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1. Introduction

It is stated in [1] that the Catalan numbers Cn for n ≥ 0 form a sequence of natural numbers
that occur in tree enumeration problems such as “In how many ways can a regular n-gon be divided
into n − 2 triangles if different orientations are counted separately?” (for other examples, see [2,3])
the solution of which is the Catalan number Cn−2. The Catalan numbers Cn can be generated by

1−
√

1− 4x
2x

=
∞

∑
n=0

Cnxn (1)

Three of explicit equations of Cn for n ≥ 0 read that

Cn =
(2n)!

n!(n + 1)!
=

4nΓ(n + 1/2)√
π Γ(n + 2)

= 2F1(1− n,−n; 2; 1)

where
Γ(z) =

∫ ∞

0
tz−1e−t d t, <(z) > 0

is the classical Euler gamma function and

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞

∑
n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

zn

n!

is the generalized hypergeometric series defined for complex numbers ai ∈ C and
bi ∈ C \ {0,−1,−2, . . . }, for positive integers p, q ∈ N, and in terms of the rising factorials (x)n

defined by

(x)n =

{
x(x + 1)(x + 2) . . . (x + n− 1), n ≥ 1

1, n = 0
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and
(−x)n = (−1)n(x− n + 1)n

A generalization of the Catalan numbers Cn was defined in [4–6] by

pdn =
1
n

(
pn

n− 1

)
=

1
(p− 1)n + 1

(
pn
n

)
for n ≥ 1. The usual Catalan numbers Cn = 2dn are a special case with p = 2.

In combinatorial mathematics and statistics, the Fuss-Catalan numbers An(p, r) are defined
in [7,8] as numbers of the form

An(p, r) =
r

np + r

(
np + r

n

)
= r

Γ(np + r)
Γ(n + 1)Γ(n(p− 1) + r + 1)

It is obvious that
An(2, 1) = Cn, n ≥ 0 and An−1(p, p) = pdn, n ≥ 1

There have existed some literature such as [8–20] on the investigation of the Fuss-Catalan
numbers An(p, r).

In (Remark 1 [21]), an alternative and analytical generalization of the Catalan numbers Cn and
the Catalan function Cx was introduced by

C(a, b; z) =
Γ(b)
Γ(a)

(
b
a

)z Γ(z + a)
Γ(z + b)

, <(a),<(b) > 0, <(z) ≥ 0

In particular, we have

C(a, b; n) =
(

b
a

)n
(a)n

(b)n

For the uniqueness and convenience of referring to the quantity C(a, b; x), we call the quantity
C(a, b; x) the Catalan-Qi function and, when taking x = n ≥ 0, call C(a, b; n) the Catalan-Qi numbers.
It is clear that

C
(

1
2

, 2; n
)
= Cn, n ≥ 0

In (Theorem 1.1 [22]), among other things, it was deduced that

An(p, r) = rn ∏
p
k=1 C

( k+r−1
p , 1; n

)
∏

p−1
k=1 C

( k+r
p−1 , 1; n

)
for integers n ≥ 0, p > 1, and r > 0. In the recent papers [21–31], some properties,
including the general expression and a generalization of an asymptotic expansion, the monotonicity,
logarithmic convexity, (logarithmically) complete monotonicity, minimality, Schur-convexity, product
and determinantal inequalities, exponential representations, integral representations, a generating
function, and connections with the Bessel polynomials and the Bell polynomials of the second
kind, of the Catalan numbers Cn, the Catalan function Cx, and the Catalan-Qi function C(a, b; x)
were established.

In 1928, J. Touchard ([32] p. 472) and ([33] p. 319) derived an identity

Cn+1 =
b n

2 c

∑
k=0

(
n
2k

)
2n−2kCk (2)

where bxc denotes the floor function the value of which is the largest integer less than or equal to x.
For the proof of Equation (2) by virtue of the generating function (1), see ([33] pp. 319–320).
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In 1987, when attending a summer program at Hope College, Holland, Michigan in USA,
D. Jonah ([34] p. 214) and ([33] pp. 324–326) presented that(

n + 1
m

)
=

m

∑
k=0

(
n− 2k
m− k

)
Ck, n ≥ 2m, n ∈ N (3)

In 1990, Hilton and Pedersen ([34] p. 214) and ([33] p. 327) generalized Identity (3) for an arbitrary
real number n and any integer m ≥ 0.

In 2009, J. Koshy ([33] p. 322) provided another recursive equation

Cn =
b n+1

2 c

∑
k=1

(−1)k−1
(

n− k + 1
k

)
Cn−k (4)

We observe that Identity (4) can be rearranged as

n

∑
k=d n−1

2 e
(−1)k

(
k + 1
n− k

)
Ck = 0

where dxe stands for the ceiling function which gives the smallest integer not less than x.
The aims of this paper are to generalize Identities (2)–(4) for the Catalan numbers Cn to ones for

the Catalan-Qi numbers C(a, b; n).
Our main results can be summarized up as the following theorem.

Theorem 1. For a, b > 0, n ∈ N, and n ≥ 2m ≥ 0, the Catalan-Qi numbers C(a, b; n) satisfy

3F2

(
a,

1− n
2

,−n
2

; b,
1
2

; 1
)
=
b n

2 c

∑
k=0

(
n
2k

)(
a
b

)k

C(a, b; k) (5)

4F3

(
1, a,−m, m− n; b,

1− n
2

,−n
2

;
b

4a

)
=

1
(n

m)

m

∑
k=0

(
n− 2k
m− k

)
C(a, b; k) (6)

and

3F2

(
1− b− n,−n + 1

2
,−n

2
;−n− 1, 1− a− n;

4a
b

)
=

1
C(a, b; n)

n

∑
k=d n−1

2 e
(−1)n−k

(
k + 1
n− k

)
C(a, b; k) (7)

As by-products, alternative proofs for Identities (2) and (4) are also supplied in next section.

2. Proofs

We are now in a position to prove Theorem 1 and Identities (2) and (4).

Proof of Identity (5). By the definition (1), we have

3F2

(
a,

1− n
2

,−n
2

; b,
1
2

; 1
)
=

∞

∑
k=0

(a)k
( 1−n

2
)

k

(
− n

2
)

k

(b)k
( 1

2
)

kk!

Using the relations (
1− n

2

)
k
= 0, k >

⌊
n
2

⌋
, n = 1, 3, 5, . . .
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and (
−n

2

)
k
= 0, k >

⌊
n
2

⌋
, n = 2, 4, 6, . . .

we obtain

3F2

(
a,

1− n
2

,−n
2

; b,
1
2

; 1
)
=
b n

2 c

∑
k=0

( 1−n
2
)

k

(
− n

2
)

k( 1
2
)

kk!

(
a
b

)k

C(a, b; k)

Further using the relations(
z
2

)
r

(
z + 1

2

)
r
= 4−r(z)2r, (−z)r = (−1)rr!

(
z
r

)
, and

(
1
2

)
r
=

(2r)!
r!4r

we acquire ( 1−n
2
)

k

(
− n

2
)

k( 1
2
)

kk!
=

(
n
2k

)
The proof of Identity (5) is thus complete.

Proof of Identity (6). By the definition (1), we have

4F3

(
1, a,−m, m− n; b,

1− n
2

,−n
2

;
b

4a

)
=

m

∑
k=0

(−m)k(m− n)k

4k
( 1−n

2
)

k

(
− n

2
)

k

C(a, b; k)

Since

4k
(

1− n
2

)
k

(
−n

2

)
k
=

n!
(n− 2k)!

and

(−m)k(m− n)k =
m!(n−m)!

(m− k)!(n−m− k)!

it follows that
(−m)k(m− n)k

4k
( 1−n

2
)

k

(
− n

2
)

k

=
(n−2k

m−k )

(n
m)

Hence, we can derive Identity (6).

Proof of Identity (7). By the definition (1), we have

3F2

(
1− b− n,−n + 1

2
,−n

2
;−n− 1, 1− a− n;

4a
b

)
− 1

=
b n+1

2 c

∑
k=1

(1− b− n)k
(
− n+1

2
)

k

(
− n

2
)

k
(−n− 1)k(1− a− n)kk!

(
4a
b

)k

where (
−n

2

)
k
= 0, k >

⌊
n
2

⌋
=

⌊
n + 1

2

⌋
, n = 2, 4, 6, . . .

and (
−n + 1

2

)
k
= 0, k >

⌊
n + 1

2

⌋
, n = 1, 3, 5, . . .

Using the relations

(−z)r = (−1)r(z− r + 1)r and (z)r+s = (z)r(z + r)s
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we have

(1− a− n)k = (−1)k (a)n

(a)n−k

As a result, it follows that

3F2

(
1− b− n,−n + 1

2
,−n

2
;−n− 1, 1− a− n;

4a
b

)
− 1

=
1

C(a, b; n)

b n+1
2 c

∑
k=1

(−1)k
(

n− k + 1
k

)
C(a, b; n− k)

which can be reformulated as Identity (7). The proof of Identity (7) is complete.

Proof of Identity (2). Putting a = 1
2 and b = 2 in Equation (5) results in

b n
2 c

∑
k=0

(
n
2k

)
2−2kCk = 3F2

(
1
2

,
1− n

2
,−n

2
; 2,

1
2

; 1
)
= 2F1

(
1− n

2
,−n

2
; 2; 1

)
Now applying Kummer’s transformation equation

2F1(α, β; 1 + α− β; z) = (1 + z)−α
2F1

(
α

2
,

α + 1
2

; 1 + α− β;
4z

(z + 1)2

)
to α = −n, β = −n− 1, and z = 1 leads to

2F1

(
1− n

2
,−n

2
; 2; 1

)
= 2−n

2F1(−1− n,−n; 2; 1) = 2−nCn+1

The proof of Identity (2) is complete.

Proof of Identity (4). Putting a = 1
2 and b = 2 in Equation (7) gives

Cn

[
1− 3F2

(
−1− n,−n + 1

2
,−n

2
;−n− 1,

1
2
− n; 1

)]
=
b n+1

2 c

∑
k=1

(−1)k−1
(

n− k + 1
k

)
Cn−k

that is,

3F2

(
−1− n,−n + 1

2
,−n

2
;−n− 1,

1
2
− n; 1

)
= 2F1

(
−n + 1

2
,−n

2
;

1
2
− n; 1

)
Applying the summation equation

2F1(`, h; c; 1) =
Γ(c)Γ(c− `− h)
Γ(c− `)Γ(c− h)

, <(c− `− h) > 0

to c = 1
2 − n, ` = − n+1

2 , and h = − n
2 yields

2F1

(
−n + 1

2
,−n

2
;

1
2
− n; 1

)
=

Γ
( 1

2 − n
)

Γ
(
1− n

2
)
Γ
( 1−n

2
)

Further employing the duplication equation

Γ(z)Γ
(

z +
1
2

)
=
√

π 21−2zΓ(2z)
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at z = 1
2 − n gives us

2F1

(
−n + 1

2
,−n

2
;

1
2
− n; 1

)
=

Γ
( 1

2 − n
)

2n
√

π Γ(1− n)
= 0, n ∈ N

where 1
Γ(m)

has zeros at m = 0,−1,−2, . . . . Identity (4) is thus proved.

Remark 1. From Equations (3) and (6), we can conclude

4F3

(
1,

1
2

,−m, m− n; 2,
1− n

2
,−n

2
; 1
)
=

n + 1
n + 1−m

and

3F2

(
−1

2
,−m− 1, m− n− 1;−1− n

2
,−n + 1

2
; 1
)
=

n− 2m
n + m

for n ≥ 2m and n ∈ N.

Remark 2. Please note, we recommend a newly-published paper [35] which is closely related to the
Catalan numbers Cn.

Remark 3. This paper is a slightly revised version of the preprint [36] and has been reviewed by the
survey article [37].

3. Conclusions

Three new identities for the Catalan-Qi numbers are discovered and alternative proofs of two
identities for the Catalan numbers are provided. The three identities for the Catalan-Qi numbers
generalize three identities for the Catalan numbers.
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