Article

Three Identities of the Catalan-Qi Numbers

Mansour Mahmoud ${ }^{1}$ and Feng Qi ${ }^{2,3,4, *}$
1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; mansour@mans.edu.eg
2 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300387, China
3 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China
4 Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China
* Correspondence: qifeng618@gmail.com; Tel.: +86-22-83956502

Academic Editor: Alexander Berkovich
Received: 12 April 2016; Accepted: 18 May 2016; Published: 26 May 2016

Abstract

In the paper, the authors find three new identities of the Catalan-Qi numbers and provide alternative proofs of two identities of the Catalan numbers. The three identities of the Catalan-Qi numbers generalize three identities of the Catalan numbers.

Keywords: identity; Catalan number; Catalan-Qi number; Catalan-Qi function; alternative proof; hypergeometric series; generalization

MSC: Primary 05A19; Secondary 11B75, 11B83, 33B15, 33C05, 33C20

1. Introduction

It is stated in [1] that the Catalan numbers C_{n} for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as "In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?" (for other examples, see [2,3]) the solution of which is the Catalan number C_{n-2}. The Catalan numbers C_{n} can be generated by

$$
\begin{equation*}
\frac{1-\sqrt{1-4 x}}{2 x}=\sum_{n=0}^{\infty} C_{n} x^{n} \tag{1}
\end{equation*}
$$

Three of explicit equations of C_{n} for $n \geq 0$ read that

$$
C_{n}=\frac{(2 n)!}{n!(n+1)!}=\frac{4^{n} \Gamma(n+1 / 2)}{\sqrt{\pi} \Gamma(n+2)}={ }_{2} F_{1}(1-n,-n ; 2 ; 1)
$$

where

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t, \quad \Re(z)>0
$$

is the classical Euler gamma function and

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

is the generalized hypergeometric series defined for complex numbers $a_{i} \in \mathbb{C}$ and $b_{i} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$, for positive integers $p, q \in \mathbb{N}$, and in terms of the rising factorials $(x)_{n}$ defined by

$$
(x)_{n}= \begin{cases}x(x+1)(x+2) \ldots(x+n-1), & n \geq 1 \\ 1, & n=0\end{cases}
$$

and

$$
(-x)_{n}=(-1)^{n}(x-n+1)_{n}
$$

A generalization of the Catalan numbers C_{n} was defined in [4-6] by

$$
{ }_{p} d_{n}=\frac{1}{n}\binom{p n}{n-1}=\frac{1}{(p-1) n+1}\binom{p n}{n}
$$

for $n \geq 1$. The usual Catalan numbers $C_{n}={ }_{2} d_{n}$ are a special case with $p=2$.
In combinatorial mathematics and statistics, the Fuss-Catalan numbers $A_{n}(p, r)$ are defined in $[7,8]$ as numbers of the form

$$
A_{n}(p, r)=\frac{r}{n p+r}\binom{n p+r}{n}=r \frac{\Gamma(n p+r)}{\Gamma(n+1) \Gamma(n(p-1)+r+1)}
$$

It is obvious that

$$
A_{n}(2,1)=C_{n}, \quad n \geq 0 \quad \text { and } \quad A_{n-1}(p, p)=p d_{n}, \quad n \geq 1
$$

There have existed some literature such as [8-20] on the investigation of the Fuss-Catalan numbers $A_{n}(p, r)$.

In (Remark 1 [21]), an alternative and analytical generalization of the Catalan numbers C_{n} and the Catalan function C_{x} was introduced by

$$
C(a, b ; z)=\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{z} \frac{\Gamma(z+a)}{\Gamma(z+b)}, \quad \Re(a), \Re(b)>0, \quad \Re(z) \geq 0
$$

In particular, we have

$$
C(a, b ; n)=\left(\frac{b}{a}\right)^{n} \frac{(a)_{n}}{(b)_{n}}
$$

For the uniqueness and convenience of referring to the quantity $C(a, b ; x)$, we call the quantity $C(a, b ; x)$ the Catalan-Qi function and, when taking $x=n \geq 0$, call $C(a, b ; n)$ the Catalan-Qi numbers. It is clear that

$$
C\left(\frac{1}{2}, 2 ; n\right)=C_{n}, \quad n \geq 0
$$

In (Theorem 1.1 [22]), among other things, it was deduced that

$$
A_{n}(p, r)=r^{n} \frac{\prod_{k=1}^{p} C\left(\frac{k+r-1}{p}, 1 ; n\right)}{\prod_{k=1}^{p-1} C\left(\frac{k+r}{p-1}, 1 ; n\right)}
$$

for integers $n \geq 0, p>1$, and $r>0$. In the recent papers [21-31], some properties, including the general expression and a generalization of an asymptotic expansion, the monotonicity, logarithmic convexity, (logarithmically) complete monotonicity, minimality, Schur-convexity, product and determinantal inequalities, exponential representations, integral representations, a generating function, and connections with the Bessel polynomials and the Bell polynomials of the second kind, of the Catalan numbers C_{n}, the Catalan function C_{x}, and the Catalan-Qi function $C(a, b ; x)$ were established.

In 1928, J. Touchard ([32] p. 472) and ([33] p. 319) derived an identity

$$
\begin{equation*}
C_{n+1}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k} 2^{n-2 k} C_{k} \tag{2}
\end{equation*}
$$

where $\lfloor x\rfloor$ denotes the floor function the value of which is the largest integer less than or equal to x. For the proof of Equation (2) by virtue of the generating function (1), see ([33] pp. 319-320).

In 1987, when attending a summer program at Hope College, Holland, Michigan in USA, D. Jonah ([34] p. 214) and ([33] pp. 324-326) presented that

$$
\begin{equation*}
\binom{n+1}{m}=\sum_{k=0}^{m}\binom{n-2 k}{m-k} C_{k}, \quad n \geq 2 m, \quad n \in \mathbb{N} \tag{3}
\end{equation*}
$$

In 1990, Hilton and Pedersen ([34] p. 214) and ([33] p. 327) generalized Identity (3) for an arbitrary real number n and any integer $m \geq 0$.

In 2009, J. Koshy ([33] p. 322) provided another recursive equation

$$
\begin{equation*}
C_{n}=\sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{k-1}\binom{n-k+1}{k} C_{n-k} \tag{4}
\end{equation*}
$$

We observe that Identity (4) can be rearranged as

$$
\sum_{k=\left\lceil\frac{n-1}{2}\right\rceil}^{n}(-1)^{k}\binom{k+1}{n-k} C_{k}=0
$$

where $\lceil x\rceil$ stands for the ceiling function which gives the smallest integer not less than x.
The aims of this paper are to generalize Identities (2)-(4) for the Catalan numbers C_{n} to ones for the Catalan-Qi numbers $C(a, b ; n)$.

Our main results can be summarized up as the following theorem.
Theorem 1. For $a, b>0, n \in \mathbb{N}$, and $n \geq 2 m \geq 0$, the Catalan-Qi numbers $C(a, b ; n)$ satisfy

$$
\begin{align*}
{ }_{3} F_{2}\left(a, \frac{1-n}{2},-\frac{n}{2} ; b, \frac{1}{2} ; 1\right) & =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}\binom{a}{b}^{k} C(a, b ; k) \tag{5}\\
{ }_{4} F_{3}\left(1, a,-m, m-n ; b, \frac{1-n}{2},-\frac{n}{2} ; \frac{b}{4 a}\right) & =\frac{1}{\binom{n}{m}} \sum_{k=0}^{m}\binom{n-2 k}{m-k} C(a, b ; k) \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
&{ }_{3} F_{2}\left(1-b-n,-\frac{n+1}{2},-\frac{n}{2} ;-n-1,1-a-n ; \frac{4 a}{b}\right) \\
&=\frac{1}{C(a, b ; n)} \sum_{k=\left\lceil\frac{n-1}{2}\right\rceil}^{n}(-1)^{n-k}\binom{k+1}{n-k} C(a, b ; k) \tag{7}
\end{align*}
$$

As by-products, alternative proofs for Identities (2) and (4) are also supplied in next section.

2. Proofs

We are now in a position to prove Theorem 1 and Identities (2) and (4).
Proof of Identity (5). By the definition (1), we have

$$
{ }_{3} F_{2}\left(a, \frac{1-n}{2},-\frac{n}{2} ; b, \frac{1}{2} ; 1\right)=\sum_{k=0}^{\infty} \frac{(a)_{k}\left(\frac{1-n}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}}{(b)_{k}\left(\frac{1}{2}\right)_{k} k!}
$$

Using the relations

$$
\left(\frac{1-n}{2}\right)_{k}=0, \quad k>\left\lfloor\frac{n}{2}\right\rfloor, \quad n=1,3,5, \ldots
$$

and

$$
\left(-\frac{n}{2}\right)_{k}=0, \quad k>\left\lfloor\frac{n}{2}\right\rfloor, \quad n=2,4,6, \ldots
$$

we obtain

$$
{ }_{3} F_{2}\left(a, \frac{1-n}{2},-\frac{n}{2} ; b, \frac{1}{2} ; 1\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{\left(\frac{1-n}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}}{\left(\frac{1}{2}\right)_{k} k!}\left(\frac{a}{b}\right)^{k} C(a, b ; k)
$$

Further using the relations

$$
\left(\frac{z}{2}\right)_{r}\left(\frac{z+1}{2}\right)_{r}=4^{-r}(z)_{2 r}, \quad(-z)_{r}=(-1)^{r} r!\binom{z}{r}, \quad \text { and } \quad\left(\frac{1}{2}\right)_{r}=\frac{(2 r)!}{r!4^{r}}
$$

we acquire

$$
\frac{\left(\frac{1-n}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}}{\left(\frac{1}{2}\right)_{k} k!}=\binom{n}{2 k}
$$

The proof of Identity (5) is thus complete.
Proof of Identity (6). By the definition (1), we have

$$
{ }_{4} F_{3}\left(1, a,-m, m-n ; b, \frac{1-n}{2},-\frac{n}{2} ; \frac{b}{4 a}\right)=\sum_{k=0}^{m} \frac{(-m)_{k}(m-n)_{k}}{4^{k}\left(\frac{1-n}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}} C(a, b ; k)
$$

Since

$$
4^{k}\left(\frac{1-n}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}=\frac{n!}{(n-2 k)!}
$$

and

$$
(-m)_{k}(m-n)_{k}=\frac{m!(n-m)!}{(m-k)!(n-m-k)!}
$$

it follows that

$$
\frac{(-m)_{k}(m-n)_{k}}{4^{k}\left(\frac{1-n}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}}=\frac{\binom{n-2 k}{m-k}}{\binom{n}{m}}
$$

Hence, we can derive Identity (6).
Proof of Identity (7). By the definition (1), we have

$$
\begin{aligned}
{ }_{3} F_{2}\left(1-b-n,-\frac{n+1}{2},-\frac{n}{2} ;-n-1,1-a-n ; \frac{4 a}{b}\right)- & 1 \\
& =\sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor} \frac{(1-b-n)_{k}\left(-\frac{n+1}{2}\right)_{k}\left(-\frac{n}{2}\right)_{k}}{(-n-1)_{k}(1-a-n)_{k} k}\left(\frac{4 a}{b}\right)^{k}
\end{aligned}
$$

where

$$
\left(-\frac{n}{2}\right)_{k}=0, \quad k>\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n+1}{2}\right\rfloor, \quad n=2,4,6, \ldots
$$

and

$$
\left(-\frac{n+1}{2}\right)_{k}=0, \quad k>\left\lfloor\frac{n+1}{2}\right\rfloor, \quad n=1,3,5, \ldots
$$

Using the relations

$$
(-z)_{r}=(-1)^{r}(z-r+1)_{r} \quad \text { and } \quad(z)_{r+s}=(z)_{r}(z+r)_{s}
$$

we have

$$
(1-a-n)_{k}=(-1)^{k} \frac{(a)_{n}}{(a)_{n-k}}
$$

As a result, it follows that

$$
\begin{aligned}
{ }_{3} F_{2}\left(1-b-n,-\frac{n+1}{2},-\frac{n}{2} ;-n-1,1-a-n ; \frac{4 a}{b}\right) & -1 \\
& =\frac{1}{C(a, b ; n)} \sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{k}\binom{n-k+1}{k} C(a, b ; n-k)
\end{aligned}
$$

which can be reformulated as Identity (7). The proof of Identity (7) is complete.
Proof of Identity (2). Putting $a=\frac{1}{2}$ and $b=2$ in Equation (5) results in

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k} 2^{-2 k} C_{k}={ }_{3} F_{2}\left(\frac{1}{2}, \frac{1-n}{2},-\frac{n}{2} ; 2, \frac{1}{2} ; 1\right)={ }_{2} F_{1}\left(\frac{1-n}{2},-\frac{n}{2} ; 2 ; 1\right)
$$

Now applying Kummer's transformation equation

$$
{ }_{2} F_{1}(\alpha, \beta ; 1+\alpha-\beta ; z)=(1+z)^{-\alpha}{ }_{2} F_{1}\left(\frac{\alpha}{2}, \frac{\alpha+1}{2} ; 1+\alpha-\beta ; \frac{4 z}{(z+1)^{2}}\right)
$$

to $\alpha=-n, \beta=-n-1$, and $z=1$ leads to

$$
{ }_{2} F_{1}\left(\frac{1-n}{2},-\frac{n}{2} ; 2 ; 1\right)=2^{-n}{ }_{2} F_{1}(-1-n,-n ; 2 ; 1)=2^{-n} C_{n+1}
$$

The proof of Identity (2) is complete.
Proof of Identity (4). Putting $a=\frac{1}{2}$ and $b=2$ in Equation (7) gives

$$
C_{n}\left[1-{ }_{3} F_{2}\left(-1-n,-\frac{n+1}{2},-\frac{n}{2} ;-n-1, \frac{1}{2}-n ; 1\right)\right]=\sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{k-1}\binom{n-k+1}{k} C_{n-k}
$$

that is,

$$
{ }_{3} F_{2}\left(-1-n,-\frac{n+1}{2},-\frac{n}{2} ;-n-1, \frac{1}{2}-n ; 1\right)={ }_{2} F_{1}\left(-\frac{n+1}{2},-\frac{n}{2} ; \frac{1}{2}-n ; 1\right)
$$

Applying the summation equation

$$
{ }_{2} F_{1}(\ell, h ; c ; 1)=\frac{\Gamma(c) \Gamma(c-\ell-h)}{\Gamma(c-\ell) \Gamma(c-h)}, \quad \Re(c-\ell-h)>0
$$

to $c=\frac{1}{2}-n, \ell=-\frac{n+1}{2}$, and $h=-\frac{n}{2}$ yields

$$
{ }_{2} F_{1}\left(-\frac{n+1}{2},-\frac{n}{2} ; \frac{1}{2}-n ; 1\right)=\frac{\Gamma\left(\frac{1}{2}-n\right)}{\Gamma\left(1-\frac{n}{2}\right) \Gamma\left(\frac{1-n}{2}\right)}
$$

Further employing the duplication equation

$$
\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=\sqrt{\pi} 2^{1-2 z} \Gamma(2 z)
$$

at $z=\frac{1}{2}-n$ gives us

$$
{ }_{2} F_{1}\left(-\frac{n+1}{2},-\frac{n}{2} ; \frac{1}{2}-n ; 1\right)=\frac{\Gamma\left(\frac{1}{2}-n\right)}{2^{n} \sqrt{\pi} \Gamma(1-n)}=0, \quad n \in \mathbb{N}
$$

where $\frac{1}{\Gamma(m)}$ has zeros at $m=0,-1,-2, \ldots$ Identity (4) is thus proved.
Remark 1. From Equations (3) and (6), we can conclude

$$
{ }_{4} F_{3}\left(1, \frac{1}{2},-m, m-n ; 2, \frac{1-n}{2},-\frac{n}{2} ; 1\right)=\frac{n+1}{n+1-m}
$$

and

$$
{ }_{3} F_{2}\left(-\frac{1}{2},-m-1, m-n-1 ;-1-\frac{n}{2},-\frac{n+1}{2} ; 1\right)=\frac{n-2 m}{n+m}
$$

for $n \geq 2 m$ and $n \in \mathbb{N}$.
Remark 2. Please note, we recommend a newly-published paper [35] which is closely related to the Catalan numbers C_{n}.

Remark 3. This paper is a slightly revised version of the preprint [36] and has been reviewed by the survey article [37].

3. Conclusions

Three new identities for the Catalan-Qi numbers are discovered and alternative proofs of two identities for the Catalan numbers are provided. The three identities for the Catalan-Qi numbers generalize three identities for the Catalan numbers.

Acknowledgments: The authors appreciate the handling editor and anonymous referees for their careful corrections to and valuable comments on the original version of this paper.
Author Contributions: The authors contributed equally to this work.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stanley, R.; Weisstein, E.W. Catalan Number. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/CatalanNumber.html (accessed on 11 September 2015).
2. Mansour, T.; Shattuck, M. Restricted partitions and generalized Catalan numbers. Pure Math. Appl. 2011, 22, 239-251.
3. Mansour, T.; Sun, Y. Identities involving Narayana polynomials and Catalan numbers. Discret. Math. 2009, 309, 4079-4088.
4. Hilton, P.; Pedersen, J. Catalan numbers, their generalization, and their uses. Math. Intell. 1991, 13, 64-75.
5. Klarner, D.A. Correspondences between plane trees and binary sequences. J. Comb. Theory 1970, 9, 401-411.
6. McCarthy, J. Catalan numbers. Letter to the editor: "Catalan numbers, their generalization, and their uses" by P. Hilton and J. Pedersen. Math. Intell. 1992, 14, 5.
7. Fuss, N.I. Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat. Nova Acta Acad. Sci. Petropolitanae 1791, 9, 243-251.
8. Fuss-Catalan Number. Available online: https://en.wikipedia.org/wiki/Fuss-Catalan_number (accessed on 11 September 2015).
9. Alexeev, N.; Götze, F.; Tikhomirov, A. Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 2010, 50, 121-132.
10. Aval, J.-C. Multivariate Fuss-Catalan numbers. Discret. Math. 2008, 308, 4660-4669.
11. Bisch, D.; Jones, V. Algebras associated to intermediate subfactors. Invent. Math. 1997, 128, 89-157.
12. Gordon, I.G.; Griffeth, S. Catalan numbers for complex reflection groups. Am. J. Math. 2012, 134, 1491-1502.
13. Lin, C.H. Some combinatorial interpretations and applications of Fuss-Catalan numbers. ISRN Discret. Math. 2011, doi:10.5402/2011/534628.
14. Liu, D.Z.; Song, C.W.; Wang, Z.D. On explicit probability densities associated with Fuss-Catalan numbers. Proc. Am. Math. Soc. 2011, 139, 3735-3738.
15. Młotkowski, W. Fuss-Catalan numbers in noncommutative probability. Doc. Math. 2010, 15, 939-955.
16. Młotkowski, W.; Penson, K.A.; Życzkowski, K. Densities of the Raney distributions. Doc. Math. 2013, 18, 1573-1596.
17. Pak, I. Catalan Numbers Page. Available online: http://www.math.ucla.edu/~pak/lectures/Cat/pakcat. htm (accessed on 11 September 2015).
18. Przytycki, J.H.; Sikora, A.S. Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. J. Combin. Theory Ser. A 2000, 92, 68-76.
19. Stump, C. q,t-Fuß-Catalan Numbers for Complex Reflection Groups. In Proceedings of the 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Viña del Mar, Chile, 23-27 June 2008; pp. 295-306.
20. Stump, C. q, t-Fuß-Catalan numbers for finite reflection groups. J. Algebraic Combin. 2010, 32, 67-97.
21. Qi, F.; Shi, X.T.; Liu, F.F. An Exponential Representation for a Function Involving the Gamma Function and Originating From the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.1086.4486 (accessed on 3 August 2015).
22. Qi, F. Two Product Representations and Several Properties of the Fuss-Catalan Numbers. Available online: http:/ /dx.doi.org/10.13140/RG.2.1.1655.6004 (accessed on 8 September 2015).
23. Liu, F.F.; Shi, X.T.; Qi, F. A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Glob. J. Math. Anal. 2015, 3, 140-144.
24. Qi, F. Asymptotic Expansions, Complete Monotonicity, and Inequalities of the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.4371.6321 (accessed on 22 August 2015).
25. Qi, F.; Guo, B.N. Logarithmically complete monotonicity of a function related to the Catalan-Qi function. Acta Univ. Sapientiae Math. 2016, in press.
26. Qi, F.; Guo, B.N. Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers. Cogent Math. 2016, 3, 1179379.
27. Qi, F.; Mahmoud, M.; Shi, X.T.; Liu, F.F. Some Properties of the Catalan-Qi Function Related to the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.3810.7369 (accessed on 3 September 2015).
28. Qi, F.; Shi, X.T.; Liu, F.F. An Integral Representation, Complete Monotonicity, and Inequalities of the Catalan Numbers. Available online: http://dx.doi.org/10.13140/RG.2.1.3754.4806 (accessed on 12 August 2015).
29. Qi, F.; Shi, X.T.; Liu, F.F. Several Formulas for Special Values of the Bell Polynomials of the Second Kind and Applications. Available online: http://dx.doi.org/10.13140/RG.2.1.3230.1927 (accessed on 12 August 2015).
30. Qi, F.; Shi, X.T.; Mahmoud, M.; Liu, F.F. Schur-Convexity of the Catalan-Qi Function. Available online: http:/ /dx.doi.org/10.13140/RG.2.1.2434.4802 (accessed on 3 September 2015).
31. Shi, X.T.; Liu, F.F.; Qi, F. An integral representation of the Catalan numbers. Glob. J. Math. Anal. 2015, 3, 130-133.
32. Touchard, J. Sur Certaines équations Fonctionnelles. In Proceedings of the International Mathematical Congress, Toronto, ON, Canada, 11-16 August 1924; Volume 1, pp. 465-472.
33. Koshy, T. Catalan Numbers with Applications; Oxford University Press: Oxford, UK, 2009.
34. Hilton, P.; Pedersen, J. The ballot problem and Catalan numbers. Nieuw Arch. Voor Wiskd. 1990, 8, 209-216.
35. Simsek, Y. Analysis of the Bernstein basis functions: An approach to combinatorial sums involving binomial coefficients and Catalan numbers. Math. Methods Appl. Sci. 2015, 38, 3007-3021.
36. Mahmoud, M.; Qi, F. Three Identities of Catalan-Qi Numbers. Available online: http://dx.doi.org/10. 13140/RG.2.1.3462.9607 (accessed on 12 September 2015).
37. Qi, F. Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers. Available online: http:/ /dx.doi.org/10.13140/RG.2.1.1778.3128 (accessed on 24 November 2015).
(c) 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
