Article

The Split Common Fixed Point Problem for a Family of Multivalued Quasinonexpansive Mappings and Totally Asymptotically Strictly Pseudocontractive Mappings in Banach Spaces

Ali Abkar *, Elahe Shahrosvand and Azizollah Azizi
Department of Mathematics, Imam Khomeini International University, Qazvin 34149, Iran; kshahrosvand@yahoo.com (E.S.); azizi@sci.ikiu.ac.ir (A.A.)

* Correspondence: abkar@sci.ikiu.ac.ir; Tel.: +98-9123301709

Academic Editor: Hari M. Srivastava
Received: 29 September 2016; Accepted: 6 February 2017; Published: 11 February 2017

Abstract

In this paper, we introduce an iterative algorithm for solving the split common fixed point problem for a family of multi-valued quasinonexpansive mappings and totally asymptotically strictly pseudocontractive mappings, as well as for a family of totally quasi- ϕ-asymptotically nonexpansive mappings and k-quasi-strictly pseudocontractive mappings in the setting of Banach spaces. Our results improve and extend the results of Tang et al., Takahashi, Moudafi, Censor et al., and Byrne et al.

Keywords: split common fixed point problem; totally asymptotically strictly pseudocontractive mapping; quasinonexpansive mapping; k-quasi-strictly pseudocontractive mapping

MSC Classification: 47H05; 47H09; 47J25

1. Introduction

Let H_{1} and H_{2} be two real Hilbert spaces and $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. For nonlinear operators $T: H_{1} \longrightarrow H_{1}$ and $U: H_{2} \longrightarrow H_{2}$, the split fixed point problem (SFPP) is to find a point:

$$
\begin{equation*}
x \in \operatorname{Fix}(T) \text { such that } A x \in \operatorname{Fix}(U) \tag{1}
\end{equation*}
$$

It is often desirable to consider the above problem for finitely many operators. Given n nonlinear operators $T_{i}: H_{1} \longrightarrow H_{1}$ and m nonlinear operators $U_{j}: H_{2} \longrightarrow H_{2}$, the split common fixed point problem (SCFPP) is to find a point:

$$
x \in \cap_{i=1}^{n} \operatorname{Fix}\left(T_{i}\right) \text { such that } A x \in \cap_{j=1}^{m} \operatorname{Fix}\left(U_{j}\right)
$$

In particular, if $T_{i}=P_{C_{i}}$ and $U_{j}=P_{Q_{j}}$, then the SCFPP reduces to the multiple sets split feasibility problem (MSSFP); that is, to find $x \in \cap_{i=1}^{n} C_{i}$, such that $A x \in \cap_{j=1}^{m} Q_{j}$, where $\left\{C_{i}\right\}_{i=1}^{n}$ and $\left\{Q_{j}\right\}_{j=1}^{m}$ are nonempty closed convex subsets in H_{1} and H_{2}, respectively.

In the Hilbert space setting, the split feasibility problem and the split common fixed point problem have been studied by several authors; see, for instance, [1-3]. In [4], Censor and Segal introduced the iterative scheme:

$$
x_{n+1}=U\left(I-\rho_{n} A^{*}(I-T) A\right) x_{n}
$$

which solves the problem (1) for directed operators. This algorithm was then extended to the case of quasinonexpansive mappings [5], as well as to the case of demicontractive mappings [6]. Recently, Takahashi in $[7,8]$ extended the split feasibility problem in Hilbert spaces to the Banach space setting.

Then, Alsulami et al. [1] established some strong convergence theorems for finding a solution of the split feasibility problem in Banach spaces. Using the shrinking projection method of [8], Takahashi proved the strong convergence theorem for finding a solution of the split feasibility problem in Banach spaces. In this direction, Byrne et al. [2] studied the split common null point problem for multi-valued mappings in Hilbert spaces. Consider finitely many multi-valued mappings $F_{i}: H_{1} \rightarrow 2^{H_{1}}, 1 \leq i \leq n$, and $B_{j}: H_{2} \rightarrow 2^{H_{2}}, 1 \leq j \leq m$, and let $A_{j}: H_{1} \rightarrow H_{2}$ be bounded linear operators. The split common null point problem is to find a point:

$$
z \in H_{1} \quad \text { such that } \quad z \in\left(\cap_{i=1}^{n} F_{i}^{-1} 0\right) \cap\left(\cap_{j=1}^{m} A_{j} B_{j}^{-1} 0\right)
$$

Very recently, using the hybrid method and the shrinking projection method in mathematical programming, Takahashi et al. [9] proved two strong convergence theorems for finding a solution of the split common null point problem in Banach spaces. In [10], Tang et al. proved a theorem regarding the split common fixed point problem for a k-quasi-strictly pseudocontractive mapping and an asymptotical nonexpansive mapping. In this paper, motivated by [11], we use the hybrid method to study the split common fixed point problem for an infinite family of multi-valued quasinonexpansive mappings and an infinite family of L-Lipschitzian continuous and $\left(k,\left\{\mu_{n}\right\},\left\{\xi_{n}\right\}\right)$-totally asymptotically strictly pseudocontractive mappings. Compared to the Theorem of Tang et al. [10], we remove an extra condition and present a strong convergence theorem, which is more desirable than the weak convergence. The point is that the authors of [10] considered a semi-compact mapping, that is a mapping T on a set X having the property that if $\left\{x_{n}\right\}$ is a bounded sequence in X such that $\left\|T x_{n}-x_{n}\right\|$ tends to zero, then $\left\{x_{n}\right\}$ has a convergent subsequence. We will not assume that our mappings are semi-compact, and at the same time, we propose a different algorithm; instead, we impose some restrictions on the control sequences to get the strong convergence. We also present an algorithm for solving the split common fixed point problem for totally quasi- ϕ-asymptotically nonexpansive mappings and for k-quasi-strictly pseudocontractive mappings. Under some mild conditions, we establish the strong convergence of these algorithms in Banach spaces. As applications, we consider the algorithms for a split variational inequality problem and a split common null point problem. Our results improve and generalize the result of Tang et al. [10], Takahashi [12], Moudafi [5], Censor et al. [13] and Byrne et al. [2].

2. Preliminaries

Let E be a real Banach space and C be a nonempty closed convex subset of E. A mapping $T: C \rightarrow C$ is said to be $\left\{k_{n}\right\}$-asymptotically nonexpansive if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $k_{n} \rightarrow 1$, such that:

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|, \quad \forall x, y \in C, n \geq 1
$$

The mapping $T: C \rightarrow C$ is said to be k-quasi-strictly pseudocontractive if $F(T) \neq \varnothing$ and there exists a constant $k \in[0,1]$, such that:

$$
\|T x-p\|^{2} \leq\|x-p\|^{2}+k\|x-T x\|^{2} \quad \forall x \in C, p \in F(T)
$$

The mapping $T: C \rightarrow C$ is said to be $\left(k,\left\{\mu_{n}\right\},\left\{\xi_{n}\right\}\right)$-totally asymptotically strictly pseudocontractive if there exist a constant $k \in[0,1]$ and null sequences $\left\{\mu_{n}\right\}$ and $\left\{\xi_{n}\right\}$ in $[0, \infty)$ and a continuous strictly increasing function $\zeta:[0, \infty) \rightarrow[0, \infty)$ with $\zeta(0)=0$, such that for all $x, y \in H$ and $n \geq 1$:

$$
\left\|T^{n} x-T^{n} y\right\|^{2} \leq\|x-y\|^{2}+k\|(x-y)-(T x-T y)\|^{2}+\mu_{n} \zeta(\|x-y\|)+\xi_{n}
$$

A Banach space E is said to be uniformly smooth if $\frac{\rho_{E}(t)}{t} \rightarrow 0$ as $t \rightarrow 0$, where $\rho_{E}(t)$ is the modulus of smoothness of E. Let $q>1$; then, E is called q-uniformly smooth if there exists a constant $c>0$,
such that $\rho_{E}(t) \leq c t^{q}$ for all $t>0$. Throughout, J will stand for the duality mapping of E. We recall that a Banach space E is smooth if and only if the duality mapping J is single valued.

Lemma 1. [14] If E is a two-uniformly smooth Banach space, then for each $t>0$ and each $x, y \in E$:

$$
\|x+t y\|^{2} \leq\|x\|^{2}+2\langle y, J x\rangle+2\|t y\|^{2}
$$

For a smooth Banach space E, Alber [15] defined:

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}, \quad x, y \in E
$$

It follows that $(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2}$ for each $x, y \in E$. Moreover, if we denote by $\Pi_{C} x$ the generalized projection from E onto a closed convex subset C in E, then we have:

Lemma 2. [15] Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed convex subset of E. Then:
(a) $\quad \phi\left(x, \Pi_{C} y\right)+\phi\left(\Pi_{C} y, y\right) \leq \phi(x, y)$, for all $x \in C$ and $y \in E$;
(b) For $x, y \in E, \phi(x, y)=0$ if and only if $x=y$;
(c) For $x, y, z \in E, \phi(x, y) \leq \phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle$;
(d) For $x, y, z \in E, \lambda \in[0,1], \phi\left(x, J^{-1}(\lambda J y+(1-\lambda) J z)\right) \leq \lambda \phi(x, y)+(1-\lambda) \phi(x, z)$.

Lemma 3. [16] If E is a uniformly-smooth Banach space and $r>0$, then there exists a continuous, strictly-increasing convex function $g:[0,2 r] \rightarrow[0, \infty)$, such that $g(0)=0$ and:

$$
\phi\left(x, J^{-1}(\lambda J y+(1-\lambda) J z)\right) \leq \lambda \phi(x, y)+(1-\lambda) \phi(x, z)-\lambda(1-\lambda) g(\|J y-J z\|)
$$

for all $\lambda \in[0,1], x \in E$ and $y, z \in B_{r}=\{u \in E:\|u\| \leq r\}$.

We denote by $N(C), C B(C)$ and $P(C)$ the collection of all nonempty subsets, nonempty closed bounded subsets and nonempty proximal bounded subsets of C, respectively. Let $T: E \rightarrow N(E)$ be a multivalued mapping. An element $x \in E$ is said to be a fixed point of T if $x \in T x$. The set of fixed points of T is denoted by $F(T)$.

Definition 1. Let C be a closed convex subset of a smooth Banach space E and $T: C \rightarrow N(C)$ be a multivalued mapping. We set:

$$
\Phi(T x, T p)=\max \left\{\sup _{q \in T p} \inf _{y \in T x} \phi(y, q), \sup _{y \in T x} \inf _{q \in T p} \phi(y, q)\right\}
$$

We call T a quasinonexpansive multivalued mapping if $F(T) \neq \varnothing$ and:

$$
\Phi(T x, T p) \leq \phi(x, p), \quad \forall p \in F(T), \forall x \in C
$$

Definition 2. A multivalued mapping T is called demi-closed if $\lim _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, T x_{n}\right)=0$ and $x_{n} \rightharpoonup w$ imply that $w \in T w$.

Let C be a nonempty closed convex subset of E and $T:=\{T(s): 0 \leq s<\infty\}$ be a nonexpansive semigroup on C. We use $\operatorname{Fix}(T)$ to denote the common fixed point set of the semigroup T. It is well known that Fix (T) is closed and convex. A nonexpansive semigroup T on C is said to be uniformly asymptotically regular (u.a.r.) if for all $h \geq 0$ and any bounded subset D of C :

$$
\lim _{n \rightarrow \infty} \sup _{x \in D}\|T(h)(T(t) x)-T(t) x\|=0
$$

For each $h \geq 0$, define $\sigma_{t}(x)=\frac{1}{t} \int_{0}^{t} T(s) x d s$. Then, $\lim _{t \rightarrow \infty} \sup _{x \in D}\left\|T(h)\left(\sigma_{t}(x)\right)-\sigma_{t}(x)\right\|=0$ provided that D is a closed bounded convex subset of C. It is known that the set $\left\{\sigma_{t}(x): t>0\right\}$ is a u.a.r. nonexpansive semigroup; see [17].

A mapping $T: E \rightarrow E$ is said to be α-averaged if $T=(1-\alpha) I+\alpha S$ for some $\alpha \in(0,1)$; here, I is the identity operator, and $S: E \rightarrow E$ is a nonexpansive mapping (see [18]). It is known that in a Hilbert space setting, every firmly-nonexpansive mapping (in particular, a projection) is a $\frac{1}{2}$-averaged mapping (see Proposition 11.2 in the book [19]).

Lemma 4. [20] (i) The composition of finitely many averaged mappings is averaged. In particular, if T_{i} is α_{i}-averaged, where $\alpha_{i} \in(0,1)$ for $i=1,2$, then the composition $T_{1} T_{2}$ is α-averaged, where $\alpha=\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}$. (ii) If the mappings $\left\{T_{i}\right\}_{i=1}^{N}$ are averaged and have a common fixed point, then $\cap_{i=1}^{N} F\left(T_{i}\right)=F\left(T_{1} \cdots T_{N}\right)$.
(iii) In case E is a uniformly-convex Banach space, every α-averaged mapping is nonexpansive.

Lemma 5. [21] Let E be a uniformly-convex and smooth Banach space, and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in E. If $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ and either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded, then $x_{n}-y_{n} \rightarrow 0$.

Lemma 6. [15] Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$, then $x_{0}=\Pi_{C} x$ if and only if for all $y \in C,\left\langle x_{0}-y_{,} J x-J x_{0}\right\rangle \geq 0$.

Lemma 7. [22] Let E be a uniformly-convex Banach space, and let $B_{r}(0)=\{x \in E:\|x\| \leq r\}$, for $r>0$, then there exists a continuous, strictly-increasing and convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$, such that, for any given sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B_{r}(0)$ and for any given sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of positive numbers with $\sum_{n=1}^{\infty} a_{n}=1$ and for any positive integers i, j with $i<j$:

$$
\left\|\sum_{n=1}^{\infty} \alpha_{n} x_{n}\right\|^{2} \leq \sum_{n=1}^{\infty} \alpha_{n}\left\|x_{n}\right\|^{2}-\alpha_{i} \alpha_{j} g\left(\left\|x_{i}-x_{j}\right\|\right)
$$

Lemma 8. [23] Let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1], \delta_{n}$ and $\left\{\gamma_{n}\right\}$ be sequences in \mathbb{R}, such that (i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, (ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$ and (iii) $\gamma_{n} \geq 0$ and $\sum_{n=1}^{\infty} \gamma_{n}<\infty$. If $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers, such that $a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \delta_{n}+\gamma_{n}$, for each $n \geq 0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 9. [24] Let $\left\{s_{n}\right\}$ be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence $\left\{s_{n_{i}}\right\}$ of $\left\{s_{n}\right\}$, such that $s_{n_{i}} \leq s_{n_{i+1}}$ for all $i \geq 0$. For every $n \in \mathbb{N}$, define an integer sequence $\{\tau(n)\}$ as $\tau(n)=\max \left\{k \leq n: s_{k}<s_{k+1}\right\}$. Then, $\tau(n) \rightarrow \infty$ and $\max \left\{s_{\tau(n)}, s_{n}\right\} \leq s_{\tau(n)+1}$.

Lemma 10. [25] Let $\left\{\lambda_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be nonnegative and $\left\{\alpha_{n}\right\}$ be positive real numbers, such that $\lambda_{n+1} \leq$ $\lambda_{n}-\alpha_{n} \lambda_{n}+\gamma_{n}, n \geq 0$. Let for all $n>1, \frac{\lambda_{n}}{\alpha_{n}} \leq c_{1}$ and $\alpha_{n} \leq \alpha$. Then, $\lambda_{n} \leq \max \left\{\lambda_{1}, K^{*}\right\}$, where $K^{*}=(1+\alpha) c_{1}$.

Definition 3. (1) A mapping $T: C \rightarrow C$ is said to be a k-quasi-strictly pseudocontractive mapping if there exists $k \in[0,1)$, such that $\|T x-p\|^{2} \leq\|x-p\|^{2}+k\|x-T x\|^{2}, \quad \forall x \in C, p \in F(T)$. (2) A mapping $T: C \rightarrow C$ is called quasinonexpansive if $F(T) \neq \varnothing$; and $\phi(p, T x) \leq \phi(p, x) \forall x \in C, p \in F(T)$. (3) A countable family of mappings $\left\{T_{i}\right\}: C \rightarrow C$ is said to be totally uniformly quasi- ϕ-asymptotically nonexpansive, if $\Im=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \neq \varnothing$ and there exist nonnegative real sequences $\left\{\mu_{n}\right\},\left\{v_{n}\right\}$ with $\mu_{n} \rightarrow 0, v_{n} \rightarrow 0($ as $n \rightarrow \infty)$ and a strictly-increasing continuous function $\zeta: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\zeta(0)=0$, such that $\phi\left(p, T_{i}^{n} x\right) \leq \phi(p, x)+v_{n} \zeta(\phi(p, x))+\mu_{n}, n \geq 1, i \geq 1, x \in C, p \in \Im$. (4) A mapping $T: C \rightarrow C$ is said to be uniformly L-Lipschitzian continuous, if there exists a constant $L>0$, such that $\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|, \quad \forall x, y \in C, n \geq 1$.

Lemma 11. [11] Let E be a real uniformly-smooth and uniformly-convex Banach space and C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a closed and totally quasi- ϕ-asymptotically nonexpansive mapping
with nonnegative real sequences $\left\{\mu_{n}\right\},\left\{v_{n}\right\}$ and a strictly-increasing continuous function $\zeta: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $\mu_{n} \rightarrow 0, v_{n} \rightarrow 0$ and $\zeta(0)=0$. If $\mu_{1}=0$, then the fixed point set of T is closed and convex.

Lemma 12. [26] Let C be a nonempty closed convex subset of a real Banach space E, and let $T: C \rightarrow C$ be a k-quasi-strictly pseudocontractive mapping. If $F(T) \neq \varnothing$, then $F(T)$ is closed and convex.

3. Main Results

This section is devoted to the main results of this paper.
Theorem 1. Let E_{1} be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0<t<\frac{1}{\sqrt{2}}$, and let E_{2} be a real smooth Banach space. Let $A: E_{1} \rightarrow E_{2}$ be a bounded linear operator and A^{*} be its adjoint. Suppose $T: E_{2} \rightarrow E_{2}$ is a uniformly L-Lipschitzian continuous and $\left(k,\left\{\mu_{n}\right\},\left\{\xi_{n}\right\}\right)$-totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:
(1) $\sum_{n=1}^{\infty} \mu_{n}<\infty, \sum_{n=1}^{\infty} \xi_{n}<\infty$,
(2) $\left\{r_{n}\right\}$ is a real sequence in $(0,1)$, such that $\mu_{n}=o\left(r_{n}\right), \xi_{n}=o\left(r_{n}\right), \lim r_{n}=0, \sum_{n=1}^{\infty} r_{n}=\infty$,
(3) there exist constants $M_{0}>0, M_{1}>0$, such that $\zeta(\lambda) \leq M_{0} \lambda^{2}, \forall \lambda>M_{1}$.

Let $\left\{S_{n}\right\}_{n=1}^{\infty}: E_{1} \rightarrow C B\left(E_{1}\right)$ be a family of multivalued quasinonexpansive mappings, such that for each $i \geq 1, S_{i}$ is demi-closed at zero, and for each $p \in \operatorname{Fix}\left(S_{i}\right), S_{i}(p)=\{p\}$. Suppose:

$$
\Omega=\left\{x \in \bigcap_{i=1}^{\infty} F\left(S_{i}\right): A x \in F(T)\right\} \neq \varnothing
$$

and $\left\{x_{n}\right\}$ is the sequence generated by $x_{1} \in E_{1}$:

$$
\left\{\begin{array}{l}
u_{n}=\left(1-r_{n}\right) x_{n} \tag{2}\\
y_{n}=J_{1}^{-1}\left(\alpha_{n} J_{1} u_{n}+\left(1-\alpha_{n}\right) \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right) \\
x_{n+1}=J_{1}^{-1}\left(\beta_{n, 0} J_{1} y_{n}+\sum_{i=1}^{\infty} \beta_{n, i} J_{1} w_{n, i}\right) \quad w_{n, i} \in S_{i} y_{n}
\end{array}\right.
$$

where $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$; the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\} \subset(0,1)$ satisfy the following conditions:
(a) $\sum_{i=0}^{\infty} \beta_{n, i}=1, \liminf _{n} \beta_{n, 0} \beta_{n, i}>0$,
(b) $\lim _{n \rightarrow \infty} \alpha_{n}=1, \sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)<\infty,\left(1-\alpha_{n}\right)=o\left(r_{n}\right)$.

Then, $\left\{x_{n}\right\}$ converges strongly to an element of Ω.
Proof. Since ζ is continuous, ζ attains its maximum in $\left[0, M_{1}\right]$, and by assumption, $\zeta(\lambda) \leq M_{0} \lambda^{2}$, $\forall \lambda>M_{1}$. In either case, we have $\zeta(\lambda) \leq M+M_{0} \lambda^{2}, \forall \lambda \in[0, \infty)$. Let $p \in \Omega$, then:

$$
\begin{equation*}
\phi\left(p, u_{n}\right) \leq\left(1-r_{n}\right) \phi\left(p, x_{n}\right)+r_{n}\|p\|^{2} \tag{3}
\end{equation*}
$$

From (2) and Lemma 2(d,c), we have:

$$
\begin{align*}
\phi\left(p, y_{n}\right) & \leq \alpha_{n} \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right) \\
& \leq \alpha_{n} \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right)\left[\phi\left(p, u_{n}\right)+\phi\left(u_{n}, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right)\right. \\
& \left.+2\left\langle p-u_{n}, J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle\right] \\
& =\phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right)\left[\left\|u_{n}\right\|^{2}+\gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}-2\left\langle u_{n}, \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle\right. \tag{4}\\
& \left.+2\left\langle p-u_{n}, J_{1} u_{n}\right\rangle+2\left\langle p-u_{n}, \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle\right] \\
& \leq \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right)\left[\|p\|^{2}+\gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}-2\left\langle u_{n}, \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle\right. \\
& \left.+2\left\langle p-u_{n}, \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle\right]
\end{align*}
$$

From Lemma 1, we have:

$$
\begin{align*}
-2\left\langle u_{n}, \gamma A^{*} J_{2}\left(T_{n}-I\right) A u_{n}\right\rangle & \leq\left\|\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|^{2}+2\left\|t u_{n}\right\|^{2}-\left\|u_{n}+\gamma A^{*} J_{2}\left(T_{n}-I\right) A u_{n}\right\|^{2} \\
& \leq \gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\left\|u_{n}\right\|^{2} \\
& =\gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+4\left\|\frac{1}{2} u_{n}-\frac{1}{2} p+\frac{1}{2} p\right\|^{2} \tag{5}\\
& \leq \gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+4\left(\frac{1}{2}\left\|u_{n}-p\right\|^{2}+\frac{1}{2}\|p\|^{2}\right) \\
& \left.=\gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+2\left\|u_{n}-p\right\|^{2}+2\|p\|^{2}\right)
\end{align*}
$$

Since $A p \in F(T)$ and T is a totally quasi-asymptotically strictly pseudocontractive mapping, we obtain:

$$
\begin{align*}
\left\langle u_{n}-p, \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right. & =\gamma\left\langle A\left(u_{n}-p\right), J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle \\
& =\gamma\left\langle A\left(u_{n}-p\right)+\left(T^{n}-I\right) A u_{n}-\left(T^{n}-I\right) A u_{n}, J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle \\
& =\gamma\left(\left\langle T^{n} A\left(u_{n}\right)-A p, J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle-\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}\right) \\
& \leq \gamma\left(\frac { 1 } { 2 } \left[\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+2\left\|t\left(T^{n} A u_{n}-A p\right)\right\|^{2}\right.\right. \\
& \left.\left.-\left\|A p-A u_{n}\right\|^{2}\right]-\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}\right) \\
& \leq \gamma\left(\frac { 1 } { 2 } \left[\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\left\|\left(T^{n} A u_{n}-A p\right)\right\|^{2}\right.\right. \tag{6}\\
& \left.\left.-\left\|A p-A u_{n}\right\|^{2}\right]-\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}\right) \\
& \leq \gamma\left(\frac{1}{2}\left[\left\|A u_{n}-A p\right\|^{2}+k\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\mu_{n} \zeta\left(\left\|A u_{n}-A p\right\|\right)+\xi_{n}\right]\right) \\
& -\frac{1}{2}\left(\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\left\|A p-A u_{n}\right\|^{2}\right) \\
& =\gamma\left(\frac{k-1}{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\frac{\mu_{n}}{2}\left[M+M_{0}\left\|A u_{n}-A p\right\|^{2}\right]+\frac{\xi_{n}}{2}\right)
\end{align*}
$$

Substituting (5) and (6) into (4), we have:

$$
\begin{align*}
\phi\left(p, y_{n}\right) & \leq \alpha_{n} \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right) \\
& \leq \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right)\left[3\|p\|^{2}+2 \gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+2\left\|u_{n}-p\right\|^{2}\right. \\
& +\gamma(k-1)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\gamma \mu_{n}\left[M+M_{0}\|A\|^{2}\left\|u_{n}-p\right\|^{2}\right]+\gamma \xi n \tag{7}\\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
& +\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\left\|u_{n}-p\right\|^{2}+\gamma \xi_{n}
\end{align*}
$$

From Lemma 1 and the fact that $0<t<\frac{1}{\sqrt{2}}$, we have:

$$
\begin{align*}
\phi\left(p, y_{n}\right) & \leq \alpha_{n} \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right) \\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
& +\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\left\|u_{n}-p\right\|^{2}+\gamma \xi_{n} \\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \tag{8}\\
& +\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\left[\left\|u_{n}\right\|^{2}-\left\langle p, J u_{n}\right\rangle+2\|t p\|^{2}\right]+\gamma \xi_{n} \\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
& +\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right) \phi\left(p, u_{n}\right)+\gamma \xi_{n}
\end{align*}
$$

Putting (3) and (8) into (2), we obtain:

$$
\begin{align*}
& \phi\left(p, x_{n+1}\right)= \phi\left(p, J_{1}^{-1}\left(\beta_{n, 0} J_{1} y_{n}+\sum_{i=1}^{\infty} \beta_{n, i} J_{1} w_{n, i}\right)\right) \\
& \leq \beta_{n, 0} \phi\left(p, y_{n}\right)+\sum_{i=1}^{\infty} \beta_{n, i} \phi\left(p, w_{n, i}\right) \\
&= \beta_{n, 0} \phi\left(p, y_{n}\right)+\sum_{i=1}^{\infty} \beta_{n, i} \inf _{t \in S_{i}(p)} \phi\left(p, w_{n, i}\right) \\
& \leq \beta_{n, 0} \phi\left(p, y_{n}\right)+\sum_{i=1}^{\infty} \beta_{n, i} \Phi\left(p, w_{n, i}\right)=\phi\left(p, y_{n}\right) \tag{9}\\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
&+ \gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right) \phi\left(p, u_{n}\right)+\gamma \xi_{n} \\
& \leq\left(1-r_{n}\right) \phi\left(p, x_{n}\right)+r_{n}\|p\|^{2}+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
&+\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\left(\left(1-r_{n}\right) \phi\left(p, x_{n}\right)+r_{n}\|p\|^{2}\right)+\gamma \xi_{n} \\
& \leq \phi\left(p, x_{n}\right)-\left(r_{n}-\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\left(1-r_{n}\right) \phi\left(p, x_{n}\right) \\
&+\left(3\left(1-\alpha_{n}\right)+r_{n}+\mu_{n} \gamma M_{0}\|A\|^{2} r_{n}\right)\|p\|^{2}+\gamma \mu_{n} M+\gamma \xi_{n} \\
& \leq \phi\left(p, x_{n}\right)-\left(r_{n}-\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\right)\left(1-r_{n}\right) \phi\left(p, x_{n}\right)+\sigma_{n}
\end{align*}
$$

where $\sigma_{n}=\left(3\left(1-\alpha_{n}\right)+r_{n}+\mu_{n} \gamma M_{0}\|A\|^{2} r_{n}\right)\|p\|^{2}+\mu_{n} \gamma M+\gamma \xi_{n}$. Since $\mu_{n}=o\left(r_{n}\right),\left(1-\alpha_{n}\right)=o\left(r_{n}\right)$ and $\xi_{n}=o\left(r_{n}\right)$, we may assume without loss of generality that there exist constants $k_{0} \in(0,1)$ and $M_{2}>0$, such that for all $n \geq 1$:

$$
\frac{\mu_{n}}{r_{n}} \leq \frac{r_{n}\left(1-k_{0}+2\right)-2}{r_{n}\left(1-r_{n}\right) \gamma M_{0}\|A\|^{2}} \quad \text { and } \quad \frac{\sigma_{n}}{r_{n}} \leq M_{2}
$$

Thus, we obtain:

$$
\begin{equation*}
\phi\left(p, x_{n+1}\right) \leq \phi\left(p, x_{n}\right)-r_{n} k_{0} \phi\left(p, x_{n}\right)+\sigma_{n} \tag{10}
\end{equation*}
$$

According to Lemma 10, $\phi\left(p, x_{n+1}\right) \leq \max \left\{\phi\left(p, x_{1}\right),\left(1+k_{0}\right) M_{2}\right\}$. Therefore, $\left\{\phi\left(p, x_{n}\right)\right\}$ and $\left\{x_{n}\right\}$ are bounded. Furthermore, the sequences $\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded, as well. We now consider two cases.

Case 1. Suppose that there exists $n_{0} \in \mathbb{N}$, such that $\left\{\phi\left(p, x_{n}\right)\right\}_{n=n_{0}}^{\infty}$ is nonincreasing. Then, $\left\{\phi\left(p, x_{n}\right)\right\}_{n=1}^{\infty}$ converges, and $\phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since E_{1} is a uniformly smooth Banach space, it follows from Lemma 3 and Equations (8) and (10) that:

$$
\begin{align*}
\phi\left(p, x_{n+1}\right) & \leq \phi\left(p, y_{n}\right) \\
& \leq \alpha_{n} \phi\left(p, u_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(p, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right)-\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|\right) \\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
& +\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right) \phi\left(p, u_{n}\right)+\gamma \xi_{n}-\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|\right. \tag{11}\\
& \leq \phi\left(p, x_{n}\right)-\left(r_{n}-\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\right) \phi\left(p, u_{n}\right)+\left(3\left(1-\alpha_{n}\right)+r_{n}\right)\|p\|^{2} \\
& +\gamma \xi_{n}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|\right) \\
& \leq \phi\left(p, x_{n}\right)-r_{n} k_{0} \phi\left(p, x_{n}\right)+\sigma_{n}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|\right)
\end{align*}
$$

Hence, from (10), we have:

$$
\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|\right) \leq \phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)-r_{n} k_{0} \phi\left(p, x_{n}\right)+\sigma_{n}
$$

and:

$$
\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \leq \phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)-r_{n} k_{0} \phi\left(p, x_{n}\right)+\sigma_{n}
$$

Therefore, $\alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\|\right)$ and $\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}$ tend to zero as $n \rightarrow \infty$. Since $\lim \inf \alpha_{n}\left(1-\alpha_{n}\right)>0$ and $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$, we obtain:

$$
\begin{gather*}
\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\| \longrightarrow 0 \quad n \rightarrow \infty \tag{12}\\
\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \longrightarrow 0 \quad n \rightarrow \infty \tag{13}
\end{gather*}
$$

Furthermore, we observe that $\left\|J_{1} y_{n}-J_{1} u_{n}\right\|=\left(1-\alpha_{n}\right)\left\|J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\| \rightarrow 0$. Since J_{1}^{-1} is uniformly norm-to-norm continuous on bounded subsets, we conclude that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0 \tag{14}
\end{equation*}
$$

Using (7) and Lemma 3 in (2), we have:

$$
\begin{align*}
\phi\left(p, x_{n+1}\right) & =\phi\left(p, J_{1}^{-1}\left(\beta_{n, 0} J_{1} y_{n}+\sum_{i=1}^{\infty} \beta_{n, i} I_{1} w_{n, i}\right)\right) \\
& \leq \beta_{n, 0} \phi\left(p, y_{n}\right)+\sum_{i=1}^{\infty} \beta_{n, i} \phi\left(p, w_{n, i}\right)-\beta_{n, 0} \beta_{n, i} g\left(\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\|\right) \tag{15}\\
& \leq \phi\left(p, y_{n}\right)-\beta_{n, 0} \beta_{n, i} g\left(\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\|\right) \\
& \leq \phi\left(p, u_{n}\right)+3\left(1-\alpha_{n}\right)\|p\|^{2}-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \\
& +\gamma \mu_{n} M+\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\left\|u_{n}-p\right\|^{2}+\gamma \xi_{n}-\beta_{n, 0} \beta_{n, i} g\left(\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\|\right)
\end{align*}
$$

It now follows from (3) and $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$ that:

$$
\begin{aligned}
\beta_{n, 0} \beta_{n, i} g\left(\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\|\right) & \leq \phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)-\left(r_{n}-\left(\gamma \mu_{n} M_{0}\|A\|^{2}+2\right)\right) \phi\left(p, u_{n}\right) \\
& +\left(3\left(1-\alpha_{n}\right)+r_{n}\right)\|p\|^{2}+\gamma \xi_{n} \\
& \leq \phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)-r_{n} k_{0} \phi\left(p, x_{n}\right)+\sigma_{n}
\end{aligned}
$$

From Condition (a), we have $\lim _{n \rightarrow \infty} g\left(\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\|\right)=0$. Since g is continuous and $g(0)=0$, we obtain $\lim _{n \rightarrow \infty}\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\|=0$. Since J_{1}^{-1} is uniformly norm-to-norm continuous on bounded subsets, we have:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-w_{n, i}\right\|=0 \quad \forall i \in \mathbb{N} \tag{16}
\end{equation*}
$$

which implies that $\lim _{n \rightarrow \infty} \operatorname{dist}\left(y_{n}, S_{i} y_{n}\right) \leq \lim _{n \rightarrow \infty}\left\|y_{n}-w_{n, i}\right\|=0, \forall i \in \mathbb{N}$. From (2), we obtain:

$$
\left\|J_{1} x_{n+1}-J_{1} y_{n}\right\|=\left(1-\beta_{n, 0}\right)\left\|J_{1} y_{n}-J_{1} w_{n, i}\right\| \longrightarrow 0 \quad n \rightarrow \infty
$$

Since J is uniformly norm-to-norm continuous on bounded subsets, we have:

$$
\begin{equation*}
\left\|x_{n+1}-y_{n}\right\| \longrightarrow 0 \quad n \rightarrow \infty \tag{17}
\end{equation*}
$$

From (14), (17) and $\lim _{n \rightarrow \infty} r_{n}=0$, we have:

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| & \leq\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\| \\
& =\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\|+r_{n}\left\|x_{n}\right\| \longrightarrow 0 \quad n \rightarrow \infty
\end{aligned}
$$

Consequently:

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\| & \left.=\|\left(1-r_{n+1}\right) x_{n+1}-\left(1-r_{n}\right) x_{n}\right) \| \\
& \leq\left|r_{n+1}-r_{n}\right|\left\|x_{n+1}\right\|+\left(1-r_{n}\right)\left\|x_{n+1}-x_{n}\right\| \longrightarrow 0 \quad n \rightarrow \infty \tag{18}
\end{align*}
$$

Using the fact that T is uniformly L-Lipschitzian, we have:

$$
\begin{aligned}
\left\|T A u_{n}-A u_{n}\right\| & \leq\left\|T A u_{n}-T^{n+1} A u_{n}\right\|+\left\|T^{n+1} A u_{n}-T^{n+1} A u_{n+1}\right\| \\
& +\left\|T^{n+1} A u_{n+1}-A u_{n+1}\right\|+\left\|A u_{n+1}-A u_{n}\right\| \\
& \leq L\left\|A u_{n}-T^{n} A u_{n}\right\|+(1+L)\left\|A u_{n+1}-A u_{n}\right\|+\left\|T^{n+1} A u_{n+1}-A u_{n+1}\right\| \\
& \leq L\left\|A u_{n}-T^{n} A u_{n}\right\|+(1+L)\|A\|\left\|u_{n+1}-u_{n}\right\|+\left\|T^{n+1} A u_{n+1}-A u_{n+1}\right\|
\end{aligned}
$$

From (13) and (18), we obtain:

$$
\begin{equation*}
\left\|(T-I) A u_{n}\right\| \longrightarrow 0, \quad n \rightarrow \infty \tag{19}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, such that $x_{n_{j}} \rightharpoonup z$. Using the fact that $x_{n_{j}} \rightharpoonup z$ and $\left\|y_{n}-x_{n}\right\| \rightarrow 0, n \rightarrow \infty$, we have that $y_{n_{j}} \rightharpoonup z$. Similarly, $u_{n_{j}} \rightharpoonup z$, since $\left\|u_{n}-x_{n}\right\| \rightarrow 0, n \rightarrow$ ∞. Now, we show that $z \in \Omega$. Since $y_{n_{j}} \rightharpoonup z$ and $\lim _{n \rightarrow \infty} \operatorname{dist}\left(y_{n}, S_{i}\left(y_{n}\right)\right)=0$ and by the demi-closedness of each S_{i}, we have $z \in \bigcap_{i \in \mathbb{N}} F\left(S_{i}\right)$. On the other hand, since A is a bounded operator, it follows from $u_{n_{j}} \rightharpoonup z$ that $A u_{n_{j}} \rightharpoonup A z$. Hence, from (13), we have $\left\|T A u_{n_{j}}-A u_{n_{j}}\right\| \rightarrow 0$ as $j \rightarrow \infty$. Since T is demi-closed at zero, we have that $A z \in F(T)$. Hence, $z \in \Omega$. Next, we prove that $\left\{x_{n}\right\}$ converges strongly to z. From (7), Lemma 1 and $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$, we have:

$$
\begin{align*}
\phi\left(z, x_{n+1}\right) & \leq \phi\left(z, y_{n}\right) \leq \alpha_{n} \phi\left(z, u_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(z, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right) \\
& \leq \alpha_{n} \phi\left(z, u_{n}\right)+\left(1-\alpha_{n}\right)\left[\phi\left(z, u_{n}\right)+\phi\left(u_{n}, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right)\right)\right. \\
& \left.+2\left\langle z-u_{n}, J_{1} u_{n}-\gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right\rangle\right] \\
& \leq \phi\left(z, u_{n}\right)+\left(1-\alpha_{n}\right)\left[\|z\|^{2}+\left\|u_{n}-z+z\right\|^{2}+2 \gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}\right. \\
& +\gamma(k-1)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\gamma \mu_{n}\left[M+M_{0}\|A\|^{2}\left\|u_{n}-z\right\|^{2}\right]+\gamma \xi_{n} \\
& \leq \phi\left(z, u_{n}\right)+\left(1-\alpha_{n}\right)\left[\|z\|^{2}+\left\|u_{n}-z\right\|^{2}+\|z\|^{2}+2\left\langle u_{n}-z, J z\right\rangle\right. \\
& +2 \gamma^{2}\|A\|^{2}\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2}+\gamma(k-1)\left\|\left(T^{n}-I\right) A u_{n}\right\|^{2} \tag{20}\\
& +\gamma \mu_{n}\left[M+M_{0}\|A\|^{2}\left\|u_{n}-z\right\|^{2}\right]+\gamma \xi_{n} \\
& \leq \phi\left(z, u_{n}\right)+\left(1-\alpha_{n}\right)\left(\left\|u_{n}-z\right\|+2\left\langle u_{n}, J_{1} z\right\rangle\right)+\mu_{n} M^{*}+\gamma \xi_{n} \\
& \leq\left(1-r_{n}\right) \phi\left(z, x_{n}\right)-2 r_{n}\left\langle x_{n}-z, J_{1} z\right\rangle+\left(1-\alpha_{n}\right)\left(\left\|u_{n}-z\right\|\right. \\
& \left.+2\left\langle x_{n}, J_{1} z\right\rangle\right)+\mu_{n} M^{*}+\gamma \xi_{n} \\
& \leq\left(1-r_{n}\right) \phi\left(z, x_{n}\right)-2 r_{n}\left\langle x_{n}-z, J_{1} z\right\rangle+\left(1-\alpha_{n}\right)\left(\left\|u_{n}-z\right\|^{2}\right. \\
& +2\left\langle x_{n}, J_{1} z\right\rangle+\mu_{n} M^{*}+\gamma \xi_{n}
\end{align*}
$$

where $M^{*}>\gamma \sup _{n>0}\left(M+M_{0}\|A\|^{2}\left\|u_{n}-z\right\|^{2}\right)>0$. It is clear that $-2\left\langle u_{n}-z, z\right\rangle \rightarrow 0, n \rightarrow \infty$, and $\sum_{n=1}^{\infty} M^{*} \mu_{n}<\infty, \sum_{n=1}^{\infty} \gamma \xi_{n}<\infty$ and $\sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(\left\|u_{n}-z\right\|^{2}+2\left\langle x_{n}, J_{1} z\right\rangle<\infty\right.$. Now, using Lemma 8 in (20), we have $\phi\left(z, x_{n}\right) \rightarrow 0$. Therefore, $x_{n} \rightarrow z$ as $n \rightarrow \infty$.

Case 2. Assume that there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, such that $\phi\left(z, x_{n_{j}}\right)<\phi\left(z, x_{n_{j}+1}\right), \forall j \in \mathbb{N}$. By Lemma 9, there exists a nondecreasing sequence $\{\tau(n)\}$ of \mathbb{N}, such that for all $n \geq n_{0}$ (for some n_{0} large enough) $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and such that the following inequalities hold:

$$
\phi\left(z, x_{n}\right)<\phi\left(z, x_{\tau(n)+1}\right), \quad \phi\left(z, x_{\tau(n)}\right)<\phi\left(z, x_{\tau(n)+1}\right)
$$

By a similar argument as in Case 1, we obtain:

$$
\begin{align*}
\phi\left(z, x_{\tau(n)+1}\right) & \leq\left(1-r_{\tau(n)}\right) \phi\left(z, x_{\tau(n)}\right)-2 r_{\tau(n)}\left\langle x_{\tau(n)}-z, J_{1} z\right\rangle \tag{21}\\
& +\left(1-\alpha_{\tau(n)}\right)\left(\left\|u_{\tau(n)}-z\right\|^{2}+2\left\langle x_{\tau(n)}, J_{1} z\right\rangle\right)+\gamma \mu_{\tau(n)} M^{*}+\gamma \xi_{\tau(n)}
\end{align*}
$$

and $\lim \left\langle x_{\tau(n)}-z, J_{1} z\right\rangle=0$. Since $\phi\left(z, x_{\tau(n)}\right) \leq \phi\left(z, x_{\tau(n)+1}\right)$, we have:

$$
\begin{aligned}
r_{\tau(n)} \phi\left(z, x_{\tau(n)}\right) & \leq \phi\left(z, x_{\tau(n)}\right)-\phi\left(z, x_{\tau(n)+1}\right)-2 r_{\tau(n)}\left\langle x_{\tau(n)}-z, J_{1} z\right\rangle \\
& +\left(1-\alpha_{\tau(n)}\right)\left(\left\|u_{\tau(n)}-z\right\|^{2}+2\left\langle x_{\tau(n)}, J_{1} z\right\rangle\right)+\gamma \mu_{\tau(n)} M^{*}+\gamma \xi_{\tau(n)}
\end{aligned}
$$

By our assumption that $r_{\tau(n)}>0$, we obtain:

$$
\phi\left(z, x_{\tau(n)}\right) \leq-2 r_{\tau(n)}\left\langle x_{\tau(n)}-z, J_{1} z\right\rangle+\left(1-\alpha_{\tau(n)}\right)\left(\left\|u_{\tau(n)}-z\right\|^{2}+2\left\langle x_{\tau(n)}, J_{1} z\right\rangle\right)+\gamma \mu_{\tau(n)} M^{*}+\gamma \xi_{\tau(n)}
$$

which implies that $\lim _{n \rightarrow \infty} \phi\left(\bar{x}, x_{\tau(n)}\right)=0$. It now follows from (21) that $\lim _{n \rightarrow \infty} \phi\left(\bar{x}, x_{\tau(n)+1}\right)=0$. Now, since $\phi\left(\bar{x}, x_{n}\right)<\phi\left(\bar{x}, x_{\tau(n)+1}\right)$, we obtain that $\phi\left(\bar{x}, x_{n}\right) \rightarrow 0$. Finally, we conclude from Lemma 5 that $\left\{x_{n}\right\}$ converges strongly to \bar{x}.

Theorem 2. Let E_{1} be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0<t<\frac{1}{\sqrt{2}}$, and let E_{2} be a real smooth Banach space. Let $A: E_{1} \rightarrow E_{2}$ be a bounded linear operator and A^{*} be its adjoint. Let $T_{i}: E_{2} \rightarrow E_{2}(i \in \mathbb{N})$ be an infinite family of k-quasi-strict pseudocontractive mappings and $\left\{S_{i}\right\}_{i=1}^{\infty}: E_{1} \rightarrow E_{1}$ be an infinite family of uniformly L_{i}-Lipschitzian continuous and totally quasi- ϕ-asymptotically nonexpansive mappings. Let $\left\{x_{n}\right\}$ be the sequence generated by $x_{1} \in E_{1}$:

$$
\left\{\begin{array}{l}
u_{n}=J_{1}^{-1}\left(\alpha_{n, 0} J_{1} x_{n}+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right)\right) \tag{22}\\
y_{n, m}=J_{1}^{-1}\left(\beta_{n} J_{1} x_{1}+\left(1-\beta_{n}\right) J_{1} S_{m}^{n} x_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}: \sup _{m \geq 1} \phi\left(z, y_{n, m}\right) \leq \beta_{n} \phi\left(z, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(z, x_{n}\right)+\left\|x_{n}\right\|^{2}+\|z\|^{2}\right)+\xi_{n}\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\xi_{n}=v_{n} \sup _{z \in \Omega} \zeta\left(\phi\left(z, u_{n}\right)\right)+\mu_{n}, \gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$, and $\Pi_{C_{n+1}}$ is the generalized projection of E onto C_{n+1}; and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\} \subset(0,1)$ and satisfy the following conditions:
(a) $\left\{\beta_{n}\right\} \subset[0,1]$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$
(b) $\left\{\alpha_{n, i}\right\} \subseteq[0,1], \sum_{i=0}^{\infty} \alpha_{n, i}=1$ and $\lim _{n \rightarrow \infty} \alpha_{n, 0}=1$

If $\Omega=\left\{x \in \cap_{m=1}^{\infty} F\left(S_{m}\right): A x \in \cap_{i=1}^{\infty} F\left(T_{i}\right)\right\}$ is nonempty and bounded and $\mu_{1}=0$, then $\left\{x_{n}\right\}$ converges strongly to: $\Pi_{\Omega} u$.

Proof. (I) Both Ω and $C_{n}, n \geq 1$, are closed and convex.

We know from Lemma 11 and Lemma 12 that $F\left(T_{i}\right)$ and $F\left(S_{i}\right), i \geq 1$, are closed and convex. This implies that Ω is closed and convex. Again, by the assumption, $C_{1}=E_{1}$ is closed and convex. Now, suppose that C_{n} is closed and convex for some $n \geq 1$. In view of the definition of ϕ, we have:

$$
\begin{aligned}
C_{n+1} & =\left\{z \in C_{n}: \sup _{m \geq 1} \phi\left(z, y_{n, m}\right) \leq \beta_{n} \phi\left(z, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(z, x_{n}\right)+2\left\langle z, J_{1} x_{n}\right\rangle\right)+\xi_{n}\right\} \\
& =\cap_{m \geq 1}\left\{z \in E_{1}: \phi\left(z, y_{n, m}\right) \leq \beta_{n} \phi\left(z, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(z, x_{n}\right)+2\left\langle z, J_{1} x_{n}\right\rangle\right)+\xi_{n}\right\} \cap C_{n} \\
= & \cap_{m \geq 1}\left\{z \in E_{1}: 2 \beta_{n}\left\langle z, J_{1} x_{1}\right\rangle+2\left(1-\beta_{n}\right)\left\langle z, J_{1} x_{n}\right\rangle-2\left\langle z, y_{n, m}\right\rangle \leq \beta_{n}\left\|x_{1}\right\|^{2}+2\left(1-\beta_{n}\right)\left\|x_{n}\right\|^{2}\right. \\
& \left.-\left\|y_{n, m}\right\|^{2}+\|z\|^{2}\right\} \cap C_{n}
\end{aligned}
$$

from which, it follows that C_{n+1} is closed and convex.
(II) $\Omega \subset C_{n}, n \geq 1$.

It is clear that $\Omega \subset E_{1}$. Suppose that $\Omega \subset C_{n}$ for some $n \geq 1$. Let $u \in \Omega \subset C_{n}$, then we have:

$$
\begin{align*}
\phi\left(u, u_{n}\right) & =\phi\left(u, J_{1}^{-1}\left(\alpha_{n, 0} J_{1} x_{n}+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right)\right)\right) \\
& \leq \alpha_{n, 0} \phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i} \phi\left(u, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right)\right) \\
& \leq \phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left[\phi \left(x_{n}, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right)\right.\right. \tag{23}\\
& +2\left\langle u-x_{n}, J_{1} x_{n}-\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle \\
& \leq \phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left[\left\|x_{n}\right\|^{2}+2\left\langle u-x_{n}, J_{1} x_{n}\right\rangle+\gamma^{2}\|A\|^{2}\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}\right. \\
& -2\left\langle x_{n}, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right)\right\rangle+2\left\langle u-x_{n}, \gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle
\end{align*}
$$

From Lemma 1, we have:

$$
\begin{align*}
-2\left\langle x_{n}, \gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle & \leq\left\|\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right\|^{2}+2\left\|t x_{n}\right\|^{2}-\left\|x_{n}+\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right\|^{2} \\
& \leq \gamma^{2}\|A\|^{2}\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}+\left\|x_{n}\right\|^{2} \tag{24}
\end{align*}
$$

Since $A u \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$ and T_{i} is a k-quasi-strictly pseudocontractive mapping:

$$
\begin{align*}
\left\langle x_{n}-u, \gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle & =\gamma\left\langle A\left(x_{n}-u\right), J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle \\
& =\gamma\left\langle A\left(x_{n}-u\right)+\left(T_{i}-I\right) A x_{n}-\left(T_{i}-I\right) A x_{n}, J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle \\
& =\gamma\left(\left\langle T_{i} A\left(x_{n}\right)-A u, J_{2}\left(T_{i}-I\right) A x_{n}\right\rangle-\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}\right) \\
& \leq \gamma\left(\frac{1}{2}\left(\left\|T_{i} A x_{n}-A u\right\|^{2}+\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}\right)\right)-\gamma\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2} \tag{25}\\
& =\frac{\gamma}{2}\left(\left\|T_{i} A x_{n}-A u\right\|^{2}-\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}\right) \\
& \leq \frac{\gamma}{2}\left(\left\|A x_{n}-A u\right\|^{2}+(k-1)\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}\right) \\
& \leq \frac{1}{2}\left\|x_{n}-u\right\|^{2}+\frac{\gamma}{2}(k-1)\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}
\end{align*}
$$

Substituting (24) and (25) into (23), we obtain:

$$
\begin{align*}
\phi\left(u, u_{n}\right) & \leq \alpha_{n, 0} \phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i} \phi\left(u, J_{1}^{-1}\left(\gamma A^{*} J_{2}\left(T_{i}-I\right) A x_{n}\right)\right) \\
& \leq \phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left[2\left\langle u, J_{1} x_{n}\right\rangle-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}+\left\|x_{n}-u\right\|^{2}\right] \tag{26}\\
& \leq \phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\left\|x_{n}\right\|^{2}+\|u\|^{2}\right)-\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2}
\end{align*}
$$

It now follows from Lemma 2(d) and Equation (22):

$$
\begin{align*}
\phi\left(u, y_{n, m}\right) & \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right) \phi\left(u, S_{n}^{m} u_{n}\right) \\
& \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left[\phi\left(u, u_{n}\right)+v_{n} \zeta\left(\phi\left(u, u_{n}\right)\right)+\mu_{n}\right] \\
& \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left[\phi\left(u, u_{n}\right)+v_{n} \sup _{u \in \Omega} \zeta\left(\phi\left(u, u_{n}\right)\right)+\mu_{n}\right] \\
& =\beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(u, u_{n}\right)+\xi_{n}\right) \quad \forall m \geq 1 \\
& \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\left\|x_{n}\right\|^{2}+\|u\|^{2}\right)\right. \tag{27}\\
& \left.+\xi_{n}\right)-\gamma\left(1-2 \gamma\|A\|^{2}\right)\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2} \quad \forall m \geq 1 \\
& \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\left\|x_{n}\right\|^{2}+\|u\|^{2}\right)+\xi_{n}\right) \quad \forall m \geq 1
\end{align*}
$$

Therefore, we have:

$$
\begin{align*}
\sup _{m \geq 1} \phi\left(u, y_{n, m}\right) & \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(u, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\left\|x_{n}\right\|^{2}+\|u\|^{2}\right)+\xi_{n}\right) \tag{28}\\
& \leq \beta_{n} \phi\left(u, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(u, x_{n}\right)+\left\|x_{n}\right\|^{2}+\|u\|^{2}+\xi_{n}\right)
\end{align*}
$$

This argument shows that $u \in C_{n+1}$, and so, $F \subset C_{n+1}$.
(III) $\left\{x_{n}\right\}$ converges strongly to some point $p^{*} \in E_{1}$.

Since $x_{n}=\Pi_{C_{n}} x_{1}$, from Lemma 6, we have $\left\langle x_{n}-y_{1} J_{1} x_{1}-J_{1} x_{n}\right\rangle \geq 0, \forall y \in C_{n}$. Again, since $\Omega \subset C_{n}$, we obtain $\left\langle x_{n}-u, J_{1} x_{1}-J_{1} x_{n}\right\rangle \geq 0, \forall u \in \Omega$. It now follows from Lemma 2(a) that for each $u \in \Omega$ and each $n \geq 1$:

$$
\begin{equation*}
\phi\left(x_{n}, x_{1}\right)=\phi\left(\Pi_{C_{n}} x_{1}, x_{1}\right) \leq \phi\left(u, x_{1}\right)-\phi\left(u, x_{n}\right) \leq \phi\left(u, x_{1}\right) \tag{29}
\end{equation*}
$$

Therefore, $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is bounded, and so is $\left\{x_{n}\right\}$. Since $x_{n}=\Pi_{C_{n}} x_{1}$ and $x_{n+1}=\Pi_{C_{n}+1} x_{1} \in$ $C_{n+1} \subset C_{n}$, we have $\phi\left(x_{n}, x_{1}\right) \leq \phi\left(x_{n+1}, x_{1}\right), n \geq 1$. This implies that $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is nondecreasing. Hence, $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right)$ exists. Since E is reflexive, there exists a subsequence $x_{n_{i}} \subset x_{n}$, such that $x_{n_{i}} \rightharpoonup p^{*}$ (some point in E_{1}). Since C_{n} is closed and convex and $C_{n+1} \subset C_{n}$, it follows that C_{n} is weakly closed and $p^{*} \in C_{n}$ for each $n \geq 1$. Now, in view of $x_{n_{i}}=\Pi_{C_{n_{i}}} x_{1}$, we have $\phi\left(x_{n_{i}}, x_{1}\right) \leq$ $\phi\left(p^{*}, x_{1}\right), \forall n_{i} \geq 1$. Since the norm $\|$.$\| is weakly lower semicontinuous, we have:$

$$
\liminf _{n_{i} \rightarrow \infty} \phi\left(x_{n_{i}}, x_{1}\right)=\liminf _{n_{i} \rightarrow \infty}\left\{\left\|x_{n_{i}}\right\|^{2}+\left\|x_{1}\right\|^{2}-2\left\langle x_{n_{i}}, J_{1} x_{1}\right\rangle\right\} \geq\left\|p^{*}\right\|^{2}+\left\|x_{1}\right\|^{2}-2\left\langle p^{*}, x_{1}\right\rangle=\phi\left(p^{*}, x_{1}\right)
$$

and so:

$$
\phi\left(p^{*}, x_{1}\right) \leq \liminf _{n_{i} \rightarrow \infty} \phi\left(x_{n_{i}}, x_{1}\right) \leq \limsup _{n_{i} \rightarrow \infty} \phi\left(x_{n_{i}}, x_{1}\right) \leq \phi\left(p^{*}, x_{1}\right)
$$

This implies that $\lim _{n_{i}} \phi\left(x_{n_{i}}, x_{1}\right)=\phi\left(x_{1}, p^{*}\right)$, and so, $\left\|x_{n_{i}}\right\| \rightarrow\left\|p^{*}\right\|$. Since $x_{n_{i}} \rightharpoonup p^{*}$ and E_{1} is uniformly convex, we obtain $\lim _{n_{i} \rightarrow \infty} x_{n_{i}}=p^{*}$. Now, the convergence of $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$, together
with $\lim _{n_{i} \rightarrow \infty} \phi\left(x_{n_{i}}, x_{1}\right)=\phi\left(p^{*}, x_{1}\right)$, implies that $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right)=\phi\left(p^{*}, x_{1}\right)$. If there exists some subsequence $\left\{x_{n_{j}}\right\} \subset\left\{x_{n}\right\}$, such that $x_{n_{j}} \rightarrow q$, then from Lemma 2(a), we have:

$$
\begin{aligned}
\phi\left(p^{*}, q\right) & =\lim _{n_{i}, n_{j} \rightarrow \infty} \phi\left(x_{n_{i}}, x_{n_{j}}\right)=\lim _{n_{i}, n_{j} \rightarrow \infty} \phi\left(x_{n_{i}}, \Pi_{C_{j}} x_{1}\right) \leq \lim _{n_{i}, n_{j} \rightarrow \infty}\left(\phi\left(x_{n_{i}}, x_{1}\right)-\phi\left(\Pi_{C_{j}} x_{1}, x_{1}\right)\right) \\
& \leq \lim _{n_{i}, n_{j} \rightarrow \infty}\left(\phi\left(x_{n_{i}}, x_{1}\right)-\phi\left(x_{n_{j}}, x_{1}\right)\right)=\phi\left(p^{*}, q\right)-\phi\left(p^{*}, q\right)=0
\end{aligned}
$$

i.e., $p^{*}=q$, and so:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=p^{*} \tag{30}
\end{equation*}
$$

By the way, it follows from from (26) that $\phi\left(u, u_{n}\right)$ is bounded, so:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \xi_{n}=\lim _{n \rightarrow \infty}\left\{v_{n} \sup _{p \in \Omega} \zeta\left(\phi\left(p, u_{n}\right)\right)+\mu_{n}\right\}=0 \tag{31}
\end{equation*}
$$

(IV) $p^{*} \in \Omega$. Since $x_{n+1} \in C_{n+1}$, from (28), (30) and (31):

$$
\begin{equation*}
\sup _{m \geq 1} \phi\left(x_{n+1}, y_{n, m}\right) \leq \beta_{n} \phi\left(x_{n+1}, x_{1}\right)+\left(1-\beta_{n}\right)\left[\phi\left(x_{n+1}, x_{n}\right)+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\left\|x_{n}\right\|^{2}+\left\|x_{n+1}\right\|^{2}\right)+\xi_{n}\right] \rightarrow 0 \tag{32}
\end{equation*}
$$

Since $x_{n+1} \in C_{n+1}$, from (27) and (32) we have:

$$
\begin{align*}
\gamma\left(1-k-2 \gamma\|A\|^{2}\right)\left\|\left(T_{i}-I\right) A x_{n}\right\|^{2} & \leq \beta_{n} \phi\left(x_{n+1}, x_{1}\right)+\left(1-\beta_{n}\right)\left(\phi\left(x_{n+1}, x_{n}\right)\right. \\
& \left.+\sum_{i=1}^{\infty} \alpha_{n, i}\left(\left\|x_{n+1}\right\|^{2}+\left\|x_{n}\right\|^{2}\right)+\xi_{n}\right)-\phi\left(x_{n+1}, y_{n, m}\right) \rightarrow 0 \quad n \rightarrow \infty \tag{33}
\end{align*}
$$

Since $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$, we have:

$$
\begin{equation*}
\left\|\left(T_{i}-I\right) A x_{n}\right\| \rightarrow 0 \quad n \rightarrow \infty \tag{34}
\end{equation*}
$$

Since $x_{n} \rightarrow p^{*}$, it follows from (32) and Lemma 5 that for each $m \geq 1$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n, m}=p^{*} \tag{35}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is a bounded sequence and $\left\{S_{m}\right\}_{m=1}^{\infty}$ is uniformly totally quasi-asymptotically nonexpansive, $\left\{S_{m}^{n} x_{n}\right\}_{m, n=1}^{\infty}$ is uniformly bounded. In view of $\beta_{n} \rightarrow 0$ and (22), we conclude that for each $m \geq 1$:

$$
\begin{equation*}
\left\|J_{1} y_{n, m}-J_{1} S_{m}^{n} x_{n}\right\|=\lim _{n \rightarrow \infty} \beta_{n}\left\|J_{1} x_{1}-J_{1} S_{m}^{n} x_{n}\right\|=0 \tag{36}
\end{equation*}
$$

Since for each $m \geq 1, J_{1} y_{n, m} \rightarrow J_{1} p^{*}$, it follows that for each $m \geq 1, \lim _{n \rightarrow \infty} J_{1} S_{m}^{n} x_{n}=J_{1} p^{*}$. Since J_{1} is continuous on each bounded subset of E_{1}, for each $m \geq 1$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{m}^{n} x_{n}=p^{*} \tag{37}
\end{equation*}
$$

On the other hand, by the assumption that for each $m \geq 1, S_{m}$ is uniformly L_{m}-Lipschitzian continuous, we have:

$$
\begin{align*}
\left\|S_{m}^{n+1} x_{n}-S_{m}^{n} x_{n}\right\| & \leq\left\|S_{m}^{n+1} x_{n}-S_{m}^{n+1} x_{n+1}\right\|+\left\|S_{m}^{n+1} x_{n+1}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n}-S_{m}^{n} x_{n}\right\| \\
& \leq\left(L_{m}+1\right)\left\|x_{n+1}-x_{n}\right\|+\left\|S_{m}^{n+1} x_{n+1}-x_{n+1}\right\|+\left\|x_{n}-S_{m}^{n} x_{n}\right\| \tag{38}
\end{align*}
$$

From (37) and $x_{n} \rightarrow p^{*}$, we have that $\lim _{n \rightarrow \infty}\left\|S_{m}^{n+1} x_{n}-S_{m}^{n} x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty} S_{m}^{n+1} x_{n}=p^{*}$, i.e., $\lim _{n \rightarrow \infty} S_{m} S_{m}^{n} x_{n}=p^{*}$. In view of the closedness of S_{m}, it follows that $S_{m} p^{*}=p^{*}$, i.e., for each
$m \geq 1, p^{*} \in F\left(S_{m}\right)$. By the arbitrariness of $m \geq 1$, we have $p^{*} \in \cap_{m=1}^{\infty} F\left(S_{m}\right)$. On the other hand, since A is bounded, it follows from $x_{n_{i}} \rightharpoonup p^{*}$ that $A x_{n_{i}} \rightharpoonup A p^{*}$. Hence, from (34), we have that:

$$
\left\|T_{i} A x_{n_{i}}-A x_{n_{i}}\right\| \longrightarrow 0, \quad i \rightarrow \infty
$$

Since T_{i} is demi-closed at zero, we have that $A z \in F\left(T_{i}\right)$. Hence, $z \in \Omega$.
(V) Finally, $p^{*} \in \Pi_{\Omega} x_{1}$, and so, $x_{n} \rightarrow \Pi_{\Omega} x_{1}$.

Let $w=\Pi_{\Omega} x_{1}$. Since $w \in \Omega \subset C_{n}$ and $x_{n}=\Pi_{C_{n}} x_{1}$, we have $\phi\left(x_{n}, x_{1}\right) \leq \phi\left(w, x_{1}\right), n \geq 1$. This implies that $\phi\left(p^{*}, x_{1}\right)=\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right) \leq \phi\left(w, x_{1}\right)$. Since $w=\Pi_{\Omega} x_{1}$, it follows that $p^{*}=w$, and hence, $x_{n} \rightarrow p^{*}=\Pi_{\Omega} x_{1}$.

Corollary 1. Let E_{1} be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0<t<\frac{1}{\sqrt{2}}$, and let E_{2} be a real smooth Banach space. Let $A: E_{1} \rightarrow E_{2}$ be a bounded linear operator and A^{*} be its adjoint. Let $T: E_{2} \rightarrow E_{2}$ be a k-quasi-strict pseudocontractive mapping and T be demi-closed at zero. Let $\left\{S_{n}\right\}_{n=1}^{\infty}: E_{1} \rightarrow C B\left(E_{1}\right)$ be a family of multivalued quasinonexpansive mappings, such that for each $i \geq 1, S_{i}$ is demi-closed at zero. Assume that for each $p \in \operatorname{Fix}\left(S_{i}\right), S_{i}(p)=\{p\}$. Let $\left\{x_{n}\right\}$ be the sequence generated by $x_{1} \in E_{1}$:

$$
\left\{\begin{array}{l}
u_{n}=\left(1-r_{n}\right) x_{n} \\
y_{n}=J_{1}^{-1}\left(\alpha_{n} J_{1} u_{n}+\left(1-\alpha_{n}\right) \gamma A^{*} J_{2}(T-I) A u_{n}\right) \\
x_{n+1}=J_{1}^{-1}\left(\beta_{n, 0} J_{1} y_{n}+\sum_{i=1}^{\infty} \beta_{n, i} J_{1} w_{n, i}\right) \quad w_{n, i} \in S_{i} y_{n}
\end{array}\right.
$$

where $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$; the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\} \subset(0,1)$ satisfy the following conditions:
(a) $\sum_{i=0}^{\infty} \beta_{n, i}=1$ and $\liminf _{n} \beta_{n, 0} \beta_{n, i}>0$,
(b) $\lim _{n \rightarrow \infty} \alpha_{n}=1, \sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)<\infty$ and $\left(1-\alpha_{n}\right)=o\left(r_{n}\right)$.

Then, $\left\{x_{n}\right\}$ converges strongly to an element of Ω.
Proof. Since every k-quasi-strictly pseudocontractive mapping is clearly ($k, 0,0$)-totally asymptotically strictly pseudocontractive, the result follows.

Corollary 2. Let E_{1} be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0<t<\frac{1}{\sqrt{2}}$, and let E_{2} be a real smooth Banach space. Let $A: E_{1} \rightarrow E_{2}$ be a bounded linear operator and A^{*} be its adjoint. Let $T: E_{2} \rightarrow E_{2}$ be a uniformly L-Lipschitzian continuous and $\left(k,\left\{\mu_{n}\right\},\left\{\xi_{n}\right\}\right)$-totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:
(a) $\sum_{n=1}^{\infty} \mu_{n}<\infty, \sum_{n=1}^{\infty} \xi_{n}<\infty$,
(b) $\left\{r_{n}\right\}$ is a real sequence in $(0,1)$, such that $\mu_{n}=o\left(r_{n}\right), \xi_{n}=o\left(r_{n}\right), \lim r_{n}=0, \sum_{n=1}^{\infty} r_{n}=\infty$,
(c) there exist constants $M_{0}>0, M_{1}>0$, such that $\zeta(\lambda) \leq M_{0} \lambda^{2}, \forall \lambda>M_{1}$.

Let $\mathfrak{F}=\{S(t): 0 \leq t<\infty\}$ be a one-parameter nonexpansive semigroup on E_{1}. Suppose further that $\Omega=\left\{x \in \cap_{t \geq 0} F(S(t)): A x \in F(T)\right\} \neq \varnothing$, and $\left\{x_{n}\right\}$ is the sequence generated by $x_{1} \in E_{1}$:

$$
\left\{\begin{array}{l}
u_{n}=\left(1-r_{n}\right) x_{n} \\
y_{n}=J_{1}^{-1}\left(\alpha_{n} J_{1} u_{n}+\left(1-\alpha_{n}\right) \gamma A^{*} J_{2}\left(T^{n}-I\right) A u_{n}\right) \\
x_{n+1}=J_{1}^{-1}\left(\beta_{n} J_{1} y_{n}+\left(1-\beta_{n}\right)\left(\frac{1}{t_{n}} \int_{0}^{t_{n}} S(u) d u J_{1} y_{n}\right)\right.
\end{array}\right.
$$

where $\gamma \in\left(0, \frac{1-k}{2\|A\|^{2}}\right)$; the sequence $\left\{\alpha_{n}\right\} \subset(0,1), 0<\epsilon \leq \beta_{n} \leq b<1$, and $\lim _{n \rightarrow \infty} \alpha_{n}=1$, $\sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)<\infty$ and $\left(1-\alpha_{n}\right)=o\left(r_{n}\right)$. Then, $\left\{x_{n}\right\}$ converges strongly to to an element of Ω.

Proof. Since $\left\{\sigma_{t}(x)=\frac{1}{t} \int_{0}^{t} S(u) x d u: t \geq 0\right\}$ is a u.a.r. nonexpansive semigroup, the result follows from Corollary 1.

In the following, we shall provide an example to illustrate the main result of this paper.
Example 1. Let C be the unit ball of the real Hilbert space l^{2}, and let $T: C \rightarrow C$ be a mapping defined by:

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, a_{2} x_{2}, a_{3} x_{3}, \ldots\right)
$$

where $\left\{a_{i}\right\}$ is a sequence in $(0,1)$, such that $\prod_{i=2}^{\infty} a_{i}=\frac{1}{2}$. It was shown in [27] that T is a $\left(0, k_{n}-1, \xi_{n}\right)$-totally asymptotically strictly pseudocontractive mapping and $F(T)=\{0\}$, where $k_{n}=2 \prod_{i=2}^{n} a_{i}$. Let B be the unit interval in \mathbb{R}, and let $S_{i}: B \rightarrow B$ be a mapping defined by:

$$
S_{i}(x)= \begin{cases}\frac{1}{2^{i}} x & x \in\left[0, \frac{1}{2}\right] \\ 0 & x \in\left(\frac{1}{2^{2}}, 1\right]\end{cases}
$$

Then, $\cap_{i=1}^{\infty} \operatorname{Fix}\left(S_{i}\right)=\{0\}$ and:

$$
\left|S_{i} x-0\right|=\left|\frac{1}{2^{i}} x-0\right|=\frac{1}{2^{i}}|x| \leq|x|
$$

Therefore, each S_{i} is a quasinonexpansive mapping. Let $A: B \rightarrow C$ be the linear operator defined by:

$$
A(x)=\left(0, x, a_{2} x, a_{3} a_{2} x, a_{4} a_{3} a_{2} x, \ldots\right), \quad x \in B \subset \mathbb{R} .
$$

Then, A is bounded and $\|A\|=1+a_{2}^{2}+\left(a_{3} a_{2}\right)^{2}+\left(a_{4} a_{3} a_{2}\right)^{2}+\cdots$. It now follows that:

$$
A^{*}: C \rightarrow B, \quad A^{*}\left(x_{1}, x_{2}, \cdots\right)=x_{2}+a_{2} x_{3}+a_{3} a_{2} x_{4}+a_{4} a_{3} a_{2} x_{5}+\cdots
$$

We now put, for $n \in \mathbb{N}, \alpha_{n}=\frac{1}{3}, r_{n}=\frac{1}{n}, \beta_{n, 0}=\frac{1}{2}, \beta_{n, 0}=\frac{1}{3^{i}}$ and $\lambda=\frac{1}{4}\left(1+a_{2}^{2}+\cdots+\left(a_{n} \cdots a_{2}\right)^{2}\right)$. Furthermore, we have:

$$
\Omega=\left\{x \in F(T): A x \in \cap_{i=1}^{\infty} F\left(S_{i}\right)\right\}=\{0\}
$$

Now, all of the assumptions in Theorem 1 are satisfied. Let us consider the following numerical algorithm:

$$
\begin{gathered}
T^{n}\left(x_{1}, x_{2}, \ldots\right)=\left(0,0, \ldots, 0, a_{n} \ldots a_{2} x_{1}^{2}, a_{n+1} \ldots a_{2} x_{2}, \ldots\right) \\
T^{n}\left(A u_{n}\right)-A u_{n}=\left(0,-u_{n},-a_{2} u_{n},-a_{3} a_{2} u_{n}, \ldots,-a_{n} \ldots a_{2} u_{n}, 0,0, \ldots\right. \\
A^{*}\left(T^{n}\left(A u_{n}\right)-A u_{n}\right)=-u_{n}\left(1+a_{2}^{2}+\left(a_{3} a_{2}\right)^{2}+\ldots+\left(a_{n} \ldots a_{2}\right)^{2}\right) \\
y_{n}=\frac{1}{6} u_{n}=\frac{1}{6}\left(1-\frac{1}{n}\right) x_{n}, \quad x_{n+1}=\frac{1}{2} y_{n}+\sum_{i=1}^{\infty} \frac{1}{3^{i}}\left(\frac{1}{2^{i}} y_{n}\right)=\frac{1}{10} y_{n} \\
x_{n+1}=\frac{1}{60}\left(1-\frac{1}{n}\right) x_{n}
\end{gathered}
$$

By Theorem 1, the sequence $\left\{x_{n}\right\}$ converges to the unique element of Ω.

4. Application

Let E be a uniformly-smooth Banach space, E^{*} be the dual of E, J be the duality mapping on E and $F: E \rightarrow 2^{E^{*}}$ be a multi-valued operator. Recall that F is called monotone if $\langle u-v, x-y\rangle \geq 0$, for any $(x, u),(y, v) \in G(F)$, where $G(F)=\{(x, u): x \in D(F), u \in F(x)\}$. A monotone operator F is said to be maximally monotone if its graph $G(F)$ is not properly contained in the graph of any other monotone operator. For a maximally-monotone operator $F: E \rightarrow 2^{E^{*}}$ and $r>0$, we can define a single-valued operator:

$$
J_{r}^{F}=(J+r F)^{-1} J: E \rightarrow E
$$

It is known that for any $r>0, J_{r}^{F}$ is firmly nonexpansive, and its domain is all of E, also $0 \in F(x)$ if and only if $x \in \operatorname{Fix}\left(J_{r}^{F}\right)$.

Theorem 3. Let E_{1} be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0<t<1 / \sqrt{2}$, and let E_{2} be a real smooth Banach space and $T: E_{1} \rightarrow E_{2}$ be a bounded linear operator. Let $A: E_{2} \rightarrow 2^{E_{2}^{*}}$ and $B_{i}: E_{1} \rightarrow 2^{E_{1}^{*}}$, for $i=1,2, \ldots$, be maximal monotone mappings, such that $A^{-1} 0 \neq \varnothing$ and $\cap_{i=1}^{\infty} B_{i}^{-1} 0 \neq \varnothing$. Suppose:

$$
\Omega=\left\{x \in E_{1}: 0 \in \cap_{i=1}^{\infty} B_{i}(x) \quad \text { such that } \quad 0 \in A(T x)\right\} \neq \varnothing
$$

Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in E_{1}$ and:

$$
\left\{\begin{array}{l}
u_{n}=\left(1-r_{n}\right) x_{n} \\
y_{n}=J_{1}^{-1}\left(\alpha_{n} J_{1} u_{n}+\left(1-\alpha_{n}\right) \gamma T^{*} J_{2}\left(J_{r}^{A} T u_{n}-T u_{n}\right)\right. \\
x_{n+1}=J_{1}^{-1}\left(\beta_{n, 0} J_{1} y_{n}+\sum_{i=1}^{\infty} \beta_{n, i} J_{1} J_{\mu}^{B_{i}} y_{n}\right.
\end{array}\right.
$$

where $r, \mu>0, \gamma \in\left(0, \frac{1-k}{2\|T\|^{2}}\right)$, and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $\sum_{i=0}^{\infty} \beta_{n, i}=1$ and $\liminf _{n} \beta_{n, 0} \beta_{n, i}>0$,
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=1, \sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)<\infty$ and $\left(1-\alpha_{n}\right)=o\left(r_{n}\right)$.

Then, $\left\{x_{n}\right\}$ converges strongly to an element of Ω.
Proof. Since J_{r}^{A} and $J_{\mu}^{B_{i}}$ are nonexpansive, the result follows from Corollary 1.
Remark 1. Set $S_{i}=J_{r}^{B_{i}}$ in Corollary 1, where B_{i} is a maximal monotone mapping, then Corollary 1 improves Theorem 4.2 of Takahashi et al. [12].

Moudafi [28] introduced the split monotone variational inclusion (SMVIP) in Hilbert spaces. We present the SMVIP in a Banach space. Let E_{1} and E_{2} be two real Banach spaces and J_{1} and J_{2} be the duality mapping of E_{1} and E_{2}, respectively. Given the operators $f: E_{1} \rightarrow E_{1}, g: E_{2} \rightarrow E_{2}$, a bounded linear operator $A: E_{1} \rightarrow E_{2}$ and two multi-valued mappings $B_{1}: E_{1} \rightarrow 2^{E_{1}^{*}}$ and $B_{2}: E_{2} \rightarrow 2^{E_{2}^{*}}$, the SMVI is formulated as follows:

$$
\text { find a point } \quad x \in C \text { such that } 0 \in J_{1}(f(x))+B_{1}(x)
$$

and such that the point:

$$
y=A(x) \in E_{2} \quad \text { solves } \quad 0 \in J_{2}(g(y))+B_{2}(y)
$$

Note that if C and Q are nonempty closed convex subsets of E_{1} and E_{2}, (resp.) and $B_{1}=N_{C}$ and $B_{2}=N_{Q}$, where N_{C} and N_{Q} are normal cones to C and Q (resp.), then the split monotone variational inclusion problem reduces to the split variational inequality problem (SVIP), which is formulated as follows: find a point:

$$
x \in C \quad \text { such that }\left\langle J_{1}(f(x)), w-x\right\rangle \geq 0 \quad \text { for all } \quad w \in C
$$

and such that the point:

$$
y=A x \in Q \quad \text { solves } \quad\left\langle J_{2}(g(y)), z-y\right\rangle \geq 0 \quad \text { for all } \quad z \in Q
$$

SVIP is quite general and enables the split minimization between two spaces in such a way that the image of a solution of one minimization problem, under a given bounded linear operator, is a solution of another minimization problem.

Let $h: C \rightarrow E$ be an operator, and let $C \subset E$. The operator h is called inverse strongly monotone with constant $\beta>0$, or in brief ($\beta-i$ ism $)$, on E if:

$$
\langle h(x)-h(y), J x-J y\rangle \geq \beta\|h(x)-h(y)\|^{2}, \quad \forall x, y \in C
$$

Remark 2. If $h: E \rightarrow E$ is an $\alpha-$ ism operator on E and $B: E \rightarrow 2^{E^{*}}$ is a maximal monotone mapping, then $J_{\lambda}^{B}(I-\lambda h)$ is averaged for each $\lambda \in(0,2 \alpha)$.

Theorem 4. Let E_{1} be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0<t<1 / \sqrt{2}$, and let E_{2} be a real smooth Banach space and $T: E_{1} \rightarrow E_{2}$ be a bounded linear operator. Let $A: E_{2} \rightarrow 2^{E_{2}^{*}}$ and, for $i=1,2, \ldots, B_{i}: E_{1} \rightarrow 2^{E_{1}^{*}}$ be maximal monotone mappings, such that $A^{-1} 0 \neq \varnothing$ and $\cap_{i=1}^{\infty} B_{i}^{-1} 0 \neq \varnothing$; and that $h: E_{2} \rightarrow E_{2}$ is an $\alpha-$ ism operator and $g_{i}: E_{1} \rightarrow E_{1}$ is a $\gamma_{i}-$ ism operator. Assume that $\rho=\alpha \inf f_{i \in \mathbb{N}} \gamma_{i}>0$ and $\tau \in(0,2 \rho)$. Suppose SMVI:

$$
\left\{\begin{array}{l}
x \in \cap_{i=1}^{\infty} B_{i}^{-1} 0 \quad 0 \in J_{1}\left(g_{i}(x)\right)+B_{i}(x) \quad \forall i \in \mathbb{N} \\
T x \in A^{-1} 0 \quad 0 \in J_{2}(h(T x))+A(T x)
\end{array}\right.
$$

has a nonempty solution set Ω. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in E_{1}$ and:

$$
\left\{\begin{array}{l}
u_{n}=\left(1-r_{n}\right) x_{n} \\
y_{n}=J_{1}^{-1}\left(\alpha_{n} J_{1} u_{n}+\left(1-\alpha_{n}\right) \gamma T^{*} J_{2}\left(\left(J_{r}^{A}(I-\tau h)-I\right) T u_{n}\right)\right) \\
x_{n+1}=J_{1}^{-1}\left(\beta_{n, 0} J_{1} y_{n}+\sum_{i=1}^{\infty} \beta_{n, i} J_{1} J_{\mu}^{B_{i}}\left(I-\tau g_{i}\right) y_{n}\right)
\end{array}\right.
$$

where $\gamma \in\left(0, \frac{1-k}{2\|T\|^{2}}\right)$; the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\} \subset(0,1)$ satisfy the following conditions:
(1) $\sum_{i=0}^{\infty} \beta_{n, i}=1$ and $\liminf _{n} \beta_{n, 0} \beta_{n, i}>0$,
(2) $\lim _{n \rightarrow \infty} \alpha_{n}=1, \sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)<\infty$ and $\left(1-\alpha_{n}\right)=o\left(r_{n}\right)$.

Then, $\left\{x_{n}\right\}$ converges strongly to an element of Ω.
Proof. The results follow from Remark 2, Lemma 4(iii) and Corollary 1.
We mention in passing that the above theorem improves and extends Theorems 6.3 and 6.5 of [13] to Banach spaces. Indeed, we removed an extra condition and obtained a strong convergence theorem, which is more desirable than the weak convergence already obtained by the authors.

Acknowledgments: We wish to thank the academic editor for his right choice of reviewers, and the anonymous reviewers for their comments and criticisms.
Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alsulami, S.M.; Latif, A.; Takahashi, W. Strong convergence theorems by hybrid methods for the split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 2015, 16, 2521-2538.
2. Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem. J. Nonlinear Convex Anal. 2012, 13, 759-775.
3. Masad, E.; Reich, S. A note on the multiple-set split feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 2008, 7, 367-371.
4. Censor, Y.; Segal, A. The split common fixed point problem for directed operators. J. Convex Anal. 2009, 16, 587-600.
5. Moudafi, A.; Thera, M. Proximal and dynamical approaches to equilibrium problems. In Lecture Notes in Economics and Mathematical Systems; Springer-Verlag: New York, NY, USA, 1999; Volume 477, pp. 187-201.
6. Moudafi, A. The split common fixed point problem for demicontractive mappings. J. Inverse Probl. 2010, 26, doi:10.1088/0266-5611/26/5/055007.
7. Takahashi, W. The split feasibility problem in Banach Spaces. J. Nonlinear Convex Anal. 2014, 15, 1349-1355.
8. Takahashi, W. The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 2015, 16, 1449-1459.
9. Takahashi, W.; Yao, J.C. Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces. Fixed Point Theory Appl. 2015, 205, 87.
10. Tang, J.; Chang, S.S.; Wang, L.; Wang, X. On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces. J. Inequal. Appl. 2015, 23, 205-221, doi:10.1007/s11228-014-0285-4.
11. Chang, S.S.; Lee, H.W.J.; Chan, C.K.; Zhang, W.B. A modified halpern-type iteration algorithm for totally quasi- ϕ-asymptotically nonexpansive mappings with applications. Appl. Math. Comput. 2012, 218, 6489-6497, doi:10.1016/j.amc.2011.12.019.
12. Takahashi, W.; Xu, H.K.; Yao, J.C. Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces. Set-Valued Var. Anal. 2014, 23, 205-221.
13. Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. Numer. Algorithms 2012, 59, 301-323.
14. $\mathrm{Xu}, \mathrm{H} . \mathrm{K}$. Inequalities in Banach spaces with applications. J. Nonlinear Anal. 1991, 16, 1127-1138.
15. Alber, Y.I. Metric and generalized projection operators in Banach spaces: Properties and applications. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1996; Volume 178, pp. 15-50.
16. Kohsaka, F.; Takahashi, W. Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal. 2004, 2004, 239-249.
17. Chen, R.; Song, Y. Convergence to common fixed point of nonexpansive semigroups. J. Comput. Appl. Math. 2007, 200, 566-575.
18. Baillon, J.B.; Bruck, R.E.; Reich, S. On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 1978, 4, 1-9.
19. Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984.
20. $\mathrm{Xu}, \mathrm{H} . \mathrm{K}$. Averaged Mappings and the Gradient-Projection Algorithm. J. Optim. Theory Appl. 2011, 150, 360-378.
21. Kamimura, S.; Takahashi, W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 2003, 13, 938-945.
22. Chang, S.S.; Kim, J.K.; Wang, X.R. Modified block iterative algorithm for solving convex feasibility problems in Banach spaces. J. Inequal. Appl. 2010, 2010, 869684.
23. $\mathrm{Xu}, \mathrm{H} . \mathrm{K}$. Iterative algorithm for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240-256.
24. Mainge, P.E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 2008, 16, 899-912.
25. Alber, Y.I.; Espinola, R.; Lorenzo, P. Strongly convergent approximations to fixed points of total asymptotically nonexpansive mappings. Acta Math. Sin. Engl. Ser. 2008, 24, 1005-1022.
26. Osilike, M.O.; Isiogugu, F.O. Weak and strong convergence theorems for nonspreading-type mappings in Hilbert space. Nonlinear Anal. 2011, 74, 1814-1822.
27. Cioranescu, I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990.
28. Moudafi, A. Split monotone variational inclusions. J. Optim. Theory Appl. 2011, 150, 275-283.
(c) 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
