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1. Introduction

Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator.
For nonlinear operators T : H1 −→ H1 and U : H2 −→ H2, the split fixed point problem (SFPP) is to
find a point:

x ∈ Fix(T) such that Ax ∈ Fix(U) (1)

It is often desirable to consider the above problem for finitely many operators. Given n nonlinear
operators Ti : H1 −→ H1 and m nonlinear operators Uj : H2 −→ H2, the split common fixed point
problem (SCFPP) is to find a point:

x ∈ ∩n
i=1Fix(Ti) such that Ax ∈ ∩m

j=1Fix(Uj)

In particular, if Ti = PCi and Uj = PQj , then the SCFPP reduces to the multiple sets split feasibility
problem (MSSFP); that is, to find x ∈ ∩n

i=1Ci, such that Ax ∈ ∩m
j=1Qj, where {Ci}n

i=1 and {Qj}m
j=1 are

nonempty closed convex subsets in H1 and H2, respectively.
In the Hilbert space setting, the split feasibility problem and the split common fixed point problem

have been studied by several authors; see, for instance, [1–3]. In [4], Censor and Segal introduced the
iterative scheme:

xn+1 = U(I − ρn A∗(I − T)A)xn

which solves the problem (1) for directed operators. This algorithm was then extended to the case of
quasinonexpansive mappings [5], as well as to the case of demicontractive mappings [6]. Recently,
Takahashi in [7,8] extended the split feasibility problem in Hilbert spaces to the Banach space setting.
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Then, Alsulami et al. [1] established some strong convergence theorems for finding a solution of the
split feasibility problem in Banach spaces. Using the shrinking projection method of [8], Takahashi
proved the strong convergence theorem for finding a solution of the split feasibility problem in Banach
spaces. In this direction, Byrne et al. [2] studied the split common null point problem for multi-valued
mappings in Hilbert spaces. Consider finitely many multi-valued mappings Fi : H1 → 2H1 , 1 ≤ i ≤ n,
and Bj : H2 → 2H2 , 1 ≤ j ≤ m, and let Aj : H1 → H2 be bounded linear operators. The split common
null point problem is to find a point:

z ∈ H1 such that z ∈ (∩n
i=1F−1

i 0) ∩ (∩m
j=1 AjB−1

j 0)

Very recently, using the hybrid method and the shrinking projection method in mathematical
programming, Takahashi et al. [9] proved two strong convergence theorems for finding a solution of the
split common null point problem in Banach spaces. In [10], Tang et al. proved a theorem regarding the
split common fixed point problem for a k-quasi-strictly pseudocontractive mapping and an asymptotical
nonexpansive mapping. In this paper, motivated by [11], we use the hybrid method to study the split
common fixed point problem for an infinite family of multi-valued quasinonexpansive mappings
and an infinite family of L-Lipschitzian continuous and (k, {µn}, {ξn})-totally asymptotically strictly
pseudocontractive mappings. Compared to the Theorem of Tang et al. [10], we remove an extra
condition and present a strong convergence theorem, which is more desirable than the weak
convergence. The point is that the authors of [10] considered a semi-compact mapping, that is
a mapping T on a set X having the property that if {xn} is a bounded sequence in X such that
‖Txn − xn‖ tends to zero, then {xn} has a convergent subsequence. We will not assume that our
mappings are semi-compact, and at the same time, we propose a different algorithm; instead, we
impose some restrictions on the control sequences to get the strong convergence. We also present
an algorithm for solving the split common fixed point problem for totally quasi-φ-asymptotically
nonexpansive mappings and for k-quasi-strictly pseudocontractive mappings. Under some mild
conditions, we establish the strong convergence of these algorithms in Banach spaces. As applications,
we consider the algorithms for a split variational inequality problem and a split common null point
problem. Our results improve and generalize the result of Tang et al. [10], Takahashi [12], Moudafi [5],
Censor et al. [13] and Byrne et al. [2].

2. Preliminaries

Let E be a real Banach space and C be a nonempty closed convex subset of E. A mapping
T : C → C is said to be {kn}-asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞) with
kn → 1, such that:

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1

The mapping T : C → C is said to be k-quasi-strictly pseudocontractive if F(T) 6= ∅ and there
exists a constant k ∈ [0, 1], such that:

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2 ∀x ∈ C, p ∈ F(T)

The mapping T : C → C is said to be (k, {µn}, {ξn})-totally asymptotically strictly
pseudocontractive if there exist a constant k ∈ [0, 1] and null sequences {µn} and {ξn} in [0, ∞)

and a continuous strictly increasing function ζ : [0, ∞) → [0, ∞) with ζ(0) = 0, such that for all
x, y ∈ H and n ≥ 1:

‖Tnx− Tny‖2 ≤ ‖x− y‖2 + k‖(x− y)− (Tx− Ty)‖2 + µnζ(‖x− y‖) + ξn

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t→ 0, where ρE(t) is the modulus

of smoothness of E. Let q > 1; then, E is called q-uniformly smooth if there exists a constant c > 0,
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such that ρE(t) ≤ ctq for all t > 0. Throughout, J will stand for the duality mapping of E. We recall
that a Banach space E is smooth if and only if the duality mapping J is single valued.

Lemma 1. [14] If E is a two-uniformly smooth Banach space, then for each t > 0 and each x, y ∈ E:

‖x + ty‖2 ≤ ‖x‖2 + 2〈y, Jx〉+ 2‖ty‖2

For a smooth Banach space E, Alber [15] defined:

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x, y ∈ E

It follows that (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for each x, y ∈ E. Moreover, if we denote
by ΠCx the generalized projection from E onto a closed convex subset C in E, then we have:

Lemma 2. [15] Let E be a smooth, strictly convex and reflexive Banach space and C be a nonempty closed
convex subset of E. Then:

(a) φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y), for all x ∈ C and y ∈ E;
(b) For x, y ∈ E, φ(x, y) = 0 if and only if x = y;
(c) For x, y, z ∈ E, φ(x, y) ≤ φ(x, z) + φ(z, y) + 2〈x− z, Jz− Jy〉;
(d) For x, y, z ∈ E, λ ∈ [0, 1], φ(x, J−1(λJy + (1− λ)Jz)) ≤ λφ(x, y) + (1− λ)φ(x, z).

Lemma 3. [16] If E is a uniformly-smooth Banach space and r > 0, then there exists a continuous,
strictly-increasing convex function g : [0, 2r]→ [0, ∞), such that g(0) = 0 and:

φ(x, J−1(λJy + (1− λ)Jz)) ≤ λφ(x, y) + (1− λ)φ(x, z)− λ(1− λ)g(‖Jy− Jz‖)

for all λ ∈ [0, 1], x ∈ E and y, z ∈ Br = {u ∈ E : ‖u‖ ≤ r}.

We denote by N(C), CB(C) and P(C) the collection of all nonempty subsets, nonempty closed
bounded subsets and nonempty proximal bounded subsets of C, respectively. Let T : E→ N(E) be
a multivalued mapping. An element x ∈ E is said to be a fixed point of T if x ∈ Tx. The set of fixed
points of T is denoted by F(T).

Definition 1. Let C be a closed convex subset of a smooth Banach space E and T : C → N(C) be a multivalued
mapping. We set:

Φ(Tx, Tp) = max{ sup
q∈Tp

inf
y∈Tx

φ(y, q), sup
y∈Tx

inf
q∈Tp

φ(y, q)}

We call T a quasinonexpansive multivalued mapping if F(T) 6= ∅ and:

Φ(Tx, Tp) ≤ φ(x, p), ∀p ∈ F(T), ∀x ∈ C

Definition 2. A multivalued mapping T is called demi-closed if limn→∞ dist(xn, Txn) = 0 and xn ⇀ w
imply that w ∈ Tw.

Let C be a nonempty closed convex subset of E and T := {T(s) : 0 ≤ s < ∞} be a nonexpansive
semigroup on C. We use Fix(T) to denote the common fixed point set of the semigroup T. It is well
known that Fix(T) is closed and convex. A nonexpansive semigroup T on C is said to be uniformly
asymptotically regular (u.a.r.) if for all h ≥ 0 and any bounded subset D of C:

lim
n→∞

sup
x∈D
‖T(h)(T(t)x)− T(t)x‖ = 0
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For each h ≥ 0, define σt(x) = 1
t
∫ t

0 T(s)xds. Then, limt→∞ supx∈D ‖T(h)(σt(x))− σt(x)‖ = 0
provided that D is a closed bounded convex subset of C. It is known that the set {σt(x) : t > 0} is a
u.a.r. nonexpansive semigroup; see [17].

A mapping T : E → E is said to be α-averaged if T = (1− α)I + αS for some α ∈ (0, 1); here, I
is the identity operator, and S : E → E is a nonexpansive mapping (see [18]). It is known that in
a Hilbert space setting, every firmly-nonexpansive mapping (in particular, a projection) is a 1

2 -averaged
mapping (see Proposition 11.2 in the book [19]).

Lemma 4. [20] (i) The composition of finitely many averaged mappings is averaged. In particular, if Ti is
αi-averaged, where αi ∈ (0, 1) for i = 1, 2, then the composition T1T2 is α-averaged, where α = α1 + α2− α1α2.
(ii) If the mappings {Ti}N

i=1 are averaged and have a common fixed point, then ∩N
i=1F(Ti) = F(T1 · · · TN).

(iii) In case E is a uniformly-convex Banach space, every α-averaged mapping is nonexpansive.

Lemma 5. [21] Let E be a uniformly-convex and smooth Banach space, and let {xn} and {yn} be two sequences
in E. If φ(xn, yn)→ 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 6. [15] Let C be a nonempty closed convex subset of a smooth Banach space E and x ∈ E, then
x0 = ΠCx if and only if for all y ∈ C, 〈x0 − y, Jx− Jx0〉 ≥ 0.

Lemma 7. [22] Let E be a uniformly-convex Banach space, and let Br(0) = {x ∈ E : ‖x‖ ≤ r}, for r > 0,
then there exists a continuous, strictly-increasing and convex function g : [0, ∞) → [0, ∞) with g(0) = 0,
such that, for any given sequence {xn}∞

n=1 ⊂ Br(0) and for any given sequence {αn}∞
n=1 of positive numbers

with ∑∞
n=1 an = 1 and for any positive integers i, j with i < j :

‖
∞

∑
n=1

αnxn‖2 ≤
∞

∑
n=1

αn‖xn‖2 − αiαjg(‖xi − xj‖).

Lemma 8. [23] Let {αn} be a sequence in [0, 1], δn and {γn} be sequences in R, such that (i) ∑∞
n=1 αn = ∞,

(ii) lim supn→∞ δn ≤ 0 and (iii) γn ≥ 0 and ∑∞
n=1 γn < ∞. If {an} is a sequence of nonnegative real numbers,

such that an+1 ≤ (1− αn)an + αnδn + γn, for each n ≥ 0, then limn→∞ an = 0.

Lemma 9. [24] Let {sn} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence {sni} of {sn}, such that sni ≤ sni+1 for all i ≥ 0. For every n ∈ N, define an integer
sequence {τ(n)} as τ(n) = max{k ≤ n : sk < sk+1}. Then, τ(n)→ ∞ and max{sτ(n), sn} ≤ sτ(n)+1.

Lemma 10. [25] Let {λn} and {γn} be nonnegative and {αn} be positive real numbers, such that λn+1 ≤
λn − αnλn + γn, n ≥ 0. Let for all n > 1, λn

αn
≤ c1 and αn ≤ α. Then, λn ≤ max{λ1, K∗}, where

K∗ = (1 + α)c1.

Definition 3. (1) A mapping T : C → C is said to be a k-quasi-strictly pseudocontractive mapping if there
exists k ∈ [0, 1), such that ‖Tx − p‖2 ≤ ‖x − p‖2 + k‖x − Tx‖2, ∀x ∈ C, p ∈ F(T). (2) A mapping
T : C → C is called quasinonexpansive if F(T) 6= ∅; and φ(p, Tx) ≤ φ(p, x) ∀x ∈ C, p ∈ F(T).
(3) A countable family of mappings {Ti} : C → C is said to be totally uniformly quasi-φ-asymptotically
nonexpansive, if = =

⋂∞
i=1 F(Ti) 6= ∅ and there exist nonnegative real sequences {µn},{νn} with

µn → 0, νn → 0(as n → ∞) and a strictly-increasing continuous function ζ : R+ → R+ with
ζ(0) = 0, such that φ(p, Tn

i x) ≤ φ(p, x) + νnζ(φ(p, x)) + µn, n ≥ 1, i ≥ 1, x ∈ C, p ∈ =. (4) A mapping
T : C → C is said to be uniformly L-Lipschitzian continuous, if there exists a constant L > 0, such that
‖Tnx− Tny‖ ≤ L‖x− y‖, ∀x, y ∈ C, n ≥ 1.

Lemma 11. [11] Let E be a real uniformly-smooth and uniformly-convex Banach space and C be a nonempty
closed convex subset of E. Let T : C → C be a closed and totally quasi-φ-asymptotically nonexpansive mapping
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with nonnegative real sequences {µn}, {νn} and a strictly-increasing continuous function ζ : R+ → R+, such
that µn → 0, νn → 0 and ζ(0) = 0. If µ1 = 0, then the fixed point set of T is closed and convex.

Lemma 12. [26] Let C be a nonempty closed convex subset of a real Banach space E, and let T : C → C be
a k-quasi-strictly pseudocontractive mapping. If F(T) 6= ∅, then F(T) is closed and convex.

3. Main Results

This section is devoted to the main results of this paper.

Theorem 1. Let E1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best
smoothness constant t satisfying 0 < t < 1√

2
, and let E2 be a real smooth Banach space. Let A : E1 → E2

be a bounded linear operator and A∗ be its adjoint. Suppose T : E2 → E2 is a uniformly L-Lipschitzian
continuous and (k, {µn}, {ξn})-totally asymptotically strictly pseudocontractive mapping satisfying the
following conditions:

(1) ∑∞
n=1 µn < ∞, ∑∞

n=1 ξn < ∞,
(2) {rn} is a real sequence in (0, 1), such that µn = o(rn), ξn = o(rn), lim rn = 0, ∑∞

n=1 rn = ∞,
(3) there exist constants M0 > 0, M1 > 0, such that ζ(λ) ≤ M0λ2, ∀λ > M1.

Let {Sn}∞
n=1 : E1 → CB(E1) be a family of multivalued quasinonexpansive mappings, such that for each

i ≥ 1, Si is demi-closed at zero, and for each p ∈ Fix(Si), Si(p) = {p}. Suppose:

Ω =

{
x ∈

∞⋂
i=1

F(Si) : Ax ∈ F(T)

}
6= ∅

and {xn} is the sequence generated by x1 ∈ E1 :
un = (1− rn)xn

yn = J−1
1 (αn J1un + (1− αn)γA∗ J2(Tn − I)Aun)

xn+1 = J−1
1 (βn,0 J1yn + ∑∞

i=1 βn,i J1wn,i) wn,i ∈ Siyn

(2)

where γ ∈ (0, 1−k
2‖A‖2 ); the sequences {αn}, {βn,i} ⊂ (0, 1) satisfy the following conditions:

(a) ∑∞
i=0 βn,i = 1, lim infn βn,0βn,i > 0,

(b) limn→∞ αn = 1, ∑∞
n=1(1− αn) < ∞, (1− αn) = o(rn).

Then, {xn} converges strongly to an element of Ω.

Proof. Since ζ is continuous, ζ attains its maximum in [0, M1], and by assumption, ζ(λ) ≤ M0λ2,
∀λ > M1. In either case, we have ζ(λ) ≤ M + M0λ2, ∀λ ∈ [0, ∞). Let p ∈ Ω, then:

φ(p, un) ≤ (1− rn)φ(p, xn) + rn‖p‖2 (3)

From (2) and Lemma 2(d,c), we have:
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φ(p, yn) ≤ αnφ(p, un) + (1− αn)φ(p, J−1
1 (γA∗ J2(Tn − I)Aun))

≤ αnφ(p, un) + (1− αn)[φ(p, un) + φ(un, J−1
1 (γA∗ J2(Tn − I)Aun))

+ 2〈p− un, J1un − γA∗ J2(Tn − I)Aun〉]
= φ(p, un) + (1− αn)[‖un‖2 + γ2‖A‖2‖(Tn − I)Aun‖2 − 2〈un, γA∗ J2(Tn − I)Aun〉
+ 2〈p− un, J1un〉+ 2〈p− un, γA∗ J2(Tn − I)Aun〉]
≤ φ(p, un) + (1− αn)[‖p‖2 + γ2‖A‖2‖(Tn − I)Aun‖2 − 2〈un, γA∗ J2(Tn − I)Aun〉
+ 2〈p− un, γA∗ J2(Tn − I)Aun〉]

(4)

From Lemma 1, we have:

−2〈un, γA∗ J2(Tn − I)Aun〉 ≤ ‖γA∗ J2(Tn − I)Aun‖2 + 2‖tun‖2 − ‖un + γA∗ J2(Tn − I)Aun‖2

≤ γ2‖A‖2‖(Tn − I)Aun‖2 + ‖un‖2

= γ2‖A‖2‖(Tn − I)Aun‖2 + 4‖1
2

un −
1
2

p +
1
2

p‖2

≤ γ2‖A‖2‖(Tn − I)Aun‖2 + 4(
1
2
‖un − p‖2 +

1
2
‖p‖2)

= γ2‖A‖2‖(Tn − I)Aun‖2 + 2‖un − p‖2 + 2‖p‖2)

(5)

Since Ap ∈ F(T) and T is a totally quasi-asymptotically strictly pseudocontractive mapping,
we obtain:

〈un − p, γA∗ J2(Tn − I)Aun = γ〈A(un − p), J2(Tn − I)Aun〉
= γ〈A(un − p) + (Tn − I)Aun − (Tn − I)Aun, J2(Tn − I)Aun〉
= γ(〈Tn A(un)− Ap, J2(Tn − I)Aun〉 − ‖(Tn − I)Aun‖2)

≤ γ(
1
2
[‖(Tn − I)Aun‖2 + 2‖t(Tn Aun − Ap)‖2

− ‖Ap− Aun‖2]− ‖(Tn − I)Aun‖2)

≤ γ(
1
2
[‖(Tn − I)Aun‖2 + ‖(Tn Aun − Ap)‖2

− ‖Ap− Aun‖2]− ‖(Tn − I)Aun‖2)

≤ γ(
1
2
[‖Aun − Ap‖2 + k‖(Tn − I)Aun‖2 + µnζ(‖Aun − Ap‖) + ξn])

− 1
2
(‖(Tn − I)Aun‖2 + ‖Ap− Aun‖2)

= γ(
k− 1

2
‖(Tn − I)Aun‖2 +

µn

2
[M + M0‖Aun − Ap‖2] +

ξn

2
)

(6)

Substituting (5) and (6) into (4), we have:

φ(p, yn) ≤ αnφ(p, un) + (1− αn)φ(p, J−1
1 (γA∗ J2(Tn − I)Aun))

≤ φ(p, un) + (1− αn)[3‖p‖2 + 2γ2‖A‖2‖(Tn − I)Aun‖2 + 2‖un − p‖2

+ γ(k− 1)‖(Tn − I)Aun‖2 + γµn[M + M0‖A‖2‖un − p‖2] + γξn

≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)‖un − p‖2 + γξn

(7)

From Lemma 1 and the fact that 0 < t < 1√
2
, we have:
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φ(p, yn) ≤ αnφ(p, un) + (1− αn)φ(p, J−1
1 (γA∗ J2(Tn − I)Aun))

≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)‖un − p‖2 + γξn

≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)[‖un‖2 − 〈p, Jun〉+ 2‖tp‖2] + γξn

≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)φ(p, un) + γξn

(8)

Putting (3) and (8) into (2), we obtain:

φ(p, xn+1) = φ(p, J−1
1 (βn,0 J1yn +

∞

∑
i=1

βn,i J1wn,i))

≤ βn,0φ(p, yn) +
∞

∑
i=1

βn,iφ(p, wn,i)

= βn,0φ(p, yn) +
∞

∑
i=1

βn,i inf
t∈Si(p)

φ(p, wn,i)

≤ βn,0φ(p, yn) +
∞

∑
i=1

βn,iΦ(p, wn,i) = φ(p, yn)

≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)φ(p, un) + γξn

≤ (1− rn)φ(p, xn) + rn‖p‖2 + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)((1− rn)φ(p, xn) + rn‖p‖2) + γξn

≤ φ(p, xn)− (rn − γµn M0‖A‖2 + 2)(1− rn)φ(p, xn)

+ (3(1− αn) + rn + µnγM0‖A‖2rn)‖p‖2 + γµn M + γξn

≤ φ(p, xn)− (rn − (γµn M0‖A‖2 + 2))(1− rn)φ(p, xn) + σn

(9)

where σn = (3(1− αn) + rn + µnγM0‖A‖2rn)‖p‖2 + µnγM + γξn. Since µn = o(rn), (1− αn) = o(rn)

and ξn = o(rn), we may assume without loss of generality that there exist constants k0 ∈ (0, 1) and
M2 > 0, such that for all n ≥ 1:

µn

rn
≤ rn(1− k0 + 2)− 2

rn(1− rn)γM0‖A‖2 and
σn

rn
≤ M2

Thus, we obtain:

φ(p, xn+1) ≤ φ(p, xn)− rnk0φ(p, xn) + σn (10)

According to Lemma 10, φ(p, xn+1) ≤ max{φ(p, x1), (1 + k0)M2}. Therefore, {φ(p, xn)} and
{xn} are bounded. Furthermore, the sequences {yn} and {un} are bounded, as well. We now consider
two cases.

Case 1. Suppose that there exists n0 ∈ N, such that {φ(p, xn)}∞
n=n0

is nonincreasing. Then, {φ(p, xn)}∞
n=1

converges, and φ(p, xn)− φ(p, xn+1)→ 0 as n→ ∞. Since E1 is a uniformly smooth Banach space, it follows
from Lemma 3 and Equations (8) and (10) that:
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φ(p, xn+1) ≤ φ(p, yn)

≤ αnφ(p, un) + (1− αn)φ(p, J−1
1 (γA∗ J2(Tn − I)Aun))− αn(1− αn)g(‖J1un − γA∗ J2(Tn − I)Aun‖)

≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)φ(p, un) + γξn − αn(1− αn)g(‖J1un − γA∗ J2(Tn − I)Aun‖
≤ φ(p, xn)− (rn − (γµn M0‖A‖2 + 2))φ(p, un) + (3(1− αn) + rn)‖p‖2

+ γξn − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2 − αn(1− αn)g(‖J1un − γA∗ J2(Tn − I)Aun‖)
≤ φ(p, xn)− rnk0φ(p, xn) + σn − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

− αn(1− αn)g(‖J1un − γA∗ J2(Tn − I)Aun‖)

(11)

Hence, from (10), we have:

αn(1− αn)g(‖J1un − γA∗ J2(Tn − I)Aun‖) ≤ φ(p, xn)− φ(p, xn+1)− rnk0φ(p, xn) + σn

and:
γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2 ≤ φ(p, xn)− φ(p, xn+1)− rnk0φ(p, xn) + σn

Therefore, αn(1− αn)g(‖J1un − γA∗ J2(Tn − I)Aun‖) and γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2 tend
to zero as n→ ∞. Since lim inf αn(1− αn) > 0 and γ ∈ (0, 1−k

2‖A‖2 ), we obtain:

‖J1un − γA∗ J2(Tn − I)Aun‖ −→ 0 n→ ∞ (12)

‖(Tn − I)Aun‖2 −→ 0 n→ ∞ (13)

Furthermore, we observe that ‖J1yn − J1un‖ = (1− αn)‖J1un − γA∗ J2(Tn − I)Aun‖ → 0. Since J−1
1

is uniformly norm-to-norm continuous on bounded subsets, we conclude that:

lim
n→∞

‖yn − un‖ = 0 (14)

Using (7) and Lemma 3 in (2), we have:

φ(p, xn+1) = φ(p, J−1
1 (βn,0 J1yn +

∞

∑
i=1

βn,i J1wn,i))

≤ βn,0φ(p, yn) +
∞

∑
i=1

βn,iφ(p, wn,i)− βn,0βn,ig(‖J1yn − J1wn,i‖)

≤ φ(p, yn)− βn,0βn,ig(‖J1yn − J1wn,i‖)
≤ φ(p, un) + 3(1− αn)‖p‖2 − γ(1− k− 2γ‖A‖2)‖(Tn − I)Aun‖2

+ γµn M + (γµn M0‖A‖2 + 2)‖un − p‖2 + γξn − βn,0βn,ig(‖J1yn − J1wn,i‖)

(15)

It now follows from (3) and γ ∈ (0, 1−k
2‖A‖2 ) that:

βn,0βn,ig(‖J1yn − J1wn,i‖) ≤ φ(p, xn)− φ(p, xn+1)− (rn − (γµn M0‖A‖2 + 2))φ(p, un)

+ (3(1− αn) + rn)‖p‖2 + γξn

≤ φ(p, xn)− φ(p, xn+1)− rnk0φ(p, xn) + σn

From Condition (a), we have limn→∞ g(‖J1yn − J1wn,i‖) = 0. Since g is continuous and g(0) = 0, we
obtain limn→∞ ‖J1yn − J1wn,i‖ = 0. Since J−1

1 is uniformly norm-to-norm continuous on bounded subsets,
we have:

lim
n→∞

‖yn − wn,i‖ = 0 ∀i ∈ N (16)

which implies that limn→∞ dist(yn, Siyn) ≤ limn→∞ ‖yn − wn,i‖ = 0, ∀i ∈ N. From (2), we obtain:

‖J1xn+1 − J1yn‖ = (1− βn,0)‖J1yn − J1wn,i‖ −→ 0 n→ ∞
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Since J is uniformly norm-to-norm continuous on bounded subsets, we have:

‖xn+1 − yn‖ −→ 0 n→ ∞ (17)

From (14), (17) and limn→∞ rn = 0, we have:

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − un‖+ ‖un − xn‖
= ‖xn+1 − yn‖+ ‖yn − un‖+ rn‖xn‖ −→ 0 n→ ∞

Consequently:

‖un+1 − un‖ = ‖(1− rn+1)xn+1 − (1− rn)xn)‖
≤ |rn+1 − rn|‖xn+1‖+ (1− rn)‖xn+1 − xn‖ −→ 0 n→ ∞

(18)

Using the fact that T is uniformly L-Lipschitzian, we have:

‖TAun − Aun‖ ≤ ‖TAun − Tn+1 Aun‖+ ‖Tn+1 Aun − Tn+1 Aun+1‖
+ ‖Tn+1 Aun+1 − Aun+1‖+ ‖Aun+1 − Aun‖
≤ L‖Aun − Tn Aun‖+ (1 + L)‖Aun+1 − Aun‖+ ‖Tn+1 Aun+1 − Aun+1‖
≤ L‖Aun − Tn Aun‖+ (1 + L)‖A‖‖un+1 − un‖+ ‖Tn+1 Aun+1 − Aun+1‖

From (13) and (18), we obtain:

‖(T − I)Aun‖ −→ 0, n→ ∞ (19)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn}, such that xnj ⇀ z. Using the fact that
xnj ⇀ z and ‖yn − xn‖ → 0, n→ ∞, we have that ynj ⇀ z. Similarly, unj ⇀ z, since ‖un − xn‖ → 0, n→
∞. Now, we show that z ∈ Ω. Since ynj ⇀ z and limn→∞ dist(yn, Si(yn)) = 0 and by the demi-closedness of
each Si, we have z ∈ ⋂

i∈N F(Si). On the other hand, since A is a bounded operator, it follows from unj ⇀ z
that Aunj ⇀ Az. Hence, from (13), we have ‖TAunj − Aunj‖ → 0 as j→ ∞. Since T is demi-closed at zero,
we have that Az ∈ F(T). Hence, z ∈ Ω. Next, we prove that {xn} converges strongly to z. From (7), Lemma 1
and γ ∈ (0, 1−k

2‖A‖2 ), we have:

φ(z, xn+1) ≤ φ(z, yn) ≤ αnφ(z, un) + (1− αn)φ(z, J−1
1 (γA∗ J2(Tn − I)Aun))

≤ αnφ(z, un) + (1− αn)[φ(z, un) + φ(un, J−1
1 (γA∗ J2(Tn − I)Aun))

+ 2〈z− un, J1un − γA∗ J2(Tn − I)Aun〉]
≤ φ(z, un) + (1− αn)[‖z‖2 + ‖un − z + z‖2 + 2γ2‖A‖2‖(Tn − I)Aun‖2

+ γ(k− 1)‖(Tn − I)Aun‖2 + γµn[M + M0‖A‖2‖un − z‖2] + γξn

≤ φ(z, un) + (1− αn)[‖z‖2 + ‖un − z‖2 + ‖z‖2 + 2〈un − z, Jz〉
+ 2γ2‖A‖2‖(Tn − I)Aun‖2 + γ(k− 1)‖(Tn − I)Aun‖2

+ γµn[M + M0‖A‖2‖un − z‖2] + γξn

≤ φ(z, un) + (1− αn)(‖un − z‖+ 2〈un, J1z〉) + µn M∗ + γξn

≤ (1− rn)φ(z, xn)− 2rn〈xn − z, J1z〉+ (1− αn)(‖un − z‖
+ 2〈xn, J1z〉) + µn M∗ + γξn

≤ (1− rn)φ(z, xn)− 2rn〈xn − z, J1z〉+ (1− αn)(‖un − z‖2

+ 2〈xn, J1z〉+ µn M∗ + γξn

(20)
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where M∗ > γ supn≥0(M + M0‖A‖2‖un − z‖2) > 0. It is clear that −2〈un − z, z〉 → 0, n → ∞, and
∑∞

n=1 M∗µn < ∞, ∑∞
n=1 γξn < ∞ and ∑∞

n=1(1− αn)(‖un − z‖2 + 2〈xn, J1z〉 < ∞. Now, using Lemma 8 in
(20), we have φ(z, xn)→ 0. Therefore, xn → z as n→ ∞.

Case 2. Assume that there exists a subsequence {xnj} of {xn}, such that φ(z, xnj) < φ(z, xnj+1), ∀j ∈ N. By
Lemma 9, there exists a nondecreasing sequence {τ(n)} of N, such that for all n ≥ n0 (for some n0 large enough)
τ(n)→ ∞ as n→ ∞ and such that the following inequalities hold:

φ(z, xn) < φ(z, xτ(n)+1), φ(z, xτ(n)) < φ(z, xτ(n)+1)

By a similar argument as in Case 1, we obtain:

φ(z, xτ(n)+1) ≤ (1− rτ(n))φ(z, xτ(n))− 2rτ(n)〈xτ(n) − z, J1z〉

+ (1− ατ(n))(‖uτ(n) − z‖2 + 2〈xτ(n), J1z〉) + γµτ(n)M∗ + γξτ(n)
(21)

and lim〈xτ(n) − z, J1z〉 = 0. Since φ(z, xτ(n)) ≤ φ(z, xτ(n)+1), we have:

rτ(n)φ(z, xτ(n)) ≤ φ(z, xτ(n))− φ(z, xτ(n)+1)− 2rτ(n)〈xτ(n) − z, J1z〉

+ (1− ατ(n))(‖uτ(n) − z‖2 + 2〈xτ(n), J1z〉) + γµτ(n)M∗ + γξτ(n)

By our assumption that rτ(n) > 0, we obtain:

φ(z, xτ(n)) ≤ −2rτ(n)〈xτ(n) − z, J1z〉+ (1− ατ(n))(‖uτ(n) − z‖2 + 2〈xτ(n), J1z〉) + γµτ(n)M∗ + γξτ(n)

which implies that limn→∞ φ(x̄, xτ(n)) = 0. It now follows from (21) that limn→∞ φ(x̄, xτ(n)+1) = 0. Now,
since φ(x̄, xn) < φ(x̄, xτ(n)+1), we obtain that φ(x̄, xn)→ 0. Finally, we conclude from Lemma 5 that {xn}
converges strongly to x̄.

Theorem 2. Let E1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best
smoothness constant t satisfying 0 < t < 1√

2
, and let E2 be a real smooth Banach space. Let A : E1 → E2 be a

bounded linear operator and A∗ be its adjoint. Let Ti : E2 → E2 (i ∈ N) be an infinite family of k-quasi-strict
pseudocontractive mappings and {Si}∞

i=1 : E1 → E1 be an infinite family of uniformly Li-Lipschitzian
continuous and totally quasi-φ-asymptotically nonexpansive mappings. Let {xn} be the sequence generated by
x1 ∈ E1:

un = J−1
1 (αn,0 J1xn + ∑∞

i=1 αn,i(γA∗ J2(Ti − I)Axn))

yn,m = J−1
1 (βn J1x1 + (1− βn)J1Sn

mxn)

Cn+1 = {z ∈ Cn : supm≥1φ(z, yn,m) ≤ βnφ(z, x1) + (1− βn)(φ(z, xn) + ‖xn‖2 + ‖z‖2) + ξn}
xn+1 = ΠCn+1 x1

(22)

where ξn = νn supz∈Ω ζ(φ(z, un)) + µn, γ ∈ (0, 1−k
2‖A‖2 ), and ΠCn+1 is the generalized projection of E onto

Cn+1; and the sequences {αn}, {βn,i} ⊂ (0, 1) and satisfy the following conditions:

(a) {βn} ⊂ [0, 1] and limn→∞ βn = 0
(b) {αn,i} ⊆ [0, 1], ∑∞

i=0 αn,i = 1 and limn→∞ αn,0 = 1

If Ω = {x ∈ ∩∞
m=1F(Sm) : Ax ∈ ∩∞

i=1F(Ti)} is nonempty and bounded and µ1 = 0, then {xn}
converges strongly to: ΠΩu.

Proof. (I) Both Ω and Cn, n ≥ 1, are closed and convex.
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We know from Lemma 11 and Lemma 12 that F(Ti) and F(Si), i ≥ 1, are closed and convex. This
implies that Ω is closed and convex. Again, by the assumption, C1 = E1 is closed and convex. Now,
suppose that Cn is closed and convex for some n ≥ 1. In view of the definition of φ, we have:

Cn+1 = {z ∈ Cn : sup
m≥1

φ(z, yn,m) ≤ βnφ(z, x1) + (1− βn)(φ(z, xn) + 2〈z, J1xn〉) + ξn}

= ∩m≥1{z ∈ E1 : φ(z, yn,m) ≤ βnφ(z, x1) + (1− βn)(φ(z, xn) + 2〈z, J1xn〉) + ξn} ∩ Cn

= ∩m≥1 {z ∈ E1 : 2βn〈z, J1x1〉+ 2(1− βn)〈z, J1xn〉 − 2〈z, yn,m〉 ≤ βn‖x1‖2 + 2(1− βn)‖xn‖2

− ‖yn,m‖2 + ‖z‖2} ∩ Cn

from which, it follows that Cn+1 is closed and convex.

(II) Ω ⊂ Cn, n ≥ 1.

It is clear that Ω ⊂ E1. Suppose that Ω ⊂ Cn for some n ≥ 1. Let u ∈ Ω ⊂ Cn, then we have:

φ(u, un) = φ(u, J−1
1 (αn,0 J1xn +

∞

∑
i=1

αn,i(γA∗ J2(Ti − I)Axn)))

≤ αn,0φ(u, xn) +
∞

∑
i=1

αn,iφ(u, J−1
1 (γA∗ J2(Ti − I)Axn))

≤ φ(u, xn) +
∞

∑
i=1

αn,i[φ(xn, J−1
1 (γA∗ J2(Ti − I)Axn)

+ 2〈u− xn, J1xn − γA∗ J2(Ti − I)Axn〉

≤ φ(u, xn) +
∞

∑
i=1

αn,i[‖xn‖2 + 2〈u− xn, J1xn〉+ γ2‖A‖2‖(Ti − I)Axn‖2

− 2〈xn, J−1
1 (γA∗ J2(Ti − I)Axn)〉+ 2〈u− xn, γA∗ J2(Ti − I)Axn〉

(23)

From Lemma 1, we have:

−2〈xn, γA∗ J2(Ti − I)Axn〉 ≤ ‖γA∗ J2(Ti − I)Axn‖2 + 2‖txn‖2 − ‖xn + γA∗ J2(Ti − I)Axn‖2

≤ γ2‖A‖2‖(Ti − I)Axn‖2 + ‖xn‖2 (24)

Since Au ∈ ∩∞
i=1F(Ti) and Ti is a k-quasi-strictly pseudocontractive mapping:

〈xn − u, γA∗ J2(Ti − I)Axn〉 = γ〈A(xn − u), J2(Ti − I)Axn〉
= γ〈A(xn − u) + (Ti − I)Axn − (Ti − I)Axn, J2(Ti − I)Axn〉
= γ(〈Ti A(xn)− Au, J2(Ti − I)Axn〉 − ‖(Ti − I)Axn‖2)

≤ γ(
1
2
(‖Ti Axn − Au‖2 + ‖(Ti − I)Axn‖2))− γ‖(Ti − I)Axn‖2

=
γ

2
(‖Ti Axn − Au‖2 − ‖(Ti − I)Axn‖2)

≤ γ

2
(‖Axn − Au‖2 + (k− 1)‖(Ti − I)Axn‖2)

≤ 1
2
‖xn − u‖2 +

γ

2
(k− 1)‖(Ti − I)Axn‖2

(25)

Substituting (24) and (25) into (23), we obtain:
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φ(u, un) ≤ αn,0φ(u, xn) +
∞

∑
i=1

αn,iφ(u, J−1
1 (γA∗ J2(Ti − I)Axn))

≤ φ(u, xn) +
∞

∑
i=1

αn,i[2〈u, J1xn〉 − γ(1− k− 2γ‖A‖2)‖(Ti − I)Axn‖2 + ‖xn − u‖2]

≤ φ(u, xn) +
∞

∑
i=1

αn,i(‖xn‖2 + ‖u‖2)− γ(1− k− 2γ‖A‖2)‖(Ti − I)Axn‖2

(26)

It now follows from Lemma 2(d) and Equation (22):

φ(u, yn,m) ≤ βnφ(u, x1) + (1− βn)φ(u, Sm
n un)

≤ βnφ(u, x1) + (1− βn)[φ(u, un) + νnζ(φ(u, un)) + µn]

≤ βnφ(u, x1) + (1− βn)[φ(u, un) + νn sup
u∈Ω

ζ(φ(u, un)) + µn]

= βnφ(u, x1) + (1− βn)(φ(u, un) + ξn) ∀m ≥ 1

≤ βnφ(u, x1) + (1− βn)(φ(u, xn) +
∞

∑
i=1

αn,i(‖xn‖2 + ‖u‖2)

+ ξn)− γ(1− 2γ‖A‖2)‖(Ti − I)Axn‖2 ∀m ≥ 1

≤ βnφ(u, x1) + (1− βn)(φ(u, xn) +
∞

∑
i=1

αn,i(‖xn‖2 + ‖u‖2) + ξn) ∀m ≥ 1

(27)

Therefore, we have:

sup
m≥1

φ(u, yn,m) ≤ βnφ(u, x1) + (1− βn)(φ(u, xn) +
∞

∑
i=1

αn,i(‖xn‖2 + ‖u‖2) + ξn)

≤ βnφ(u, x1) + (1− βn)(φ(u, xn) + ‖xn‖2 + ‖u‖2 + ξn)

(28)

This argument shows that u ∈ Cn+1, and so, F ⊂ Cn+1.

(III) {xn} converges strongly to some point p∗ ∈ E1.

Since xn = ΠCn x1, from Lemma 6, we have 〈xn − y, J1x1 − J1xn〉 ≥ 0, ∀y ∈ Cn. Again, since
Ω ⊂ Cn, we obtain 〈xn − u, J1x1 − J1xn〉 ≥ 0, ∀u ∈ Ω. It now follows from Lemma 2(a) that for each
u ∈ Ω and each n ≥ 1:

φ(xn, x1) = φ(ΠCn x1, x1) ≤ φ(u, x1)− φ(u, xn) ≤ φ(u, x1) (29)

Therefore, {φ(xn, x1)} is bounded, and so is {xn}. Since xn = ΠCn x1 and xn+1 = ΠCn+1x1 ∈
Cn+1 ⊂ Cn, we have φ(xn, x1) ≤ φ(xn+1, x1), n ≥ 1. This implies that {φ(xn, x1)} is nondecreasing.
Hence, limn→∞ φ(xn, x1) exists. Since E is reflexive, there exists a subsequence xni ⊂ xn, such that
xni ⇀ p∗ (some point in E1). Since Cn is closed and convex and Cn+1 ⊂ Cn, it follows that Cn is
weakly closed and p∗ ∈ Cn for each n ≥ 1. Now, in view of xni = ΠCni

x1, we have φ(xni , x1) ≤
φ(p∗, x1), ∀ni ≥ 1. Since the norm ‖.‖ is weakly lower semicontinuous, we have:

lim inf
ni→∞

φ(xni , x1) = lim inf
ni→∞

{‖xni‖
2 + ‖x1‖2 − 2〈xni , J1x1〉} ≥ ‖p∗‖2 + ‖x1‖2 − 2〈p∗, x1〉 = φ(p∗, x1)

and so:
φ(p∗, x1) ≤ lim inf

ni→∞
φ(xni , x1) ≤ lim sup

ni→∞
φ(xni , x1) ≤ φ(p∗, x1)

This implies that limni φ(xni , x1) = φ(x1, p∗), and so, ‖xni‖ → ‖p∗‖. Since xni ⇀ p∗ and E1

is uniformly convex, we obtain limni→∞ xni = p∗. Now, the convergence of {φ(xn, x1)}, together
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with limni→∞ φ(xni , x1) = φ(p∗, x1), implies that limn→∞ φ(xn, x1) = φ(p∗, x1). If there exists some
subsequence {xnj} ⊂ {xn}, such that xnj → q, then from Lemma 2(a), we have:

φ(p∗, q) = lim
ni ,nj→∞

φ(xni , xnj) = lim
ni ,nj→∞

φ(xni , ΠCj x1) ≤ lim
ni ,nj→∞

(φ(xni , x1)− φ(ΠCj x1, x1))

≤ lim
ni ,nj→∞

(φ(xni , x1)− φ(xnj , x1)) = φ(p∗, q)− φ(p∗, q) = 0

i.e., p∗ = q, and so:
lim

n→∞
xn = p∗ (30)

By the way, it follows from from (26) that φ(u, un) is bounded, so:

lim
n→∞

ξn = lim
n→∞
{νn sup

p∈Ω
ζ(φ(p, un)) + µn} = 0 (31)

(IV) p∗ ∈ Ω. Since xn+1 ∈ Cn+1, from (28), (30) and (31):

supm≥1 φ(xn+1, yn,m) ≤ βnφ(xn+1, x1) + (1− βn)[φ(xn+1, xn) + ∑∞
i=1 αn,i(‖xn‖2 + ‖xn+1‖2) + ξn]→ 0 (32)

Since xn+1 ∈ Cn+1, from (27) and (32) we have:

γ(1− k− 2γ‖A‖2)‖(Ti − I)Axn‖2 ≤ βnφ(xn+1, x1) + (1− βn)(φ(xn+1, xn)

+
∞

∑
i=1

αn,i(‖xn+1‖2 + ‖xn‖2) + ξn)− φ(xn+1, yn,m)→ 0 n→ ∞
(33)

Since γ ∈ (0, 1−k
2‖A‖2 ), we have:

‖(Ti − I)Axn‖ → 0 n→ ∞ (34)

Since xn → p∗, it follows from (32) and Lemma 5 that for each m ≥ 1:

lim
n→∞

yn,m = p∗ (35)

Since {xn} is a bounded sequence and {Sm}∞
m=1 is uniformly totally quasi-asymptotically

nonexpansive, {Sn
mxn}∞

m,n=1 is uniformly bounded. In view of βn → 0 and (22), we conclude that for
each m ≥ 1:

‖J1yn,m − J1Sn
mxn‖ = lim

n→∞
βn‖J1x1 − J1Sn

mxn‖ = 0 (36)

Since for each m ≥ 1, J1yn,m → J1 p∗, it follows that for each m ≥ 1, limn→∞ J1Sn
mxn = J1 p∗. Since

J1 is continuous on each bounded subset of E1, for each m ≥ 1:

lim
n→∞

Sn
mxn = p∗ (37)

On the other hand, by the assumption that for each m ≥ 1, Sm is uniformly Lm-Lipschitzian
continuous, we have:

‖Sn+1
m xn − Sn

mxn‖ ≤ ‖Sn+1
m xn − Sn+1

m xn+1‖+ ‖Sn+1
m xn+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − Sn

mxn‖
≤ (Lm + 1)‖xn+1 − xn‖+ ‖Sn+1

m xn+1 − xn+1‖+ ‖xn − Sn
mxn‖

(38)

From (37) and xn → p∗, we have that limn→∞ ‖Sn+1
m xn − Sn

mxn‖ = 0 and limn→∞ Sn+1
m xn = p∗,

i.e., limn→∞ SmSn
mxn = p∗. In view of the closedness of Sm, it follows that Sm p∗ = p∗, i.e., for each
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m ≥ 1, p∗ ∈ F(Sm). By the arbitrariness of m ≥ 1, we have p∗ ∈ ∩∞
m=1F(Sm). On the other hand, since

A is bounded, it follows from xni ⇀ p∗ that Axni ⇀ Ap∗. Hence, from (34), we have that:

‖Ti Axni − Axni‖ −→ 0, i→ ∞

Since Ti is demi-closed at zero, we have that Az ∈ F(Ti). Hence, z ∈ Ω.

(V) Finally, p∗ ∈ ΠΩx1, and so, xn → ΠΩx1.

Let w = ΠΩx1. Since w ∈ Ω ⊂ Cn and xn = ΠCn x1, we have φ(xn, x1) ≤ φ(w, x1), n ≥ 1.
This implies that φ(p∗, x1) = limn→∞ φ(xn, x1) ≤ φ(w, x1). Since w = ΠΩx1, it follows that p∗ = w,
and hence, xn → p∗ = ΠΩx1.

Corollary 1. Let E1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best
smoothness constant t satisfying 0 < t < 1√

2
, and let E2 be a real smooth Banach space. Let A : E1 → E2 be a

bounded linear operator and A∗ be its adjoint. Let T : E2 → E2 be a k-quasi-strict pseudocontractive mapping
and T be demi-closed at zero. Let {Sn}∞

n=1 : E1 → CB(E1) be a family of multivalued quasinonexpansive
mappings, such that for each i ≥ 1, Si is demi-closed at zero. Assume that for each p ∈ Fix(Si), Si(p) = {p}.
Let {xn} be the sequence generated by x1 ∈ E1:

un = (1− rn)xn

yn = J−1
1 (αn J1un + (1− αn)γA∗ J2(T − I)Aun)

xn+1 = J−1
1 (βn,0 J1yn + ∑∞

i=1 βn,i J1wn,i) wn,i ∈ Siyn

where γ ∈ (0, 1−k
2‖A‖2 ); the sequences {αn}, {βn,i} ⊂ (0, 1) satisfy the following conditions:

(a) ∑∞
i=0 βn,i = 1 and lim infn βn,0βn,i > 0,

(b) limn→∞ αn = 1, ∑∞
n=1(1− αn) < ∞ and (1− αn) = o(rn).

Then, {xn} converges strongly to an element of Ω.

Proof. Since every k-quasi-strictly pseudocontractive mapping is clearly (k, 0, 0)-totally asymptotically
strictly pseudocontractive, the result follows.

Corollary 2. Let E1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best
smoothness constant t satisfying 0 < t < 1√

2
, and let E2 be a real smooth Banach space. Let A : E1 → E2 be a

bounded linear operator and A∗ be its adjoint. Let T : E2 → E2 be a uniformly L-Lipschitzian continuous and
(k, {µn}, {ξn})-totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:

(a) ∑∞
n=1 µn < ∞, ∑∞

n=1 ξn < ∞,
(b) {rn} is a real sequence in (0, 1), such that µn = o(rn), ξn = o(rn), lim rn = 0, ∑∞

n=1 rn = ∞,
(c) there exist constants M0 > 0, M1 > 0, such that ζ(λ) ≤ M0λ2, ∀λ > M1.

Let F = {S(t) : 0 ≤ t < ∞} be a one-parameter nonexpansive semigroup on E1. Suppose further that
Ω = {x ∈ ∩t≥0F(S(t)) : Ax ∈ F(T)} 6= ∅, and {xn} is the sequence generated by x1 ∈ E1:

un = (1− rn)xn

yn = J−1
1 (αn J1un + (1− αn)γA∗ J2(Tn − I)Aun)

xn+1 = J−1
1 (βn J1yn + (1− βn)(

1
tn

∫ tn
0 S(u)duJ1yn)

where γ ∈ (0, 1−k
2‖A‖2 ); the sequence {αn} ⊂ (0, 1), 0 < ε ≤ βn ≤ b < 1, and limn→∞ αn = 1,

∑∞
n=1(1− αn) < ∞ and (1− αn) = o(rn). Then, {xn} converges strongly to to an element of Ω.
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Proof. Since {σt(x) = 1
t
∫ t

0 S(u)xdu : t ≥ 0} is a u.a.r. nonexpansive semigroup, the result follows
from Corollary 1.

In the following, we shall provide an example to illustrate the main result of this paper.

Example 1. Let C be the unit ball of the real Hilbert space l2, and let T : C → C be a mapping defined by:

T(x1, x2, ...) = (0, x1, a2x2, a3x3, ...)

where {ai} is a sequence in (0, 1), such that ∏∞
i=2 ai =

1
2 . It was shown in [27] that T is a (0, kn− 1, ξn)−totally

asymptotically strictly pseudocontractive mapping and F(T) = {0}, where kn = 2 ∏n
i=2 ai. Let B be the unit

interval in R, and let Si : B→ B be a mapping defined by:

Si(x) =


1
2ix x ∈ [0,

1
2
]

0 x ∈ (
1
2
, 1]

Then, ∩∞
i=1Fix(Si) = {0} and:

|Six− 0| = | 1
2i x− 0| = 1

2i |x| ≤ |x|

Therefore, each Si is a quasinonexpansive mapping. Let A : B→ C be the linear operator defined by:

A(x) = (0, x, a2x, a3a2x, a4a3a2x, ...), x ∈ B ⊂ R.

Then, A is bounded and ‖A‖ = 1 + a2
2 + (a3a2)

2 + (a4a3a2)
2 + · · · . It now follows that:

A∗ : C → B, A∗(x1, x2, · · · ) = x2 + a2x3 + a3a2x4 + a4a3a2x5 + · · · .

We now put, for n ∈ N, αn = 1
3 , rn = 1

n , βn,0 = 1
2 , βn,0 = 1

3i and λ = 1
4 (1 + a2

2 + · · ·+ (an · · · a2)
2).

Furthermore, we have:
Ω = {x ∈ F(T) : Ax ∈ ∩∞

i=1F(Si)} = {0}

Now, all of the assumptions in Theorem 1 are satisfied. Let us consider the following numerical algorithm:

Tn(x1, x2, ...) = (0, 0, ..., 0, an...a2x2
1, an+1...a2x2, ...)

Tn(Aun)− Aun = (0,−un,−a2un,−a3a2un, ...,−an...a2un, 0, 0, ...

A∗(Tn(Aun)− Aun) = −un(1 + a2
2 + (a3a2)

2 + ... + (an...a2)
2)

yn =
1
6

un =
1
6
(1− 1

n
)xn, xn+1 =

1
2

yn +
∞

∑
i=1

1
3i (

1
2i yn) =

1
10

yn

xn+1 =
1

60
(1− 1

n
)xn

By Theorem 1, the sequence {xn} converges to the unique element of Ω.

4. Application

Let E be a uniformly-smooth Banach space, E∗ be the dual of E, J be the duality mapping on E
and F : E → 2E∗ be a multi-valued operator. Recall that F is called monotone if 〈u− v, x − y〉 ≥ 0,
for any (x, u), (y, v) ∈ G(F), where G(F) = {(x, u) : x ∈ D(F), u ∈ F(x)}. A monotone operator
F is said to be maximally monotone if its graph G(F) is not properly contained in the graph of any
other monotone operator. For a maximally-monotone operator F : E→ 2E∗ and r > 0, we can define
a single-valued operator:
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JF
r = (J + rF)−1 J : E→ E

It is known that for any r > 0, JF
r is firmly nonexpansive, and its domain is all of E, also 0 ∈ F(x)

if and only if x ∈ Fix(JF
r ).

Theorem 3. Let E1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best
smoothness constant t satisfying 0 < t < 1/

√
2, and let E2 be a real smooth Banach space and T : E1 → E2

be a bounded linear operator. Let A : E2 → 2E∗2 and Bi : E1 → 2E∗1 , for i = 1, 2, ..., be maximal monotone
mappings, such that A−10 6= ∅ and ∩∞

i=1B−1
i 0 6= ∅. Suppose:

Ω = {x ∈ E1 : 0 ∈ ∩∞
i=1Bi(x) such that 0 ∈ A(Tx)} 6= ∅

Let {xn} be a sequence generated by x0 ∈ E1 and:
un = (1− rn)xn

yn = J−1
1 (αn J1un + (1− αn)γT∗ J2(JA

r Tun − Tun)

xn+1 = J−1
1 (βn,0 J1yn + ∑∞

i=1 βn,i J1 JBi
µ yn

where r, µ > 0, γ ∈ (0, 1−k
2‖T‖2 ), and the sequences {αn}, {βn,i} ⊂ (0, 1) satisfy the following conditions:

(1) ∑∞
i=0 βn,i = 1 and lim infn βn,0βn,i > 0,

(2) limn→∞ αn = 1, ∑∞
n=1(1− αn) < ∞ and (1− αn) = o(rn).

Then, {xn} converges strongly to an element of Ω.

Proof. Since JA
r and JBi

µ are nonexpansive, the result follows from Corollary 1.

Remark 1. Set Si = JBi
r in Corollary 1, where Bi is a maximal monotone mapping, then Corollary 1 improves

Theorem 4.2 of Takahashi et al. [12].

Moudafi [28] introduced the split monotone variational inclusion (SMVIP) in Hilbert spaces.
We present the SMVIP in a Banach space. Let E1 and E2 be two real Banach spaces and J1 and J2 be the
duality mapping of E1 and E2, respectively. Given the operators f : E1 → E1, g : E2 → E2, a bounded
linear operator A : E1 → E2 and two multi-valued mappings B1 : E1 → 2E∗1 and B2 : E2 → 2E∗2 ,
the SMVI is formulated as follows:

find a point x ∈ C such that 0 ∈ J1( f (x)) + B1(x)

and such that the point:

y = A(x) ∈ E2 solves 0 ∈ J2(g(y)) + B2(y)

Note that if C and Q are nonempty closed convex subsets of E1 and E2, (resp.) and B1 = NC and
B2 = NQ, where NC and NQ are normal cones to C and Q (resp.), then the split monotone variational
inclusion problem reduces to the split variational inequality problem (SVIP), which is formulated as
follows: find a point:

x ∈ C such that 〈J1( f (x)), w− x〉 ≥ 0 for all w ∈ C

and such that the point:

y = Ax ∈ Q solves 〈J2(g(y)), z− y〉 ≥ 0 for all z ∈ Q

SVIP is quite general and enables the split minimization between two spaces in such a way
that the image of a solution of one minimization problem, under a given bounded linear operator,
is a solution of another minimization problem.
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Let h : C → E be an operator, and let C ⊂ E. The operator h is called inverse strongly monotone
with constant β > 0, or in brief (β− ism), on E if:

〈h(x)− h(y), Jx− Jy〉 ≥ β‖h(x)− h(y)‖2, ∀x, y ∈ C

Remark 2. If h : E→ E is an α− ism operator on E and B : E→ 2E∗ is a maximal monotone mapping, then
JB
λ (I − λh) is averaged for each λ ∈ (0, 2α).

Theorem 4. Let E1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best
smoothness constant t satisfying 0 < t < 1/

√
2, and let E2 be a real smooth Banach space and T : E1 → E2 be a

bounded linear operator. Let A : E2 → 2E∗2 and, for i = 1, 2, ..., Bi : E1 → 2E∗1 be maximal monotone mappings,
such that A−10 6= ∅ and ∩∞

i=1B−1
i 0 6= ∅; and that h : E2 → E2 is an α− ism operator and gi : E1 → E1 is

a γi − ism operator. Assume that ρ = α in fi∈Nγi > 0 and τ ∈ (0, 2ρ). Suppose SMVI:{
x ∈ ∩∞

i=1B−1
i 0 0 ∈ J1(gi(x)) + Bi(x) ∀i ∈ N

Tx ∈ A−10 0 ∈ J2(h(Tx)) + A(Tx)

has a nonempty solution set Ω. Let {xn} be a sequence generated by x0 ∈ E1 and:
un = (1− rn)xn

yn = J−1
1 (αn J1un + (1− αn)γT∗ J2((JA

r (I − τh)− I)Tun))

xn+1 = J−1
1 (βn,0 J1yn + ∑∞

i=1 βn,i J1 JBi
µ (I − τgi)yn)

where γ ∈ (0, 1−k
2‖T‖2 ); the sequences {αn}, {βn,i} ⊂ (0, 1) satisfy the following conditions:

(1) ∑∞
i=0 βn,i = 1 and lim infn βn,0βn,i > 0,

(2) limn→∞ αn = 1, ∑∞
n=1(1− αn) < ∞ and (1− αn) = o(rn).

Then, {xn} converges strongly to an element of Ω.

Proof. The results follow from Remark 2, Lemma 4(iii) and Corollary 1.

We mention in passing that the above theorem improves and extends Theorems 6.3 and 6.5 of [13]
to Banach spaces. Indeed, we removed an extra condition and obtained a strong convergence theorem,
which is more desirable than the weak convergence already obtained by the authors.
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