In particular, we considered two cases: the uncertainty in the measurements is constant
everywhere or is varying in space and time. We checked the standard deviation of the reconstructed
field and found proper exclusion disk sizes can reduce the errors of the reconstruction filed. With
cross-validation techniques, we located a malfunctioning sensor that provides large measurement
errors. The numerical results in this paper suggest that the exclusion disk strategy within the
Gappy-POD framework can be applied to optimize sensor placements in two-dimensional problems.
As future work, we expect to work towards our ultimate goal to develop real-time adaptive sampling
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for wind forecasting, which helps to find optimal locations for wind turbines with measurements from
functioning sensors.
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