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Abstract: We analyze the generalized time-dependent Schrödinger equation for the force
free case, as a generalization, for example, of the standard time-dependent Schrödinger equation,
time fractional Schrödinger equation, distributed order time fractional Schrödinger equation,
and tempered in time Schrödinger equation. We relate it to the corresponding standard Schrödinger
equation with effective potential. The general form of the effective potential that leads to
a standard time-dependent Schrodinger equation with the same solution as the generalized one
is derived explicitly. Further, effective potentials for several special cases, such as Dirac delta,
power-law, Mittag-Leffler and truncated power-law memory kernels, are expressed in terms of the
Mittag-Leffler functions. Such complex potentials have been used in the transport simulations in
quantum dots, and in simulation of resonant tunneling diode.
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1. Introduction

A series of interesting and unusual properties of the state-of-the art low-dimensional quantum
systems requires new approaches in mathematical modeling by means of the Schrödinger equation.
Different generalizations of the standard Schrödinger equation by introducing either time fractional
derivatives or space fractional derivatives have been introduced for this reason [1–14]. It has been
shown that their solutions can be represented by using the Mittag-Leffler (M-L) and Fox H-functions.
In our recent work [15], we considered time-dependent Schrödinger equation with memory kernel
and we show that such generalized equation contains many already investigated special cases,
such as standard Schrödinger equation, time fractional Schrödinger equation with Caputo fractional
derivative, and distributed order Schrödinger equation. We also show that the probability distribution
function |ψ(x, t)|2 is not conserved. In [5], an effective potential is introduced in the standard
Schrödinger equation and it is shown that this approach is equivalent to the time fractional Schrödinger
equation with Caputo fractional derivative (see also [16]) giving the wave function of the same form.
The effective potential approach is of great importance for elucidating for example, dissipative quantum
transport processes in quantum dots [17,18]. This motivates us to further extend and upgrade the
quantum transport modeling by means of generalized Schrödinger equation.
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In the present paper, we derive a general form of the imaginary effective potential which, at same
boundary conditions, relates the standard Schrödinger equation to the generalized Schrödinger
equation with a memory kernel. Throughout the paper, the solutions with separable variables
are analyzed. We show that by using the appropriately derived effective potential, one may consider
a generalized Schrödinger equation with a memory kernel instead of the standard time-dependent
Schrödinger equation. The advantage of this approach is that the solutions of generalized Schrödinger
equation can be represented in an elegant manner by means of the M-L and Fox H-functions,
enabling a comprehensive mathematical modeling for a wide class of problems. We further derive
the explicit form of effective potential for several memory kernels, such as Dirac delta, power-law,
Mittag-Leffler and truncated power-law memory kernels, expressing the effective potential in terms of
the M-L functions. The results obtained in this work provide a strong mathematical basis for modeling
and simulations of problems related to inelastic scattering, such as dissipative quantum transport
in low-dimensional quantum systems. As the limitations of the conventional approaches in both,
mathematical modeling and simulations of the state-of-the-art applications are evident, introducing the
imaginary effective potential is expected to contribute to a more sophisticated insight of such problems.

This paper is organized as follows. In Section 2 we give some results for the generalized
Schrödinger equation with memory kernel. The standard Schrödinger equation with an effective
potential is analyzed in Section 3. The effective potential for which the standard Schrödinger equation
has same solution as the one for the generalized Schrödinger equation is obtained. For different forms
of the memory kernel we derive the effective potential in terms of the M-L functions and infinite series
in three parameter M-L functions. The summary is given in Section 4.

2. Generalized Schrödinger Equation

In our recent work [15], we analyze time-dependent Schrödinger-like equation with memory
kernel which in the force free case is given by

ıh̄
∫ t

0
dτγ(t− τ)

∂

∂τ
ψ(x, τ) = − h̄2

2M
∂2

∂x2 ψ(x, t), (1)

where γ(t) is integrable memory kernel for which the assumption of form
limt→∞ γ(t) = lims→0 sγ̂(s) = 0, γ̂(s) = L [γ(t)] is satisfied. It is a corresponding equation
to the generalized diffusion equation recently derived in [19] from the generalized Langevin
equation, and in [20] from the continuous time random walk theory. It is shown that such equation
contains a number of limiting cases, such as the standard Schrödinger equation for γ(t) = δ(t),
time fractional Schrödinger equation with Caputo fractional derivative for γ(t) = t−α

Γ(1−α)
, 0 < α < 1,

and distributed order Schrödinger equation in case where the memory kernel is of distributed
order [15]. The constraints for the memory kernel γ(t) under which the solution of the generalized
diffusion equation represents a probability distribution function are analyzed in [20,21]. Furthermore,
comb models with generalized memory kernels are analyzed in [21] as well.

By using the separation ansatz ψ(x, t) = Ψ(x)T(t), it is shown that [15]

∫ t

0
dτγ(t− τ)

d
dτ

T(τ) = −ı
λ

h̄
T(t), (2)

d2

dx2 Ψ(x) +
2M
h̄2 λΨ(x) = 0, (3)

where λ is the separation constant that corresponds to the energy, from where it follows

T(t) = T(0)L−1

[
γ̂(s)

sγ̂(s) + ı λ
h̄

]
, (4)
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d2

dx2 Ψ(x) = −2M
h̄2 λΨ(x). (5)

In [15] we showed that, in general, the probability distribution function |ψ(x, t)|2 is
time-dependent, and a rich variety of behaviors may be obtained depending on the choice performed
to γ(t), in particular a power-law decay. In this sense, the analyzis performed here has a particular case
the one presented in Reference [5] for a time fractional Schrödinger equation which may correspond to
a choice of γ(t).

In the paper by Bayin [5], the time fractional Schrödinger equation with the Caputo time fractional
derivative was considered, and it was shown that the wave function of the equation in the force free
case can be obtained if one considers the standard Schrödinger equation with an effective potential,
which can be considered as a possible physical interpretation of the fractional Schrödinger equation.

In what follows, we try to find the standard Schrödinger equation which solution is a same as
the one of Equation (1), by finding the corresponding effective potential. Some special cases for the
memory kernel are investigated.

3. Effective Potential

Let us now consider the standard Schrödinger equation of form

ıh̄
∂

∂t
ψ(x, t) = − h̄2

2M
∂2

∂x2 ψ(x, t) + Ve f f (t)ψ(x, t), (6)

where Ve f f (t) is the so-called effective potential [5]. This effective potential is an analogue to the
memory kernel in the generalized Schrödinger equation and they both describe dissipation. Namely,
the problem of inelastic scattering of particles can be observed as a motion of a particle in an imaginary
effective potential that enters in the standard time-dependent Schrödinger Equation (6). By using the
method of separation of variables, and by using a spatial solution (5), we obtain that the effective
potential has the following form

Ve f f (t) = ıh̄
∂
∂t T(t)
T(t)

− λ = ıh̄
∂

∂t
log T(t)− λ. (7)

From solution (4) for the effective potential finally we obtain

Ve f f (t) = ıh̄
∂

∂t
log

(
L−1

[
γ̂(s)

sγ̂(s) + ı λ
h̄

])
− λ. (8)

Thus, the standard Schrödinger Equation (6) with effective potential of form (8) has same solution
for the wave function ψ(x, t) as the one obtained for the generalized Schrödinger Equation (1).
From (8), it follows that the time-dependent effective potential is also energy-dependent, involving the
parametric integral dependence on the energy of the scattered particle. Thus, the effective potential
here is obtained relative to the value of the energy λ.

Let us now analyze some special cases for the memory kernel γ(t).

3.1. Standard Schrödinger Equation: Dirac Delta Memory Kernel

For the Dirac delta memory kernel γ(t) = δ(t), i.e., γ̂(s) = 1, for the effective potential one
can find

Ve f f (t) = ıh̄
∂

∂t
log

(
L−1

[
1

s + ı λ
h̄

])
− λ = ıh̄

∂

∂t
log
(

e−ı λ
h̄ t
)
− λ = 0, (9)

as it should be.
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3.2. Time Fractional Schrödinger Equation: Power-Law Memory Kernel

For the power law memory kernel γ(t) = t−α

Γ(1−α)
, 0 < α < 1, i.e., γ̂(s) = sα−1, for the effective

potential we find

Ve f f (t) = ıh̄ ∂
∂t log

(
L−1

[
sα−1

sα+ı λ
h̄

])
− λ = ıh̄ ∂

∂t log
(

Eα

(
−ı λ

h̄ tα
))
− λ = ıh̄

∂
∂t Eα(−ı λ

h̄ tα)
Eα(−ı λ

h̄ tα)
− λ, (10)

where Eα(z) is the one parameter M-L function (see relation (A1)). By using relation (A3) in (10) and
then by applying relation (A4), for the effective potential we derive

Ve f f (t) = λ
tα−1Eα,α

(
−ı λ

h̄ tα
)

Eα

(
−ı λ

h̄ tα
) − λ, (11)

where Eα,β(z) is the two parameter M-L function (see relation (A1)). Note that for α→ 1 the effective
potential (10) becomes zero as it is expected, since the time fractional Schrödinger equation turns to
standard Schrödinger equation, i.e., the Caputo time fractional derivative becomes ordinary derivative.

3.3. Fractional Schrödinger Equation with Two Fractional Exponents: Two Power-Law Memory Kernels

If we further consider a memory kernel as a mix of two power-law functions γ(t) = w1
t−α1

Γ(1−α1)
+

w2
t−α2

Γ(1−α2)
, 0 < α1 < α2 < 1, 0 < w1 < 1, 0 < w2 < 1, w1 + w2 = 1, i.e., γ̂(s) = w1sα1−1 + w2sα2−1,

for the effective potential we obtain

Ve f f (t) = ıh̄ ∂
∂t log

(
L−1

[
w2sα2−1+w1sα1−1

w2sα2+w1sα1+ı λ
h̄

])
− λ = ıh̄ ∂

∂t log
(

∑∞
n=0(−1)n

(
ı λ

h̄
w2

)n
tα2n

×
[

En+1
α2−α1,α2n+1

(
−w1

w2
tα2−α1

)
+ w1

w2
tα2−α1 En+1

α2−α1,α2n+α2−α1+1

(
−w1

w2
tα2−α1

)])
− λ,

(12)

or equivalently

Ve f f (t) = ıh̄ ∂
∂t log

(
∑∞

n=0(−1)n
(

w1
w2

)n
t(α2−α1)n

×
[

En+1
α2,(α2−α1)n+1

(
− ı λ

h̄
w2

tα2

)
+ w1

w2
tα2−α1 En+1

α2,(α2−α1)(n+1)+1

(
− ı λ

h̄
w2

tα2

)])
− λ,

(13)

where Eδ
α,β(z) is the three parameter M-L function (A1). Here we used the series expansion

approach [22] and the Laplace transform relation (A2). The series that appear in relation (12) has been
shown to be convergent [23] (see also detailed study of the convergence of series in M-L functions
in [24,25]). By using the asymptotic expansion formula (A5) for the case with w2 → 0, and w1 → 1,
one can easily derive the result (11) for one power-law memory kernel. The same result (11) is directly
obtained from (12) and (13) for the case with w1 → 0 and w2 → 1. Such bi-fractional Schrödinger
equation has been recently investigated in [26] in detail. This case can be considered as a distributed
order Schrödinger equation where the weight function is a sum of two delta functions.

3.4. Mittag-Leffler Memory Kernel

Let us further consider two parameter M-L memory kernel of form γ(t) = tβ−1Eα,β (−ωtα),
0 < α < β < 1, ω ≥ 0. Such memory kernel is recently considered in the diffusion
equation with generalized memory kernels in the framework of the continuous time random walk
theory [20]. For β = 1 it becomes one parameter M-L memory kernel γ(t) = Eα (−ωtα), and for
α = β = 1 – exponential memory kernel γ(t) = exp (−ωt). Note that for ω = 0 the M-L memory
kernel becomes a power-law memory kernel γ(t) = tβ−1

Γ(β)
. From the Laplace transform formula (A2),
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it follows that γ̂(s) = sα−β

sα+ω , so lims→0 sγ̂(s) = lims→0
s1+α−β

sα+ω = 0. Thus, for the effective potential
we find

Ve f f (t) = ıh̄
∂

∂t
log

(
L−1

[
sα−β

s1+α−β + ı λ
h̄ sα + ı λ

h̄ ω

])
− λ

= ıh̄
∂

∂t
log

L−1

(−ı
λ

h̄

)n sαn+α−β(
s1+α−β + ı λ

h̄ ω
)n+1


− λ (14)

= ıh̄
∂

∂t
log

(
∞

∑
n=0

(
−ı

λ

h̄

)n
t(1−β)nEn+1

1+α−β,(1−β)n+1

(
−ı

λ

h̄
ωt1+α−β

))
− λ.

For β = 1, solution (14) reduces to

Ve f f (t) = ıh̄
∂

∂t
log

(
∞

∑
n=0

(
−ı

λ

h̄

)n
En+1

α,1

(
−ı

λ

h̄
ωtα

))
− λ = ıh̄

∂

∂t
log

(
Eα

(
−

ı λ
h̄ ω

1 + ı λ
h̄

tα

))
− λ, (15)

and for α = β = 1 – to

Ve f f (t) = ıh̄
∂

∂t
log

(
exp

(
−

ı λ
h̄ ω

1 + ı λ
h̄

t

))
− λ = λ

(
ω

1 + ı λ
h̄

− 1

)
. (16)

Thus, for exponential memory kernel, the effective potential does not depend on time.
Such complex potentials have been introduced to model open quantum dots [27] and for simulation of
resonant tunneling diode [28]. It is known that for such imaginary potentials the current conservation
for the electron state is not preserved due to the lack of unitarity of the Hamiltonian which includes
complex potential [29]. Note that in case where ω = 0, i.e., power-law memory kernel, the effective
potential becomes

Ve f f (t) = ıh̄
∂

∂t
log
(

E1−β

(
−ı

λ

h̄
t1−β

))
− λ, (17)

which corresponds to (10) since α→ 1− β.
A graphical representation of the real and imaginary part of the effective potential (14) is given in

Figure 1.
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Figure 1. A graphical representation of the real and imaginary part of the effective potentiall (14)
for λ = h̄ = ω = 1, β = 1; α = 1/4 (blue solid line), α = 1/2 (red dashed line), α = 3/4 (green
dot-dashed line).

3.5. Truncated Power-Law Memory Kernel

Additionally, we consider a power-law memory kernel with an exponential cutoff, i.e., truncated
power-law memory kernel of the form

γ(t) = e−bt tβ−1

Γ(β)
, (18)

where b ≥ 0, ω ≥ 0, and 0 < β < 1. From the Laplace transform formula and by help of the shift rule
L
[

f (t)e−at] = F̂(s + a), where L [ f (t)] = F̂(s), we find that

γ̂(s) = (s + b)−β, (19)

from where one concludes that the assumption lims→0 sγ̂(s) = 0. Therefore, for the effective potential
we obtain

Ve f f (t) = ıh̄
∂

∂t
log

(
∞

∑
k=0

(
−ı

λ

h̄

)k
t(1−β)kE−βk

1,(1−β)k+1 (−bt)

)
− λ, (20)

Note that for b = 0, it follows

Ve f f (t) = ıh̄
∂

∂t
log

(
∞

∑
k=0

(
−ı

λ

h̄

)k t(1−β)k

Γ((1− β)k + 1)

)
− λ, (21)

which is exactly the same with relation (17), as it should be. Note that truncated M-L and power-law
memory kernels are considered in the context of the CTRW theory in [20], where it is shown that such
memory kernel is useful to model processes where for short times anomalous subdiffusion exists,
which turns to normal diffusion in the long time limit. Similar analysis for the effective potential in
case of the truncated M-L memory kernel can be done here.

4. Summary

To summarize, in the present paper we derived a general form of the imaginary effective potential
that relates the standard time-dependent Schrödinger equation to the generalized Schrödinger equation
with a memory kernel. This provides an alternative mathematical framework for modeling the
inelastic scattering-related problems, applicable in a wide variety of low-dimensional quantum systems.
For example, dissipative quantum transport in quantum dots, as well as the decaying part in resonant
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tunneling could be successfully modeled by such imaginary potentials. In this work we also derived
explicitly the imaginary potentials for some of the most exploited forms of the memory kernel,
such as Dirac delta, power-law, M-L, exponential, truncated power-law. We further expressed the
effective potentials in terms of the M-L functions. The importance of the results obtained here
is many-fold. At one hand, using the generalized Schrödinger equation with a memory kernel,
instead of standard time-dependent Schrödinger equation enables obtaining a closed form solutions,
expressed in terms of the M-L and Fox H-functions, which contributes to a more sophisticated and
consistent mathematical modeling. On the other hand, the derived imaginary effective potentials
upgrade the set of conventional forms of scattering potentials and can be used as input potentials
in dissipative transport simulations. Finally, it is worth mentioning that such an approach provides
in-depth insight and an interpretation of the considered generalized Schrödinger equation.

Acknowledgments: T.S. acknowledges the hospitality and support from the Max Planck Institute for the Physics
of Complex Systems in Dresden, Germany.

Author Contributions: All authors have contributed equally.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Mittag-Leffler Functions

Three parameter M-L function is defined by [30]

Eδ
α,β(z) =

∞

∑
k=0

(δ)k
Γ(αk + β)

zk

k!
. (A1)

One parameter M-L function Eα(z) and two parameter M-L function Eα,β(z) are special cases of
three parameter M-L function if we use β = δ = 1 and δ = 1, respectively. The Laplace transform to
three parameter M-L function is given by [30]

L
[
tβ−1Eδ

α,β(±atα)
]
(s) =

sαδ−β

(sα ∓ a)δ
, <(s) > |a|1/α. (A2)

The following relations for the M-L functions hold true [31]

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
, (A3)

d
dz

zβEα,β+1(azα) = zβ−1Eα,β(azα). (A4)

For the three parameter M-L function one can use the following formula [32–34]

Eδ
α,β(−z) =

z−δ

Γ(δ)

∞

∑
n=0

Γ(δ + n)
Γ(β− α(δ + n))

(−z)−n

n!
, z > 1, (A5)

from where it follows Eδ
α,β(−z) = z−δ

Γ(β−αδ)
for z→ ∞. For δ = 1 follows the known asymptotic formula

for two parameter M-L function [35]

Eα,β(−z) = −
∞

∑
n=1

(−z)−n

Γ(β− αn)
, z > 1. (A6)
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