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Abstract:



In this paper, we introduce an iterative algorithm for solving the split common fixed point problem for a family of multi-valued quasinonexpansive mappings and totally asymptotically strictly pseudocontractive mappings, as well as for a family of totally quasi-[image: there is no content]-asymptotically nonexpansive mappings and k-quasi-strictly pseudocontractive mappings in the setting of Banach spaces. Our results improve and extend the results of Tang et al., Takahashi, Moudafi, Censor et al., and Byrne et al.






Keywords:


split common fixed point problem; totally asymptotically strictly pseudocontractive mapping; quasinonexpansive mapping; k-quasi-strictly pseudocontractive mapping




MSC Classification:


47H05; 47H09; 47J25








1. Introduction


Let [image: there is no content] and [image: there is no content] be two real Hilbert spaces and [image: there is no content] be a bounded linear operator. For nonlinear operators [image: there is no content] and [image: there is no content], the split fixed point problem (SFPP) is to find a point:


x∈Fix(T)suchthatAx∈Fix(U)



(1)







It is often desirable to consider the above problem for finitely many operators. Given n nonlinear operators [image: there is no content] and m nonlinear operators [image: there is no content], the split common fixed point problem (SCFPP) is to find a point:


x∈∩i=1nFix(Ti)suchthatAx∈∩j=1mFix(Uj)











In particular, if [image: there is no content] and [image: there is no content], then the SCFPP reduces to the multiple sets split feasibility problem (MSSFP); that is, to find [image: there is no content], such that [image: there is no content] where [image: there is no content] and [image: there is no content] are nonempty closed convex subsets in [image: there is no content] and [image: there is no content], respectively.



In the Hilbert space setting, the split feasibility problem and the split common fixed point problem have been studied by several authors; see, for instance, [1,2,3]. In [4], Censor and Segal introduced the iterative scheme:


[image: there is no content]








which solves the problem (1) for directed operators. This algorithm was then extended to the case of quasinonexpansive mappings [5], as well as to the case of demicontractive mappings [6]. Recently, Takahashi in [7,8] extended the split feasibility problem in Hilbert spaces to the Banach space setting. Then, Alsulami et al. [1] established some strong convergence theorems for finding a solution of the split feasibility problem in Banach spaces. Using the shrinking projection method of [8], Takahashi proved the strong convergence theorem for finding a solution of the split feasibility problem in Banach spaces. In this direction, Byrne et al. [2] studied the split common null point problem for multi-valued mappings in Hilbert spaces. Consider finitely many multi-valued mappings [image: there is no content], and [image: there is no content], and let [image: there is no content] be bounded linear operators. The split common null point problem is to find a point:


z∈H1suchthatz∈(∩i=1nFi-10)∩(∩j=1mAjBj-10)











Very recently, using the hybrid method and the shrinking projection method in mathematical programming, Takahashi et al. [9] proved two strong convergence theorems for finding a solution of the split common null point problem in Banach spaces. In [10], Tang et al. proved a theorem regarding the split common fixed point problem for a k-quasi-strictly pseudocontractive mapping and an asymptotical nonexpansive mapping. In this paper, motivated by [11], we use the hybrid method to study the split common fixed point problem for an infinite family of multi-valued quasinonexpansive mappings and an infinite family of L-Lipschitzian continuous and [image: there is no content]-totally asymptotically strictly pseudocontractive mappings. Compared to the Theorem of Tang et al. [10], we remove an extra condition and present a strong convergence theorem, which is more desirable than the weak convergence. The point is that the authors of [10] considered a semi-compact mapping, that is a mapping T on a set X having the property that if [image: there is no content] is a bounded sequence in X such that [image: there is no content] tends to zero, then [image: there is no content] has a convergent subsequence. We will not assume that our mappings are semi-compact, and at the same time, we propose a different algorithm; instead, we impose some restrictions on the control sequences to get the strong convergence. We also present an algorithm for solving the split common fixed point problem for totally quasi-[image: there is no content]-asymptotically nonexpansive mappings and for k-quasi-strictly pseudocontractive mappings. Under some mild conditions, we establish the strong convergence of these algorithms in Banach spaces. As applications, we consider the algorithms for a split variational inequality problem and a split common null point problem. Our results improve and generalize the result of Tang et al. [10], Takahashi [12], Moudafi [5], Censor et al. [13] and Byrne et al. [2].




2. Preliminaries


Let E be a real Banach space and C be a nonempty closed convex subset of E. A mapping [image: there is no content] is said to be [image: there is no content]-asymptotically nonexpansive if there exists a sequence [image: there is no content] with [image: there is no content], such that:


∥Tnx-Tny∥≤kn∥x-y∥,∀x,y∈C,n≥1











The mapping [image: there is no content] is said to be k-quasi-strictly pseudocontractive if [image: there is no content] and there exists a constant [image: there is no content], such that:


∥Tx-p∥2≤∥x-p∥2+k∥x-Tx∥2∀x∈C,p∈F(T)











The mapping [image: there is no content] is said to be [image: there is no content]-totally asymptotically strictly pseudocontractive if there exist a constant [image: there is no content] and null sequences [image: there is no content] and [image: there is no content] in [image: there is no content] and a continuous strictly increasing function [image: there is no content] with [image: there is no content], such that for all [image: there is no content] and [image: there is no content]:


[image: there is no content]











A Banach space E is said to be uniformly smooth if [image: there is no content] as [image: there is no content], where [image: there is no content] is the modulus of smoothness of E. Let [image: there is no content]; then, E is called q-uniformly smooth if there exists a constant [image: there is no content], such that [image: there is no content] for all [image: there is no content]. Throughout, J will stand for the duality mapping of E. We recall that a Banach space E is smooth if and only if the duality mapping J is single valued.



Lemma 1.

[14] If E is a two-uniformly smooth Banach space, then for each [image: there is no content] and each [image: there is no content]:






[image: there is no content]









For a smooth Banach space E, Alber [15] defined:


ϕ(x,y)=∥x∥2-2⟨x,Jy⟩+∥y∥2,x,y∈E











It follows that [image: there is no content] for each [image: there is no content]. Moreover, if we denote by [image: there is no content] the generalized projection from E onto a closed convex subset C in E, then we have:



Lemma 2.

[15] Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed convex subset of E. Then:





	(a) 

	
[image: there is no content], for all [image: there is no content] and [image: there is no content];




	(b) 

	
For [image: there is no content] if and only if [image: there is no content]




	(c) 

	
For [image: there is no content]




	(d) 

	
For [image: there is no content]







Lemma 3.

[16] If E is a uniformly-smooth Banach space and [image: there is no content], then there exists a continuous, strictly-increasing convex function [image: there is no content], such that [image: there is no content] and:


[image: there is no content]








for all [image: there is no content] and [image: there is no content]





We denote by [image: there is no content], [image: there is no content] and [image: there is no content] the collection of all nonempty subsets, nonempty closed bounded subsets and nonempty proximal bounded subsets of C, respectively. Let [image: there is no content] be a multivalued mapping. An element [image: there is no content] is said to be a fixed point of T if [image: there is no content]. The set of fixed points of T is denoted by [image: there is no content].



Definition 1.

Let C be a closed convex subset of a smooth Banach space E and [image: there is no content] be a multivalued mapping. We set:






[image: there is no content]









We call T a quasinonexpansive multivalued mapping if [image: there is no content] and:


Φ(Tx,Tp)≤ϕ(x,p),∀p∈F(T),∀x∈C











Definition 2.

A multivalued mapping T is called demi-closed if [image: there is no content] and [image: there is no content] imply that [image: there is no content].





Let C be a nonempty closed convex subset of E and [image: there is no content] be a nonexpansive semigroup on C. We use [image: there is no content] to denote the common fixed point set of the semigroup T. It is well known that [image: there is no content] is closed and convex. A nonexpansive semigroup T on C is said to be uniformly asymptotically regular (u.a.r.) if for all [image: there is no content] and any bounded subset D of C:


[image: there is no content]











For each [image: there is no content], define [image: there is no content]. Then, [image: there is no content] provided that D is a closed bounded convex subset of C. It is known that the set [image: there is no content] is a u.a.r. nonexpansive semigroup; see [17].



A mapping [image: there is no content] is said to be α-averaged if [image: there is no content] for some [image: there is no content]; here, I is the identity operator, and [image: there is no content] is a nonexpansive mapping (see [18]). It is known that in a Hilbert space setting, every firmly-nonexpansive mapping (in particular, a projection) is a [image: there is no content]-averaged mapping (see Proposition 11.2 in the book [19]).



Lemma 4.

[20] (i) The composition of finitely many averaged mappings is averaged. In particular, if [image: there is no content] is [image: there is no content]-averaged, where [image: there is no content] for [image: there is no content] then the composition [image: there is no content] is α-averaged, where [image: there is no content]. (ii) If the mappings [image: there is no content] are averaged and have a common fixed point, then [image: there is no content]. (iii) In case E is a uniformly-convex Banach space, every α-averaged mapping is nonexpansive.





Lemma 5.

[21] Let E be a uniformly-convex and smooth Banach space, and let [image: there is no content] and [image: there is no content] be two sequences in E. If [image: there is no content] and either [image: there is no content] or [image: there is no content] is bounded, then [image: there is no content].





Lemma 6.

[15] Let C be a nonempty closed convex subset of a smooth Banach space E and [image: there is no content], then [image: there is no content] if and only if for all [image: there is no content], [image: there is no content]





Lemma 7.

[22] Let E be a uniformly-convex Banach space, and let [image: there is no content], for [image: there is no content], then there exists a continuous, strictly-increasing and convex function [image: there is no content] with [image: there is no content], such that, for any given sequence [image: there is no content] and for any given sequence [image: there is no content] of positive numbers with [image: there is no content] and for any positive integers [image: there is no content] with [image: there is no content]






[image: there is no content]









Lemma 8.

[23] Let [image: there is no content] be a sequence in [image: there is no content], [image: there is no content] and [image: there is no content] be sequences in [image: there is no content], such that (i) [image: there is no content], (ii) [image: there is no content] and (iii) [image: there is no content] and [image: there is no content]. If [image: there is no content] is a sequence of nonnegative real numbers, such that [image: there is no content] for each [image: there is no content], then [image: there is no content].





Lemma 9.

[24] Let [image: there is no content] be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence [image: there is no content] of [image: there is no content], such that [image: there is no content] for all [image: there is no content]. For every [image: there is no content], define an integer sequence [image: there is no content] as [image: there is no content] Then, [image: there is no content] and [image: there is no content].





Lemma 10.

[25] Let [image: there is no content] and [image: there is no content] be nonnegative and [image: there is no content] be positive real numbers, such that λn+1≤λn-αnλn+γn,n≥0. Let for all [image: there is no content], λnαn≤c1andαn≤α. Then, [image: there is no content], where [image: there is no content].





Definition 3.

(1) A mapping [image: there is no content] is said to be a k-quasi-strictly pseudocontractive mapping if there exists [image: there is no content], such that ∥Tx-p∥2≤∥x-p∥2+k∥x-Tx∥2,∀x∈C,p∈F(T). (2) A mapping [image: there is no content] is called quasinonexpansive if [image: there is no content]; and ϕ(p,Tx)≤ϕ(p,x)∀x∈C,p∈F(T). (3) A countable family of mappings [image: there is no content] is said to be totally uniformly quasi-[image: there is no content]-asymptotically nonexpansive, if [image: there is no content] and there exist nonnegative real sequences [image: there is no content],[image: there is no content] with μn→0,νn→0(asn→∞) and a strictly-increasing continuous function [image: there is no content] with [image: there is no content], such that ϕ(p,Tinx)≤ϕ(p,x)+νnζ(ϕ(p,x))+μn,n≥1,i≥1,x∈C,p∈ℑ. (4) A mapping [image: there is no content] is said to be uniformly L-Lipschitzian continuous, if there exists a constant [image: there is no content], such that ∥Tnx-Tny∥≤L∥x-y∥,∀x,y∈C,n≥1.





Lemma 11.

[11] Let E be a real uniformly-smooth and uniformly-convex Banach space and C be a nonempty closed convex subset of E. Let [image: there is no content] be a closed and totally quasi-[image: there is no content]-asymptotically nonexpansive mapping with nonnegative real sequences [image: there is no content] and a strictly-increasing continuous function [image: there is no content], such that μn→0,νn→0andζ(0)=0. If [image: there is no content], then the fixed point set of T is closed and convex.





Lemma 12.

[26] Let C be a nonempty closed convex subset of a real Banach space E, and let [image: there is no content] be a k-quasi-strictly pseudocontractive mapping. If [image: there is no content], then [image: there is no content] is closed and convex.






3. Main Results


This section is devoted to the main results of this paper.



Theorem 1.

Let [image: there is no content] be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying [image: there is no content], and let [image: there is no content] be a real smooth Banach space. Let [image: there is no content] be a bounded linear operator and [image: there is no content] be its adjoint. Suppose [image: there is no content] is a uniformly L-Lipschitzian continuous and [image: there is no content]-totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:





	(1) 

	
[image: there is no content],




	(2) 

	
[image: there is no content] is a real sequence in [image: there is no content], such that [image: there is no content],




	(3) 

	
there exist constants [image: there is no content], such that [image: there is no content].







Let [image: there is no content] be a family of multivalued quasinonexpansive mappings, such that for each [image: there is no content] is demi-closed at zero, and for each [image: there is no content]. Suppose:


[image: there is no content]








and [image: there is no content] is the sequence generated by [image: there is no content]


un=(1-rn)xnyn=J1-1(αnJ1un+(1-αn)γA*J2(Tn-I)Aun)xn+1=J1-1(βn,0J1yn+∑i=1∞βn,iJ1wn,i)wn,i∈Siyn



(2)




where [image: there is no content]; the sequences [image: there is no content] satisfy the following conditions:

	(a) 

	
[image: there is no content]




	(b) 

	
limn→∞αn=1,∑n=1∞(1-αn)<∞,(1-αn)=o(rn).









Then, [image: there is no content] converges strongly to an element of Ω.



Proof. 

Since ζ is continuous, ζ attains its maximum in [image: there is no content], and by assumption, [image: there is no content][image: there is no content]. In either case, we have ζ(λ)≤M+M0λ2,∀λ∈[0,∞). Let [image: there is no content], then:






[image: there is no content]



(3)





From (2) and Lemma 2(d,c), we have:


ϕ(p,yn)≤αnϕ(p,un)+(1-αn)ϕ(p,J1-1(γA*J2(Tn-I)Aun))≤αnϕ(p,un)+(1-αn)[ϕ(p,un)+ϕ(un,J1-1(γA*J2(Tn-I)Aun))+2⟨p-un,J1un-γA*J2(Tn-I)Aun⟩]=ϕ(p,un)+(1-αn)[∥un∥2+γ2∥A∥2∥(Tn-I)Aun∥2-2⟨un,γA*J2(Tn-I)Aun⟩+2⟨p-un,J1un⟩+2⟨p-un,γA*J2(Tn-I)Aun⟩]≤ϕ(p,un)+(1-αn)[∥p∥2+γ2∥A∥2∥(Tn-I)Aun∥2-2⟨un,γA*J2(Tn-I)Aun⟩+2⟨p-un,γA*J2(Tn-I)Aun⟩]



(4)







From Lemma 1, we have:


-2⟨un,γA*J2(Tn-I)Aun⟩≤∥γA*J2(Tn-I)Aun∥2+2∥tun∥2-∥un+γA*J2(Tn-I)Aun∥2≤γ2∥A∥2∥(Tn-I)Aun∥2+∥un∥2=γ2∥A∥2∥(Tn-I)Aun∥2+4∥12un-12p+12p∥2≤γ2∥A∥2∥(Tn-I)Aun∥2+4(12∥un-p∥2+12∥p∥2)=γ2∥A∥2∥(Tn-I)Aun∥2+2∥un-p∥2+2∥p∥2)



(5)







Since [image: there is no content] and T is a totally quasi-asymptotically strictly pseudocontractive mapping, we obtain:


⟨un-p,γA*J2(Tn-I)Aun=γ⟨A(un-p),J2(Tn-I)Aun⟩=γ⟨A(un-p)+(Tn-I)Aun-(Tn-I)Aun,J2(Tn-I)Aun⟩=γ(⟨TnA(un)-Ap,J2(Tn-I)Aun⟩-∥(Tn-I)Aun∥2)≤γ(12[∥(Tn-I)Aun∥2+2∥t(TnAun-Ap)∥2-∥Ap-Aun∥2]-∥(Tn-I)Aun∥2)≤γ(12[∥(Tn-I)Aun∥2+∥(TnAun-Ap)∥2-∥Ap-Aun∥2]-∥(Tn-I)Aun∥2)≤γ(12[∥Aun-Ap∥2+k∥(Tn-I)Aun∥2+μnζ(∥Aun-Ap∥)+ξn])-12(∥(Tn-I)Aun∥2+∥Ap-Aun∥2)=γ(k-12∥(Tn-I)Aun∥2+μn2[M+M0∥Aun-Ap∥2]+ξn2)



(6)







Substituting (5) and (6) into (4), we have:


ϕ(p,yn)≤αnϕ(p,un)+(1-αn)ϕ(p,J1-1(γA*J2(Tn-I)Aun))≤ϕ(p,un)+(1-αn)[3∥p∥2+2γ2∥A∥2∥(Tn-I)Aun∥2+2∥un-p∥2+γ(k-1)∥(Tn-I)Aun∥2+γμn[M+M0∥A∥2∥un-p∥2]+γξn≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)∥un-p∥2+γξn



(7)







From Lemma 1 and the fact that [image: there is no content], we have:


ϕ(p,yn)≤αnϕ(p,un)+(1-αn)ϕ(p,J1-1(γA*J2(Tn-I)Aun))≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)∥un-p∥2+γξn≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)[∥un∥2-⟨p,Jun⟩+2∥tp∥2]+γξn≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)ϕ(p,un)+γξn



(8)







Putting (3) and (8) into (2), we obtain:


ϕ(p,xn+1)=ϕ(p,J1-1(βn,0J1yn+∑i=1∞βn,iJ1wn,i))≤βn,0ϕ(p,yn)+∑i=1∞βn,iϕ(p,wn,i)=βn,0ϕ(p,yn)+∑i=1∞βn,iinft∈Si(p)ϕ(p,wn,i)≤βn,0ϕ(p,yn)+∑i=1∞βn,iΦ(p,wn,i)=ϕ(p,yn)≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)ϕ(p,un)+γξn≤(1-rn)ϕ(p,xn)+rn∥p∥2+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)((1-rn)ϕ(p,xn)+rn∥p∥2)+γξn≤ϕ(p,xn)-(rn-γμnM0∥A∥2+2)(1-rn)ϕ(p,xn)+(3(1-αn)+rn+μnγM0∥A∥2rn)∥p∥2+γμnM+γξn≤ϕ(p,xn)-(rn-(γμnM0∥A∥2+2))(1-rn)ϕ(p,xn)+σn



(9)




where [image: there is no content]. Since [image: there is no content] and [image: there is no content], we may assume without loss of generality that there exist constants [image: there is no content] and [image: there is no content], such that for all [image: there is no content]:


μnrn≤rn(1-k0+2)-2rn(1-rn)γM0∥A∥2andσnrn≤M2











Thus, we obtain:


[image: there is no content]



(10)







According to Lemma 10, [image: there is no content]. Therefore, [image: there is no content] and [image: there is no content] are bounded. Furthermore, the sequences [image: there is no content] and [image: there is no content] are bounded, as well. We now consider two cases.



Case 1.

Suppose that there exists [image: there is no content], such that [image: there is no content] is nonincreasing. Then, [image: there is no content] converges, and [image: there is no content] as [image: there is no content]. Since [image: there is no content] is a uniformly smooth Banach space, it follows from Lemma 3 and Equations (8) and (10) that:


ϕ(p,xn+1)≤ϕ(p,yn)≤αnϕ(p,un)+(1-αn)ϕ(p,J1-1(γA*J2(Tn-I)Aun))-αn(1-αn)g(∥J1un-γA*J2(Tn-I)Aun∥)≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)ϕ(p,un)+γξn-αn(1-αn)g(∥J1un-γA*J2(Tn-I)Aun∥≤ϕ(p,xn)-(rn-(γμnM0∥A∥2+2))ϕ(p,un)+(3(1-αn)+rn)∥p∥2+γξn-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2-αn(1-αn)g(∥J1un-γA*J2(Tn-I)Aun∥)≤ϕ(p,xn)-rnk0ϕ(p,xn)+σn-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2-αn(1-αn)g(∥J1un-γA*J2(Tn-I)Aun∥)



(11)









Hence, from (10), we have:


[image: there is no content]








and:


[image: there is no content]











Therefore, [image: there is no content] and [image: there is no content] tend to zero as [image: there is no content]. Since [image: there is no content] and [image: there is no content], we obtain:


∥J1un-γA*J2(Tn-I)Aun∥⟶0n→∞



(12)








∥(Tn-I)Aun∥2⟶0n→∞



(13)





Furthermore, we observe that [image: there is no content]. Since [image: there is no content] is uniformly norm-to-norm continuous on bounded subsets, we conclude that:


[image: there is no content]



(14)







Using (7) and Lemma 3 in (2), we have:


ϕ(p,xn+1)=ϕ(p,J1-1(βn,0J1yn+∑i=1∞βn,iJ1wn,i))≤βn,0ϕ(p,yn)+∑i=1∞βn,iϕ(p,wn,i)-βn,0βn,ig(∥J1yn-J1wn,i∥)≤ϕ(p,yn)-βn,0βn,ig(∥J1yn-J1wn,i∥)≤ϕ(p,un)+3(1-αn)∥p∥2-γ(1-k-2γ∥A∥2)∥(Tn-I)Aun∥2+γμnM+(γμnM0∥A∥2+2)∥un-p∥2+γξn-βn,0βn,ig(∥J1yn-J1wn,i∥)



(15)







It now follows from (3) and [image: there is no content]that:


βn,0βn,ig(∥J1yn-J1wn,i∥)≤ϕ(p,xn)-ϕ(p,xn+1)-(rn-(γμnM0∥A∥2+2))ϕ(p,un)+(3(1-αn)+rn)∥p∥2+γξn≤ϕ(p,xn)-ϕ(p,xn+1)-rnk0ϕ(p,xn)+σn











From Condition (a), we have [image: there is no content]. Since g is continuous and [image: there is no content], we obtain [image: there is no content]. Since [image: there is no content] is uniformly norm-to-norm continuous on bounded subsets, we have:


limn→∞∥yn-wn,i∥=0∀i∈N



(16)




which implies that limn→∞dist(yn,Siyn)≤limn→∞∥yn-wn,i∥=0,∀i∈N. From (2), we obtain:


∥J1xn+1-J1yn∥=(1-βn,0)∥J1yn-J1wn,i∥⟶0n→∞











Since J is uniformly norm-to-norm continuous on bounded subsets, we have:


∥xn+1-yn∥⟶0n→∞



(17)







From (14), (17) and [image: there is no content], we have:


∥xn+1-xn∥≤∥xn+1-yn∥+∥yn-un∥+∥un-xn∥=∥xn+1-yn∥+∥yn-un∥+rn∥xn∥⟶0n→∞











Consequently:


∥un+1-un∥=∥(1-rn+1)xn+1-(1-rn)xn)∥≤|rn+1-rn|∥xn+1∥+(1-rn)∥xn+1-xn∥⟶0n→∞



(18)







Using the fact that T is uniformly L-Lipschitzian, we have:


∥TAun-Aun∥≤∥TAun-Tn+1Aun∥+∥Tn+1Aun-Tn+1Aun+1∥+∥Tn+1Aun+1-Aun+1∥+∥Aun+1-Aun∥≤L∥Aun-TnAun∥+(1+L)∥Aun+1-Aun∥+∥Tn+1Aun+1-Aun+1∥≤L∥Aun-TnAun∥+(1+L)∥A∥∥un+1-un∥+∥Tn+1Aun+1-Aun+1∥











From (13) and (18), we obtain:


∥(T-I)Aun∥⟶0,n→∞



(19)







Since [image: there is no content] is bounded, there exists a subsequence [image: there is no content] of [image: there is no content], such that [image: there is no content]. Using the fact that [image: there is no content] and [image: there is no content], [image: there is no content], we have that [image: there is no content]. Similarly, [image: there is no content], since ∥un-xn∥→0,n→∞. Now, we show that [image: there is no content]. Since [image: there is no content] and [image: there is no content] and by the demi-closedness of each [image: there is no content], we have [image: there is no content]. On the other hand, since A is a bounded operator, it follows from [image: there is no content] that [image: there is no content]. Hence, from (13), we have [image: there is no content] as [image: there is no content]. Since T is demi-closed at zero, we have that [image: there is no content]. Hence, [image: there is no content]. Next, we prove that [image: there is no content] converges strongly to z. From (7), Lemma 1 and [image: there is no content], we have:


ϕ(z,xn+1)≤ϕ(z,yn)≤αnϕ(z,un)+(1-αn)ϕ(z,J1-1(γA*J2(Tn-I)Aun))≤αnϕ(z,un)+(1-αn)[ϕ(z,un)+ϕ(un,J1-1(γA*J2(Tn-I)Aun))+2⟨z-un,J1un-γA*J2(Tn-I)Aun⟩]≤ϕ(z,un)+(1-αn)[∥z∥2+∥un-z+z∥2+2γ2∥A∥2∥(Tn-I)Aun∥2+γ(k-1)∥(Tn-I)Aun∥2+γμn[M+M0∥A∥2∥un-z∥2]+γξn≤ϕ(z,un)+(1-αn)[∥z∥2+∥un-z∥2+∥z∥2+2⟨un-z,Jz⟩+2γ2∥A∥2∥(Tn-I)Aun∥2+γ(k-1)∥(Tn-I)Aun∥2+γμn[M+M0∥A∥2∥un-z∥2]+γξn≤ϕ(z,un)+(1-αn)(∥un-z∥+2⟨un,J1z⟩)+μnM*+γξn≤(1-rn)ϕ(z,xn)-2rn⟨xn-z,J1z⟩+(1-αn)(∥un-z∥+2⟨xn,J1z⟩)+μnM*+γξn≤(1-rn)ϕ(z,xn)-2rn⟨xn-z,J1z⟩+(1-αn)(∥un-z∥2+2⟨xn,J1z⟩+μnM*+γξn



(20)




where [image: there is no content]. It is clear that -2⟨un-z,z⟩→0,n→∞, and [image: there is no content] and [image: there is no content]. Now, using Lemma 8 in (20), we have [image: there is no content]. Therefore, [image: there is no content] as [image: there is no content].



Case 2.

Assume that there exists a subsequence [image: there is no content] of [image: there is no content], such that [image: there is no content][image: there is no content]. By Lemma 9, there exists a nondecreasing sequence [image: there is no content] of [image: there is no content], such that for all [image: there is no content] (for some [image: there is no content] large enough) [image: there is no content] as [image: there is no content] and such that the following inequalities hold:


ϕ(z,xn)<ϕ(z,xτ(n)+1),ϕ(z,xτ(n))<ϕ(z,xτ(n)+1)











By a similar argument as in Case 1, we obtain:


ϕ(z,xτ(n)+1)≤(1-rτ(n))ϕ(z,xτ(n))-2rτ(n)⟨xτ(n)-z,J1z⟩+(1-ατ(n))(∥uτ(n)-z∥2+2⟨xτ(n),J1z⟩)+γμτ(n)M*+γξτ(n)



(21)




and [image: there is no content]. Since [image: there is no content], we have:


rτ(n)ϕ(z,xτ(n))≤ϕ(z,xτ(n))-ϕ(z,xτ(n)+1)-2rτ(n)⟨xτ(n)-z,J1z⟩+(1-ατ(n))(∥uτ(n)-z∥2+2⟨xτ(n),J1z⟩)+γμτ(n)M*+γξτ(n)











By our assumption that [image: there is no content], we obtain:


[image: there is no content]








which implies that [image: there is no content]. It now follows from (21) that [image: there is no content]. Now, since [image: there is no content], we obtain that [image: there is no content]. Finally, we conclude from Lemma 5 that [image: there is no content] converges strongly to [image: there is no content].





☐



Theorem 2.

Let [image: there is no content] be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying [image: there is no content], and let [image: there is no content] be a real smooth Banach space. Let [image: there is no content] be a bounded linear operator and [image: there is no content] be its adjoint. Let Ti:E2→E2(i∈N) be an infinite family of k-quasi-strict pseudocontractive mappings and [image: there is no content] be an infinite family of uniformly [image: there is no content]-Lipschitzian continuous and totally quasi-[image: there is no content]-asymptotically nonexpansive mappings. Let [image: there is no content] be the sequence generated by [image: there is no content]:


[image: there is no content]



(22)




where [image: there is no content], and [image: there is no content] is the generalized projection of E onto [image: there is no content]; and the sequences [image: there is no content] and satisfy the following conditions:





	(a) 

	
{βn}⊂[0,1]andlimn→∞βn=0




	(b) 

	
{αn,i}⊆[0,1],∑i=0∞αn,i=1andlimn→∞αn,0=1







If [image: there is no content] is nonempty and bounded and [image: there is no content], then [image: there is no content] converges strongly to: [image: there is no content].



Proof. 

(I) Both Ω and [image: there is no content], [image: there is no content], are closed and convex.





We know from Lemma 11 and Lemma 12 that [image: there is no content] and [image: there is no content], [image: there is no content], are closed and convex. This implies that Ω is closed and convex. Again, by the assumption, [image: there is no content] is closed and convex. Now, suppose that [image: there is no content] is closed and convex for some [image: there is no content]. In view of the definition of [image: there is no content], we have:


Cn+1={z∈Cn:supm≥1ϕ(z,yn,m)≤βnϕ(z,x1)+(1-βn)(ϕ(z,xn)+2⟨z,J1xn⟩)+ξn}=∩m≥1{z∈E1:ϕ(z,yn,m)≤βnϕ(z,x1)+(1-βn)(ϕ(z,xn)+2⟨z,J1xn⟩)+ξn}∩Cn=∩m≥1{z∈E1:2βn⟨z,J1x1⟩+2(1-βn)⟨z,J1xn⟩-2⟨z,yn,m⟩≤βn∥x1∥2+2(1-βn)∥xn∥2-∥yn,m∥2+∥z∥2}∩Cn








from which, it follows that [image: there is no content] is closed and convex.



(II) [image: there is no content].



It is clear that [image: there is no content]. Suppose that [image: there is no content] for some [image: there is no content]. Let [image: there is no content], then we have:


ϕ(u,un)=ϕ(u,J1-1(αn,0J1xn+∑i=1∞αn,i(γA*J2(Ti-I)Axn)))≤αn,0ϕ(u,xn)+∑i=1∞αn,iϕ(u,J1-1(γA*J2(Ti-I)Axn))≤ϕ(u,xn)+∑i=1∞αn,i[ϕ(xn,J1-1(γA*J2(Ti-I)Axn)+2⟨u-xn,J1xn-γA*J2(Ti-I)Axn⟩≤ϕ(u,xn)+∑i=1∞αn,i[∥xn∥2+2⟨u-xn,J1xn⟩+γ2∥A∥2∥(Ti-I)Axn∥2-2⟨xn,J1-1(γA*J2(Ti-I)Axn)⟩+2⟨u-xn,γA*J2(Ti-I)Axn⟩



(23)







From Lemma 1, we have:


-2⟨xn,γA*J2(Ti-I)Axn⟩≤∥γA*J2(Ti-I)Axn∥2+2∥txn∥2-∥xn+γA*J2(Ti-I)Axn∥2≤γ2∥A∥2∥(Ti-I)Axn∥2+∥xn∥2



(24)







Since [image: there is no content] and [image: there is no content] is a k-quasi-strictly pseudocontractive mapping:


⟨xn-u,γA*J2(Ti-I)Axn⟩=γ⟨A(xn-u),J2(Ti-I)Axn⟩=γ⟨A(xn-u)+(Ti-I)Axn-(Ti-I)Axn,J2(Ti-I)Axn⟩=γ(⟨TiA(xn)-Au,J2(Ti-I)Axn⟩-∥(Ti-I)Axn∥2)≤γ(12(∥TiAxn-Au∥2+∥(Ti-I)Axn∥2))-γ∥(Ti-I)Axn∥2=γ2(∥TiAxn-Au∥2-∥(Ti-I)Axn∥2)≤γ2(∥Axn-Au∥2+(k-1)∥(Ti-I)Axn∥2)≤12∥xn-u∥2+γ2(k-1)∥(Ti-I)Axn∥2



(25)







Substituting (24) and (25) into (23), we obtain:


ϕ(u,un)≤αn,0ϕ(u,xn)+∑i=1∞αn,iϕ(u,J1-1(γA*J2(Ti-I)Axn))≤ϕ(u,xn)+∑i=1∞αn,i[2⟨u,J1xn⟩-γ(1-k-2γ∥A∥2)∥(Ti-I)Axn∥2+∥xn-u∥2]≤ϕ(u,xn)+∑i=1∞αn,i(∥xn∥2+∥u∥2)-γ(1-k-2γ∥A∥2)∥(Ti-I)Axn∥2



(26)







It now follows from Lemma 2(d) and Equation (22):


ϕ(u,yn,m)≤βnϕ(u,x1)+(1-βn)ϕ(u,Snmun)≤βnϕ(u,x1)+(1-βn)[ϕ(u,un)+νnζ(ϕ(u,un))+μn]≤βnϕ(u,x1)+(1-βn)[ϕ(u,un)+νnsupu∈Ωζ(ϕ(u,un))+μn]=βnϕ(u,x1)+(1-βn)(ϕ(u,un)+ξn)∀m≥1≤βnϕ(u,x1)+(1-βn)(ϕ(u,xn)+∑i=1∞αn,i(∥xn∥2+∥u∥2)+ξn)-γ(1-2γ∥A∥2)∥(Ti-I)Axn∥2∀m≥1≤βnϕ(u,x1)+(1-βn)(ϕ(u,xn)+∑i=1∞αn,i(∥xn∥2+∥u∥2)+ξn)∀m≥1



(27)







Therefore, we have:


supm≥1ϕ(u,yn,m)≤βnϕ(u,x1)+(1-βn)(ϕ(u,xn)+∑i=1∞αn,i(∥xn∥2+∥u∥2)+ξn)≤βnϕ(u,x1)+(1-βn)(ϕ(u,xn)+∥xn∥2+∥u∥2+ξn)



(28)







This argument shows that [image: there is no content], and so, [image: there is no content].



(III) [image: there is no content] converges strongly to some point [image: there is no content].



Since [image: there is no content], from Lemma 6, we have ⟨xn-y,J1x1-J1xn⟩≥0,∀y∈Cn. Again, since [image: there is no content], we obtain ⟨xn-u,J1x1-J1xn⟩≥0,∀u∈Ω. It now follows from Lemma 2(a) that for each [image: there is no content] and each [image: there is no content]:


[image: there is no content]



(29)







Therefore, [image: there is no content] is bounded, and so is [image: there is no content]. Since [image: there is no content] and [image: there is no content], we have ϕ(xn,x1)≤ϕ(xn+1,x1),n≥1. This implies that [image: there is no content] is nondecreasing. Hence, [image: there is no content] exists. Since E is reflexive, there exists a subsequence [image: there is no content], such that [image: there is no content] (some point in [image: there is no content]). Since [image: there is no content] is closed and convex and [image: there is no content], it follows that [image: there is no content] is weakly closed and [image: there is no content] for each [image: there is no content]. Now, in view of [image: there is no content], we have ϕ(xni,x1)≤ϕ(p*,x1),∀ni≥1. Since the norm [image: there is no content] is weakly lower semicontinuous, we have:


[image: there is no content]








and so:


[image: there is no content]











This implies that [image: there is no content] and so, [image: there is no content]. Since [image: there is no content] and [image: there is no content] is uniformly convex, we obtain [image: there is no content] Now, the convergence of [image: there is no content], together with [image: there is no content], implies that [image: there is no content] If there exists some subsequence [image: there is no content], such that [image: there is no content], then from Lemma 2(a), we have:


ϕ(p*,q)=limni,nj→∞ϕ(xni,xnj)=limni,nj→∞ϕ(xni,ΠCjx1)≤limni,nj→∞(ϕ(xni,x1)-ϕ(ΠCjx1,x1))≤limni,nj→∞(ϕ(xni,x1)-ϕ(xnj,x1))=ϕ(p*,q)-ϕ(p*,q)=0








i.e., [image: there is no content], and so:


[image: there is no content]



(30)







By the way, it follows from from (26) that [image: there is no content] is bounded, so:


[image: there is no content]



(31)







(IV) [image: there is no content]. Since [image: there is no content], from (28), (30) and (31):


[image: there is no content]



(32)







Since [image: there is no content], from (27) and (32) we have:


γ(1-k-2γ∥A∥2)∥(Ti-I)Axn∥2≤βnϕ(xn+1,x1)+(1-βn)(ϕ(xn+1,xn)+∑i=1∞αn,i(∥xn+1∥2+∥xn∥2)+ξn)-ϕ(xn+1,yn,m)→0n→∞



(33)







Since [image: there is no content], we have:


∥(Ti-I)Axn∥→0n→∞



(34)







Since [image: there is no content], it follows from (32) and Lemma 5 that for each [image: there is no content]:


[image: there is no content]



(35)







Since [image: there is no content] is a bounded sequence and [image: there is no content] is uniformly totally quasi-asymptotically nonexpansive, [image: there is no content] is uniformly bounded. In view of [image: there is no content] and (22), we conclude that for each [image: there is no content]:


[image: there is no content]



(36)







Since for each [image: there is no content], it follows that for each [image: there is no content], [image: there is no content]. Since [image: there is no content] is continuous on each bounded subset of [image: there is no content], for each [image: there is no content]:


[image: there is no content]



(37)







On the other hand, by the assumption that for each [image: there is no content], [image: there is no content] is uniformly [image: there is no content]-Lipschitzian continuous, we have:


∥Smn+1xn-Smnxn∥≤∥Smn+1xn-Smn+1xn+1∥+∥Smn+1xn+1-xn+1∥+∥xn+1-xn∥+∥xn-Smnxn∥≤(Lm+1)∥xn+1-xn∥+∥Smn+1xn+1-xn+1∥+∥xn-Smnxn∥



(38)







From (37) and [image: there is no content], we have that [image: there is no content] and [image: there is no content], i.e., [image: there is no content]. In view of the closedness of [image: there is no content], it follows that [image: there is no content], i.e., for each [image: there is no content]. By the arbitrariness of [image: there is no content], we have [image: there is no content]. On the other hand, since A is bounded, it follows from [image: there is no content] that [image: there is no content]. Hence, from (34), we have that:


∥TiAxni-Axni∥⟶0,i→∞











Since [image: there is no content] is demi-closed at zero, we have that [image: there is no content]. Hence, [image: there is no content].



(V) Finally, [image: there is no content], and so, [image: there is no content].



Let [image: there is no content]. Since [image: there is no content] and [image: there is no content], we have ϕ(xn,x1)≤ϕ(w,x1),n≥1. This implies that [image: there is no content] Since [image: there is no content], it follows that [image: there is no content], and hence, [image: there is no content]. ☐



Corollary 1.

Let [image: there is no content] be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying [image: there is no content], and let [image: there is no content] be a real smooth Banach space. Let [image: there is no content] be a bounded linear operator and [image: there is no content] be its adjoint. Let [image: there is no content] be a k-quasi-strict pseudocontractive mapping and T be demi-closed at zero. Let [image: there is no content] be a family of multivalued quasinonexpansive mappings, such that for each i≥1,Si is demi-closed at zero. Assume that for each p∈Fix(Si),Si(p)={p}. Let [image: there is no content] be the sequence generated by [image: there is no content]:


un=(1-rn)xnyn=J1-1(αnJ1un+(1-αn)γA*J2(T-I)Aun)xn+1=J1-1(βn,0J1yn+∑i=1∞βn,iJ1wn,i)wn,i∈Siyn








where [image: there is no content]; the sequences [image: there is no content] satisfy the following conditions:





	(a) 

	
∑i=0∞βn,i=1andlim infnβn,0βn,i>0,




	(b) 

	
limn→∞αn=1,∑n=1∞(1-αn)<∞and(1-αn)=o(rn).







Then, [image: there is no content] converges strongly to an element of Ω.



Proof. 

Since every k-quasi-strictly pseudocontractive mapping is clearly [image: there is no content]-totally asymptotically strictly pseudocontractive, the result follows. ☐





Corollary 2.

Let [image: there is no content] be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying [image: there is no content], and let [image: there is no content] be a real smooth Banach space. Let [image: there is no content] be a bounded linear operator and [image: there is no content] be its adjoint. Let [image: there is no content] be a uniformly L-Lipschitzian continuous and [image: there is no content]-totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:





	(a) 

	
∑n=1∞μn<∞,∑n=1∞ξn<∞,




	(b) 

	
[image: there is no content] is a real sequence in [image: there is no content], such that [image: there is no content],




	(c) 

	
there exist constants [image: there is no content], such that [image: there is no content].







Let [image: there is no content] be a one-parameter nonexpansive semigroup on [image: there is no content]. Suppose further that [image: there is no content], and [image: there is no content] is the sequence generated by [image: there is no content]:


[image: there is no content]








where [image: there is no content]; the sequence [image: there is no content], and [image: there is no content]∑n=1∞(1-αn)<∞and(1-αn)=o(rn). Then, [image: there is no content] converges strongly to to an element of Ω.



Proof. 

Since [image: there is no content] is a u.a.r. nonexpansive semigroup, the result follows from Corollary 1. ☐





In the following, we shall provide an example to illustrate the main result of this paper.



Example 1.

Let C be the unit ball of the real Hilbert space [image: there is no content], and let [image: there is no content] be a mapping defined by:


[image: there is no content]








where [image: there is no content] is a sequence in [image: there is no content], such that [image: there is no content]. It was shown in [27] that T is a [image: there is no content]totally asymptotically strictly pseudocontractive mapping and [image: there is no content], where [image: there is no content]. Let B be the unit interval in [image: there is no content], and let [image: there is no content] be a mapping defined by:


Si(x)={12ixx∈[0,12]0x∈(12,1]













Then, [image: there is no content] and:


[image: there is no content]











Therefore, each [image: there is no content] is a quasinonexpansive mapping. Let [image: there is no content] be the linear operator defined by:


A(x)=(0,x,a2x,a3a2x,a4a3a2x,...),x∈B⊂R.











Then, A is bounded and [image: there is no content]. It now follows that:


A*:C→B,A*(x1,x2,⋯)=x2+a2x3+a3a2x4+a4a3a2x5+⋯.











We now put, for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Furthermore, we have:


[image: there is no content]











Now, all of the assumptions in Theorem 1 are satisfied. Let us consider the following numerical algorithm:


[image: there is no content]










[image: there is no content]










[image: there is no content]










yn=16un=16(1-1n)xn,xn+1=12yn+∑i=1∞13i(12iyn)=110yn










[image: there is no content]








By Theorem 1, the sequence [image: there is no content] converges to the unique element of Ω.




4. Application


Let E be a uniformly-smooth Banach space, [image: there is no content] be the dual of E, J be the duality mapping on E and [image: there is no content] be a multi-valued operator. Recall that F is called monotone if [image: there is no content], for any [image: there is no content], where [image: there is no content]. A monotone operator F is said to be maximally monotone if its graph [image: there is no content] is not properly contained in the graph of any other monotone operator. For a maximally-monotone operator [image: there is no content] and [image: there is no content], we can define a single-valued operator:


[image: there is no content]











It is known that for any r>0,JrF is firmly nonexpansive, and its domain is all of E, also [image: there is no content] if and only if [image: there is no content].



Theorem 3.

Let [image: there is no content] be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying [image: there is no content], and let [image: there is no content] be a real smooth Banach space and [image: there is no content] be a bounded linear operator. Let [image: there is no content] and [image: there is no content], for [image: there is no content], be maximal monotone mappings, such that [image: there is no content] and [image: there is no content]. Suppose:






Ω={x∈E1:0∈∩i=1∞Bi(x)suchthat0∈A(Tx)}≠∅









Let [image: there is no content] be a sequence generated by [image: there is no content] and:


[image: there is no content]











where [image: there is no content], and the sequences [image: there is no content] satisfy the following conditions:

	(1) 

	
∑i=0∞βn,i=1andlim infnβn,0βn,i>0,




	(2) 

	
limn→∞αn=1,∑n=1∞(1-αn)<∞and(1-αn)=o(rn).









Then, [image: there is no content] converges strongly to an element of Ω.



Proof. 

Since [image: there is no content] and [image: there is no content] are nonexpansive, the result follows from Corollary 1. ☐





Remark 1.

Set [image: there is no content] in Corollary 1, where [image: there is no content] is a maximal monotone mapping, then Corollary 1 improves Theorem 4.2 of Takahashi et al. [12].





Moudafi [28] introduced the split monotone variational inclusion (SMVIP) in Hilbert spaces. We present the SMVIP in a Banach space. Let [image: there is no content] and [image: there is no content] be two real Banach spaces and [image: there is no content] and [image: there is no content] be the duality mapping of [image: there is no content] and [image: there is no content], respectively. Given the operators f:E1→E1,g:E2→E2, a bounded linear operator [image: there is no content] and two multi-valued mappings [image: there is no content] and [image: there is no content], the SMVI is formulated as follows:


findapointx∈Csuchthat0∈J1(f(x))+B1(x)










andsuchthatthepoint:










y=A(x)∈E2solves0∈J2(g(y))+B2(y)











Note that if C and Q are nonempty closed convex subsets of [image: there is no content] and [image: there is no content], (resp.) and [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content] are normal cones to C and Q (resp.), then the split monotone variational inclusion problem reduces to the split variational inequality problem (SVIP), which is formulated as follows: find a point:


x∈Csuchthat⟨J1(f(x)),w-x⟩≥0forallw∈C










andsuchthatthepoint:










y=Ax∈Qsolves⟨J2(g(y)),z-y⟩≥0forallz∈Q











SVIP is quite general and enables the split minimization between two spaces in such a way that the image of a solution of one minimization problem, under a given bounded linear operator, is a solution of another minimization problem.



Let [image: there is no content] be an operator, and let [image: there is no content]. The operator h is called inverse strongly monotone with constant [image: there is no content], or in brief [image: there is no content], on E if:


⟨h(x)-h(y),Jx-Jy⟩≥β∥h(x)-h(y)∥2,∀x,y∈C











Remark 2.

If [image: there is no content] is an [image: there is no content] operator on E and [image: there is no content] is a maximal monotone mapping, then [image: there is no content] is averaged for each [image: there is no content].





Theorem 4.

Let [image: there is no content] be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying [image: there is no content], and let [image: there is no content] be a real smooth Banach space and [image: there is no content] be a bounded linear operator. Let [image: there is no content] and, for [image: there is no content], [image: there is no content] be maximal monotone mappings, such that [image: there is no content] and [image: there is no content]; and that [image: there is no content] is an [image: there is no content] operator and [image: there is no content] is a [image: there is no content] operator. Assume that ρ=αinfi∈Nγi>0 and [image: there is no content]. Suppose SMVI:


x∈∩i=1∞Bi-100∈J1(gi(x))+Bi(x)∀i∈NTx∈A-100∈J2(h(Tx))+A(Tx)








has a nonempty solution set Ω. Let [image: there is no content] be a sequence generated by [image: there is no content] and:


[image: there is no content]








where [image: there is no content]; the sequences [image: there is no content] satisfy the following conditions:





	(1) 

	
∑i=0∞βn,i=1andlim infnβn,0βn,i>0,




	(2) 

	
limn→∞αn=1,∑n=1∞(1-αn)<∞and(1-αn)=o(rn).







Then, [image: there is no content] converges strongly to an element of Ω.



Proof. 

The results follow from Remark 2, Lemma 4(iii) and Corollary 1. ☐





We mention in passing that the above theorem improves and extends Theorems 6.3 and 6.5 of [13] to Banach spaces. Indeed, we removed an extra condition and obtained a strong convergence theorem, which is more desirable than the weak convergence already obtained by the authors.
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