

Article

The Split Common Fixed Point Problem for a Family of Multivalued Quasinonexpansive Mappings and Totally Asymptotically Strictly Pseudocontractive Mappings in Banach Spaces

Ali Abkar *, Elahe Shahrosvand and Azizollah Azizi

Department of Mathematics, Imam Khomeini International University, Qazvin 34149, Iran; kshahrosvand@yahoo.com (E.S.); azizi@sci.ikiu.ac.ir (A.A.)

* Correspondence: abkar@sci.ikiu.ac.ir; Tel.: +98-9123301709

Academic Editor: Hari M. Srivastava Received: 29 September 2016; Accepted: 6 February 2017; Published: 11 February 2017

Abstract: In this paper, we introduce an iterative algorithm for solving the split common fixed point problem for a family of multi-valued quasinonexpansive mappings and totally asymptotically strictly pseudocontractive mappings, as well as for a family of totally quasi- ϕ -asymptotically nonexpansive mappings and *k*-quasi-strictly pseudocontractive mappings in the setting of Banach spaces. Our results improve and extend the results of Tang et al., Takahashi, Moudafi, Censor et al., and Byrne et al.

Keywords: split common fixed point problem; totally asymptotically strictly pseudocontractive mapping; quasinonexpansive mapping; *k*-quasi-strictly pseudocontractive mapping

MSC Classification: 47H05; 47H09; 47J25

1. Introduction

Let H_1 and H_2 be two real Hilbert spaces and $A : H_1 \to H_2$ be a bounded linear operator. For nonlinear operators $T : H_1 \longrightarrow H_1$ and $U : H_2 \longrightarrow H_2$, the split fixed point problem (SFPP) is to find a point:

$$x \in Fix(T)$$
 such that $Ax \in Fix(U)$ (1)

It is often desirable to consider the above problem for finitely many operators. Given *n* nonlinear operators $T_i : H_1 \longrightarrow H_1$ and *m* nonlinear operators $U_j : H_2 \longrightarrow H_2$, the split common fixed point problem (SCFPP) is to find a point:

 $x \in \bigcap_{i=1}^{n} Fix(T_i)$ such that $Ax \in \bigcap_{i=1}^{m} Fix(U_i)$

In particular, if $T_i = P_{C_i}$ and $U_j = P_{Q_j}$, then the SCFPP reduces to the multiple sets split feasibility problem (MSSFP); that is, to find $x \in \bigcap_{i=1}^{n} C_i$, such that $Ax \in \bigcap_{j=1}^{m} Q_j$, where $\{C_i\}_{i=1}^{n}$ and $\{Q_j\}_{j=1}^{m}$ are nonempty closed convex subsets in H_1 and H_2 , respectively.

In the Hilbert space setting, the split feasibility problem and the split common fixed point problem have been studied by several authors; see, for instance, [1–3]. In [4], Censor and Segal introduced the iterative scheme:

$$x_{n+1} = U(I - \rho_n A^* (I - T)A) x_n$$

which solves the problem (1) for directed operators. This algorithm was then extended to the case of quasinonexpansive mappings [5], as well as to the case of demicontractive mappings [6]. Recently, Takahashi in [7,8] extended the split feasibility problem in Hilbert spaces to the Banach space setting.

2 of 18

Then, Alsulami et al. [1] established some strong convergence theorems for finding a solution of the split feasibility problem in Banach spaces. Using the shrinking projection method of [8], Takahashi proved the strong convergence theorem for finding a solution of the split feasibility problem in Banach spaces. In this direction, Byrne et al. [2] studied the split common null point problem for multi-valued mappings in Hilbert spaces. Consider finitely many multi-valued mappings $F_i : H_1 \rightarrow 2^{H_1}, 1 \le i \le n$, and $B_j : H_2 \rightarrow 2^{H_2}, 1 \le j \le m$, and let $A_j : H_1 \rightarrow H_2$ be bounded linear operators. The split common null point problem is to find a point:

$$z \in H_1$$
 such that $z \in (\bigcap_{i=1}^n F_i^{-1}0) \cap (\bigcap_{j=1}^m A_j B_j^{-1}0)$

Very recently, using the hybrid method and the shrinking projection method in mathematical programming, Takahashi et al. [9] proved two strong convergence theorems for finding a solution of the split common null point problem in Banach spaces. In [10], Tang et al. proved a theorem regarding the split common fixed point problem for a k-quasi-strictly pseudocontractive mapping and an asymptotical nonexpansive mapping. In this paper, motivated by [11], we use the hybrid method to study the split common fixed point problem for an infinite family of multi-valued quasinonexpansive mappings and an infinite family of *L*-Lipschitzian continuous and $(k, \{\mu_n\}, \{\xi_n\})$ -totally asymptotically strictly pseudocontractive mappings. Compared to the Theorem of Tang et al. [10], we remove an extra condition and present a strong convergence theorem, which is more desirable than the weak convergence. The point is that the authors of [10] considered a semi-compact mapping, that is a mapping T on a set X having the property that if $\{x_n\}$ is a bounded sequence in X such that $||Tx_n - x_n||$ tends to zero, then $\{x_n\}$ has a convergent subsequence. We will not assume that our mappings are semi-compact, and at the same time, we propose a different algorithm; instead, we impose some restrictions on the control sequences to get the strong convergence. We also present an algorithm for solving the split common fixed point problem for totally quasi- ϕ -asymptotically nonexpansive mappings and for k-quasi-strictly pseudocontractive mappings. Under some mild conditions, we establish the strong convergence of these algorithms in Banach spaces. As applications, we consider the algorithms for a split variational inequality problem and a split common null point problem. Our results improve and generalize the result of Tang et al. [10], Takahashi [12], Moudafi [5], Censor et al. [13] and Byrne et al. [2].

2. Preliminaries

Let *E* be a real Banach space and *C* be a nonempty closed convex subset of *E*. A mapping $T : C \to C$ is said to be $\{k_n\}$ -asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$, such that:

$$||T^n x - T^n y|| \le k_n ||x - y||, \qquad \forall x, y \in C, n \ge 1$$

The mapping $T : C \to C$ is said to be *k*-quasi-strictly pseudocontractive if $F(T) \neq \emptyset$ and there exists a constant $k \in [0, 1]$, such that:

$$||Tx - p||^2 \le ||x - p||^2 + k||x - Tx||^2 \quad \forall x \in C, p \in F(T)$$

The mapping $T : C \to C$ is said to be $(k, \{\mu_n\}, \{\xi_n\})$ -totally asymptotically strictly pseudocontractive if there exist a constant $k \in [0, 1]$ and null sequences $\{\mu_n\}$ and $\{\xi_n\}$ in $[0, \infty)$ and a continuous strictly increasing function $\zeta : [0, \infty) \to [0, \infty)$ with $\zeta(0) = 0$, such that for all $x, y \in H$ and $n \ge 1$:

$$||T^{n}x - T^{n}y||^{2} \le ||x - y||^{2} + k||(x - y) - (Tx - Ty)||^{2} + \mu_{n}\zeta(||x - y||) + \xi_{n}\zeta(||x - y||) + \xi_{n}\zeta(||x$$

A Banach space *E* is said to be uniformly smooth if $\frac{\rho_E(t)}{t} \to 0$ as $t \to 0$, where $\rho_E(t)$ is the modulus of smoothness of *E*. Let q > 1; then, *E* is called *q*-uniformly smooth if there exists a constant c > 0,

such that $\rho_E(t) \le ct^q$ for all t > 0. Throughout, *J* will stand for the duality mapping of *E*. We recall that a Banach space *E* is smooth if and only if the duality mapping *J* is single valued.

Lemma 1. [14] If *E* is a two-uniformly smooth Banach space, then for each t > 0 and each $x, y \in E$:

$$||x + ty||^2 \le ||x||^2 + 2\langle y, Jx \rangle + 2||ty||^2$$

For a smooth Banach space *E*, Alber [15] defined:

$$\phi(x,y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2, \quad x, y \in E$$

It follows that $(||x|| - ||y||)^2 \le \phi(x, y) \le (||x|| + ||y||)^2$ for each $x, y \in E$. Moreover, if we denote by $\prod_C x$ the generalized projection from *E* onto a closed convex subset *C* in *E*, then we have:

Lemma 2. [15] Let *E* be a smooth, strictly convex and reflexive Banach space and *C* be a nonempty closed convex subset of *E*. Then:

- (a) $\phi(x, \Pi_C y) + \phi(\Pi_C y, y) \le \phi(x, y)$, for all $x \in C$ and $y \in E$;
- (b) For $x, y \in E$, $\phi(x, y) = 0$ if and only if x = y;
- (c) For $x, y, z \in E, \phi(x, y) \le \phi(x, z) + \phi(z, y) + 2\langle x z, Jz Jy \rangle$;
- (d) For $x, y, z \in E, \lambda \in [0, 1], \phi(x, J^{-1}(\lambda Jy + (1 \lambda)Jz)) \le \lambda \phi(x, y) + (1 \lambda)\phi(x, z).$

Lemma 3. [16] If *E* is a uniformly-smooth Banach space and r > 0, then there exists a continuous, strictly-increasing convex function $g : [0, 2r] \rightarrow [0, \infty)$, such that g(0) = 0 and:

$$\phi(x, J^{-1}(\lambda Jy + (1 - \lambda)Jz)) \le \lambda \phi(x, y) + (1 - \lambda)\phi(x, z) - \lambda(1 - \lambda)g(\|Jy - Jz\|)$$

for all $\lambda \in [0, 1]$, $x \in E$ and $y, z \in B_r = \{u \in E : ||u|| \le r\}$.

We denote by N(C), CB(C) and P(C) the collection of all nonempty subsets, nonempty closed bounded subsets and nonempty proximal bounded subsets of *C*, respectively. Let $T : E \rightarrow N(E)$ be a multivalued mapping. An element $x \in E$ is said to be a fixed point of *T* if $x \in Tx$. The set of fixed points of *T* is denoted by F(T).

Definition 1. *Let C be a closed convex subset of a smooth Banach space E and* $T : C \to N(C)$ *be a multivalued mapping. We set:*

$$\Phi(Tx,Tp) = \max\{\sup_{q \in Tp} \inf_{y \in Tx} \phi(y,q), \sup_{y \in Tx} \inf_{q \in Tp} \phi(y,q)\}$$

We call T a quasinonexpansive multivalued mapping if $F(T) \neq \emptyset$ *and:*

$$\Phi(Tx, Tp) \le \phi(x, p), \quad \forall p \in F(T), \, \forall x \in C$$

Definition 2. A multivalued mapping T is called demi-closed if $\lim_{n\to\infty} dist(x_n, Tx_n) = 0$ and $x_n \rightharpoonup w$ imply that $w \in Tw$.

Let *C* be a nonempty closed convex subset of *E* and $T := \{T(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on *C*. We use Fix(T) to denote the common fixed point set of the semigroup *T*. It is well known that Fix(T) is closed and convex. A nonexpansive semigroup *T* on *C* is said to be uniformly asymptotically regular (u.a.r.) if for all $h \ge 0$ and any bounded subset *D* of *C*:

$$\lim_{n \to \infty} \sup_{x \in D} \|T(h)(T(t)x) - T(t)x\| = 0$$

For each $h \ge 0$, define $\sigma_t(x) = \frac{1}{t} \int_0^t T(s) x ds$. Then, $\lim_{t\to\infty} \sup_{x\in D} ||T(h)(\sigma_t(x)) - \sigma_t(x)|| = 0$ provided that *D* is a closed bounded convex subset of *C*. It is known that the set $\{\sigma_t(x) : t > 0\}$ is a u.a.r. nonexpansive semigroup; see [17].

A mapping $T : E \to E$ is said to be α -averaged if $T = (1 - \alpha)I + \alpha S$ for some $\alpha \in (0, 1)$; here, I is the identity operator, and $S : E \to E$ is a nonexpansive mapping (see [18]). It is known that in a Hilbert space setting, every firmly-nonexpansive mapping (in particular, a projection) is a $\frac{1}{2}$ -averaged mapping (see Proposition 11.2 in the book [19]).

Lemma 4. [20] (i) The composition of finitely many averaged mappings is averaged. In particular, if T_i is α_i -averaged, where $\alpha_i \in (0,1)$ for i = 1, 2, then the composition T_1T_2 is α -averaged, where $\alpha = \alpha_1 + \alpha_2 - \alpha_1\alpha_2$. (ii) If the mappings $\{T_i\}_{i=1}^N$ are averaged and have a common fixed point, then $\bigcap_{i=1}^N F(T_i) = F(T_1 \cdots T_N)$. (iii) In case E is a uniformly-convex Banach space, every α -averaged mapping is nonexpansive.

Lemma 5. [21] Let *E* be a uniformly-convex and smooth Banach space, and let $\{x_n\}$ and $\{y_n\}$ be two sequences in *E*. If $\phi(x_n, y_n) \to 0$ and either $\{x_n\}$ or $\{y_n\}$ is bounded, then $x_n - y_n \to 0$.

Lemma 6. [15] Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$, then $x_0 = \prod_C x$ if and only if for all $y \in C$, $\langle x_0 - y, Jx - Jx_0 \rangle \ge 0$.

Lemma 7. [22] Let *E* be a uniformly-convex Banach space, and let $B_r(0) = \{x \in E : ||x|| \le r\}$, for r > 0, then there exists a continuous, strictly-increasing and convex function $g : [0, \infty) \to [0, \infty)$ with g(0) = 0, such that, for any given sequence $\{x_n\}_{n=1}^{\infty} \subset B_r(0)$ and for any given sequence $\{\alpha_n\}_{n=1}^{\infty}$ of positive numbers with $\sum_{n=1}^{\infty} a_n = 1$ and for any positive integers i, j with i < j:

$$\|\sum_{n=1}^{\infty} \alpha_n x_n\|^2 \leq \sum_{n=1}^{\infty} \alpha_n \|x_n\|^2 - \alpha_i \alpha_j g(\|x_i - x_j\|).$$

Lemma 8. [23] Let $\{\alpha_n\}$ be a sequence in [0, 1], δ_n and $\{\gamma_n\}$ be sequences in \mathbb{R} , such that (i) $\sum_{n=1}^{\infty} \alpha_n = \infty$, (ii) $\limsup_{n\to\infty} \delta_n \leq 0$ and (iii) $\gamma_n \geq 0$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$. If $\{a_n\}$ is a sequence of nonnegative real numbers, such that $a_{n+1} \leq (1 - \alpha_n)a_n + \alpha_n\delta_n + \gamma_n$, for each $n \geq 0$, then $\lim_{n\to\infty} \alpha_n = 0$.

Lemma 9. [24] Let $\{s_n\}$ be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence $\{s_{n_i}\}$ of $\{s_n\}$, such that $s_{n_i} \leq s_{n_{i+1}}$ for all $i \geq 0$. For every $n \in \mathbb{N}$, define an integer sequence $\{\tau(n)\}$ as $\tau(n) = \max\{k \leq n : s_k < s_{k+1}\}$. Then, $\tau(n) \to \infty$ and $\max\{s_{\tau(n)}, s_n\} \leq s_{\tau(n)+1}$.

Lemma 10. [25] Let $\{\lambda_n\}$ and $\{\gamma_n\}$ be nonnegative and $\{\alpha_n\}$ be positive real numbers, such that $\lambda_{n+1} \leq \lambda_n - \alpha_n \lambda_n + \gamma_n$, $n \geq 0$. Let for all n > 1, $\frac{\lambda_n}{\alpha_n} \leq c_1$ and $\alpha_n \leq \alpha$. Then, $\lambda_n \leq \max\{\lambda_1, K^*\}$, where $K^* = (1 + \alpha)c_1$.

Definition 3. (1) A mapping $T : C \to C$ is said to be a k-quasi-strictly pseudocontractive mapping if there exists $k \in [0,1)$, such that $||Tx - p||^2 \leq ||x - p||^2 + k||x - Tx||^2$, $\forall x \in C, p \in F(T)$. (2) A mapping $T : C \to C$ is called quasinonexpansive if $F(T) \neq \emptyset$; and $\phi(p,Tx) \leq \phi(p,x) \forall x \in C, p \in F(T)$. (3) A countable family of mappings $\{T_i\} : C \to C$ is said to be totally uniformly quasi- ϕ -asymptotically nonexpansive, if $\Im = \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$ and there exist nonnegative real sequences $\{\mu_n\}, \{\nu_n\}$ with $\mu_n \to 0, \nu_n \to 0$ (as $n \to \infty$) and a strictly-increasing continuous function $\zeta : \mathbb{R}^+ \to \mathbb{R}^+$ with $\zeta(0) = 0$, such that $\phi(p, T_i^n x) \leq \phi(p, x) + \nu_n \zeta(\phi(p, x)) + \mu_n$, $n \geq 1, i \geq 1, x \in C, p \in \Im$. (4) A mapping $T : C \to C$ is said to be uniformly L-Lipschitzian continuous, if there exists a constant L > 0, such that $||T^n x - T^n y|| \leq L||x - y||, \quad \forall x, y \in C, n \geq 1$.

Lemma 11. [11] Let *E* be a real uniformly-smooth and uniformly-convex Banach space and *C* be a nonempty closed convex subset of *E*. Let $T : C \to C$ be a closed and totally quasi- ϕ -asymptotically nonexpansive mapping

with nonnegative real sequences $\{\mu_n\}, \{\nu_n\}$ and a strictly-increasing continuous function $\zeta : \mathbb{R}^+ \to \mathbb{R}^+$, such that $\mu_n \to 0$, $\nu_n \to 0$ and $\zeta(0) = 0$. If $\mu_1 = 0$, then the fixed point set of *T* is closed and convex.

Lemma 12. [26] Let C be a nonempty closed convex subset of a real Banach space E, and let $T : C \to C$ be a k-quasi-strictly pseudocontractive mapping. If $F(T) \neq \emptyset$, then F(T) is closed and convex.

3. Main Results

This section is devoted to the main results of this paper.

Theorem 1. Let E_1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0 < t < \frac{1}{\sqrt{2}}$, and let E_2 be a real smooth Banach space. Let $A : E_1 \to E_2$ be a bounded linear operator and A^* be its adjoint. Suppose $T : E_2 \to E_2$ is a uniformly L-Lipschitzian continuous and $(k, \{\mu_n\}, \{\xi_n\})$ -totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:

- (1) $\sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} \xi_n < \infty,$
- (2) $\{r_n\}$ is a real sequence in (0, 1), such that $\mu_n = o(r_n)$, $\xi_n = o(r_n)$, $\lim r_n = 0$, $\sum_{n=1}^{\infty} r_n = \infty$,
- (3) there exist constants $M_0 > 0$, $M_1 > 0$, such that $\zeta(\lambda) \le M_0 \lambda^2$, $\forall \lambda > M_1$.

Let $\{S_n\}_{n=1}^{\infty}$: $E_1 \to CB(E_1)$ be a family of multivalued quasinonexpansive mappings, such that for each $i \ge 1, S_i$ is demi-closed at zero, and for each $p \in Fix(S_i), S_i(p) = \{p\}$. Suppose:

$$\Omega = \left\{ x \in \bigcap_{i=1}^{\infty} F(S_i) : Ax \in F(T) \right\} \neq \emptyset$$

and $\{x_n\}$ is the sequence generated by $x_1 \in E_1$:

$$\begin{cases} u_n = (1 - r_n)x_n \\ y_n = J_1^{-1}(\alpha_n J_1 u_n + (1 - \alpha_n)\gamma A^* J_2(T^n - I)Au_n) \\ x_{n+1} = J_1^{-1}(\beta_{n,0} J_1 y_n + \sum_{i=1}^{\infty} \beta_{n,i} J_1 w_{n,i}) \quad w_{n,i} \in S_i y_n \end{cases}$$
(2)

where $\gamma \in (0, \frac{1-k}{2||A||^2})$; the sequences $\{\alpha_n\}, \{\beta_{n,i}\} \subset (0,1)$ satisfy the following conditions:

(a) $\sum_{i=0}^{\infty} \beta_{n,i} = 1$, $\liminf_{n \to \infty} \beta_{n,0} \beta_{n,i} > 0$,

(b)
$$\lim_{n\to\infty} \alpha_n = 1, \sum_{n=1}^{\infty} (1-\alpha_n) < \infty, \ (1-\alpha_n) = o(r_n).$$

Then, $\{x_n\}$ *converges strongly to an element of* Ω *.*

Proof. Since ζ is continuous, ζ attains its maximum in $[0, M_1]$, and by assumption, $\zeta(\lambda) \leq M_0\lambda^2$, $\forall \lambda > M_1$. In either case, we have $\zeta(\lambda) \leq M + M_0\lambda^2$, $\forall \lambda \in [0, \infty)$. Let $p \in \Omega$, then:

$$\phi(p, u_n) \le (1 - r_n)\phi(p, x_n) + r_n \|p\|^2$$
(3)

From (2) and Lemma 2(d,c), we have:

$$\begin{split} \phi(p,y_{n}) &\leq \alpha_{n}\phi(p,u_{n}) + (1-\alpha_{n})\phi(p,J_{1}^{-1}(\gamma A^{*}J_{2}(T^{n}-I)Au_{n})) \\ &\leq \alpha_{n}\phi(p,u_{n}) + (1-\alpha_{n})[\phi(p,u_{n}) + \phi(u_{n},J_{1}^{-1}(\gamma A^{*}J_{2}(T^{n}-I)Au_{n})) \\ &+ 2\langle p-u_{n},J_{1}u_{n} - \gamma A^{*}J_{2}(T^{n}-I)Au_{n}\rangle] \\ &= \phi(p,u_{n}) + (1-\alpha_{n})[\|u_{n}\|^{2} + \gamma^{2}\|A\|^{2}\|(T^{n}-I)Au_{n}\|^{2} - 2\langle u_{n},\gamma A^{*}J_{2}(T^{n}-I)Au_{n}\rangle \quad (4) \\ &+ 2\langle p-u_{n},J_{1}u_{n}\rangle + 2\langle p-u_{n},\gamma A^{*}J_{2}(T^{n}-I)Au_{n}\rangle] \\ &\leq \phi(p,u_{n}) + (1-\alpha_{n})[\|p\|^{2} + \gamma^{2}\|A\|^{2}\|(T^{n}-I)Au_{n}\|^{2} - 2\langle u_{n},\gamma A^{*}J_{2}(T^{n}-I)Au_{n}\rangle \\ &+ 2\langle p-u_{n},\gamma A^{*}J_{2}(T^{n}-I)Au_{n}\rangle] \end{split}$$

From Lemma 1, we have:

$$\begin{aligned} -2\langle u_{n}, \gamma A^{*}J_{2}(T_{n}-I)Au_{n}\rangle &\leq \|\gamma A^{*}J_{2}(T^{n}-I)Au_{n}\|^{2} + 2\|tu_{n}\|^{2} - \|u_{n}+\gamma A^{*}J_{2}(T_{n}-I)Au_{n}\|^{2} \\ &\leq \gamma^{2}\|A\|^{2}\|(T^{n}-I)Au_{n}\|^{2} + \|u_{n}\|^{2} \\ &= \gamma^{2}\|A\|^{2}\|(T^{n}-I)Au_{n}\|^{2} + 4\|\frac{1}{2}u_{n} - \frac{1}{2}p + \frac{1}{2}p\|^{2} \\ &\leq \gamma^{2}\|A\|^{2}\|(T^{n}-I)Au_{n}\|^{2} + 4(\frac{1}{2}\|u_{n}-p\|^{2} + \frac{1}{2}\|p\|^{2}) \\ &= \gamma^{2}\|A\|^{2}\|(T^{n}-I)Au_{n}\|^{2} + 2\|u_{n}-p\|^{2} + 2\|p\|^{2}) \end{aligned}$$
(5)

Since $Ap \in F(T)$ and T is a totally quasi-asymptotically strictly pseudocontractive mapping, we obtain:

$$\begin{aligned} \langle u_{n} - p, \gamma A^{*} J_{2}(T^{n} - I) A u_{n} &= \gamma \langle A(u_{n} - p), J_{2}(T^{n} - I) A u_{n} \rangle \\ &= \gamma \langle A(u_{n} - p) + (T^{n} - I) A u_{n} - (T^{n} - I) A u_{n}, J_{2}(T^{n} - I) A u_{n} \rangle \\ &= \gamma (\langle T^{n} A(u_{n}) - Ap, J_{2}(T^{n} - I) A u_{n} \rangle - \|(T^{n} - I) A u_{n}\|^{2}) \\ &\leq \gamma (\frac{1}{2} [\|(T^{n} - I) A u_{n}\|^{2} + 2\|t(T^{n} A u_{n} - Ap)\|^{2} \\ &- \|Ap - A u_{n}\|^{2}] - \|(T^{n} - I) A u_{n}\|^{2}) \\ &\leq \gamma (\frac{1}{2} [\|(T^{n} - I) A u_{n}\|^{2} + \|(T^{n} A u_{n} - Ap)\|^{2} \\ &- \|Ap - A u_{n}\|^{2}] - \|(T^{n} - I) A u_{n}\|^{2}) \\ &\leq \gamma (\frac{1}{2} [\|Au_{n} - Ap\|^{2} + k\|(T^{n} - I) A u_{n}\|^{2} + \mu_{n}\zeta(\|Au_{n} - Ap\|) + \xi_{n}]) \\ &- \frac{1}{2} (\|(T^{n} - I) A u_{n}\|^{2} + \|Ap - A u_{n}\|^{2}) \\ &= \gamma (\frac{k - 1}{2} \|(T^{n} - I) A u_{n}\|^{2} + \frac{\mu_{n}}{2} [M + M_{0} \|Au_{n} - Ap\|^{2}] + \frac{\xi_{n}}{2}) \end{aligned}$$

Substituting (5) and (6) into (4), we have:

$$\begin{split} \phi(p, y_n) &\leq \alpha_n \phi(p, u_n) + (1 - \alpha_n) \phi(p, J_1^{-1}(\gamma A^* J_2(T^n - I)Au_n)) \\ &\leq \phi(p, u_n) + (1 - \alpha_n) [3\|p\|^2 + 2\gamma^2 \|A\|^2 \|(T^n - I)Au_n\|^2 + 2\|u_n - p\|^2 \\ &+ \gamma(k - 1) \|(T^n - I)Au_n\|^2 + \gamma \mu_n [M + M_0 \|A\|^2 \|u_n - p\|^2] + \gamma \xi_n \\ &\leq \phi(p, u_n) + 3(1 - \alpha_n) \|p\|^2 - \gamma(1 - k - 2\gamma \|A\|^2) \|(T^n - I)Au_n\|^2 \\ &+ \gamma \mu_n M + (\gamma \mu_n M_0 \|A\|^2 + 2) \|u_n - p\|^2 + \gamma \xi_n \end{split}$$
(7)

From Lemma 1 and the fact that $0 < t < \frac{1}{\sqrt{2}}$, we have:

$$\begin{split} \phi(p,y_{n}) &\leq \alpha_{n}\phi(p,u_{n}) + (1-\alpha_{n})\phi(p,J_{1}^{-1}(\gamma A^{*}J_{2}(T^{n}-I)Au_{n})) \\ &\leq \phi(p,u_{n}) + 3(1-\alpha_{n})\|p\|^{2} - \gamma(1-k-2\gamma\|A\|^{2})\|(T^{n}-I)Au_{n}\|^{2} \\ &+ \gamma\mu_{n}M + (\gamma\mu_{n}M_{0}\|A\|^{2}+2)\|u_{n}-p\|^{2} + \gamma\xi_{n} \\ &\leq \phi(p,u_{n}) + 3(1-\alpha_{n})\|p\|^{2} - \gamma(1-k-2\gamma\|A\|^{2})\|(T^{n}-I)Au_{n}\|^{2} \\ &+ \gamma\mu_{n}M + (\gamma\mu_{n}M_{0}\|A\|^{2}+2)[\|u_{n}\|^{2} - \langle p,Ju_{n}\rangle + 2\|tp\|^{2}] + \gamma\xi_{n} \\ &\leq \phi(p,u_{n}) + 3(1-\alpha_{n})\|p\|^{2} - \gamma(1-k-2\gamma\|A\|^{2})\|(T^{n}-I)Au_{n}\|^{2} \\ &+ \gamma\mu_{n}M + (\gamma\mu_{n}M_{0}\|A\|^{2}+2)\phi(p,u_{n}) + \gamma\xi_{n} \end{split}$$
(8)

Putting (3) and (8) into (2), we obtain:

$$\begin{split} \phi(p, x_{n+1}) &= \phi(p, J_1^{-1}(\beta_{n,0}J_1y_n + \sum_{i=1}^{\infty} \beta_{n,i}J_1w_{n,i})) \\ &\leq \beta_{n,0}\phi(p, y_n) + \sum_{i=1}^{\infty} \beta_{n,i}\inf_{t\in S_i(p)}\phi(p, w_{n,i}) \\ &= \beta_{n,0}\phi(p, y_n) + \sum_{i=1}^{\infty} \beta_{n,i}\inf_{t\in S_i(p)}\phi(p, w_{n,i}) \\ &\leq \beta_{n,0}\phi(p, y_n) + \sum_{i=1}^{\infty} \beta_{n,i}\Phi(p, w_{n,i}) = \phi(p, y_n) \\ &\leq \phi(p, u_n) + 3(1 - \alpha_n)\|p\|^2 - \gamma(1 - k - 2\gamma\|A\|^2)\|(T^n - I)Au_n\|^2 \\ &+ \gamma\mu_n M + (\gamma\mu_n M_0\|A\|^2 + 2)\phi(p, u_n) + \gamma\xi_n \\ &\leq (1 - r_n)\phi(p, x_n) + r_n\|p\|^2 + 3(1 - \alpha_n)\|p\|^2 - \gamma(1 - k - 2\gamma\|A\|^2)\|(T^n - I)Au_n\|^2 \\ &+ \gamma\mu_n M + (\gamma\mu_n M_0\|A\|^2 + 2)((1 - r_n)\phi(p, x_n) + r_n\|p\|^2) + \gamma\xi_n \\ &\leq \phi(p, x_n) - (r_n - \gamma\mu_n M_0\|A\|^2 + 2)(1 - r_n)\phi(p, x_n) \\ &+ (3(1 - \alpha_n) + r_n + \mu_n \gamma M_0\|A\|^2 + 2))(1 - r_n)\phi(p, x_n) + \sigma_n \end{split}$$
(9)

where $\sigma_n = (3(1 - \alpha_n) + r_n + \mu_n \gamma M_0 ||A||^2 r_n) ||p||^2 + \mu_n \gamma M + \gamma \xi_n$. Since $\mu_n = o(r_n)$, $(1 - \alpha_n) = o(r_n)$ and $\xi_n = o(r_n)$, we may assume without loss of generality that there exist constants $k_0 \in (0, 1)$ and $M_2 > 0$, such that for all $n \ge 1$:

$$\frac{\mu_n}{r_n} \le \frac{r_n(1-k_0+2)-2}{r_n(1-r_n)\gamma M_0 \|A\|^2} \quad and \quad \frac{\sigma_n}{r_n} \le M_2$$

Thus, we obtain:

$$\phi(p, x_{n+1}) \le \phi(p, x_n) - r_n k_0 \phi(p, x_n) + \sigma_n \tag{10}$$

According to Lemma 10, $\phi(p, x_{n+1}) \leq \max\{\phi(p, x_1), (1 + k_0)M_2\}$. Therefore, $\{\phi(p, x_n)\}$ and $\{x_n\}$ are bounded. Furthermore, the sequences $\{y_n\}$ and $\{u_n\}$ are bounded, as well. We now consider two cases.

Case 1. Suppose that there exists $n_0 \in \mathbb{N}$, such that $\{\phi(p, x_n)\}_{n=n_0}^{\infty}$ is nonincreasing. Then, $\{\phi(p, x_n)\}_{n=1}^{\infty}$ converges, and $\phi(p, x_n) - \phi(p, x_{n+1}) \to 0$ as $n \to \infty$. Since E_1 is a uniformly smooth Banach space, it follows from Lemma 3 and Equations (8) and (10) that:

$$\begin{aligned} \phi(p, x_{n+1}) &\leq \phi(p, y_n) \\ &\leq \alpha_n \phi(p, u_n) + (1 - \alpha_n) \phi(p, J_1^{-1}(\gamma A^* J_2(T^n - I)Au_n)) - \alpha_n (1 - \alpha_n) g(\|J_1 u_n - \gamma A^* J_2(T^n - I)Au_n\|) \\ &\leq \phi(p, u_n) + 3(1 - \alpha_n) \|p\|^2 - \gamma (1 - k - 2\gamma \|A\|^2) \|(T^n - I)Au_n\|^2 \\ &+ \gamma \mu_n M + (\gamma \mu_n M_0 \|A\|^2 + 2) \phi(p, u_n) + \gamma \xi_n - \alpha_n (1 - \alpha_n) g(\|J_1 u_n - \gamma A^* J_2(T^n - I)Au_n\|) \\ &\leq \phi(p, x_n) - (r_n - (\gamma \mu_n M_0 \|A\|^2 + 2)) \phi(p, u_n) + (3(1 - \alpha_n) + r_n) \|p\|^2 \\ &+ \gamma \xi_n - \gamma (1 - k - 2\gamma \|A\|^2) \|(T^n - I)Au_n\|^2 - \alpha_n (1 - \alpha_n) g(\|J_1 u_n - \gamma A^* J_2(T^n - I)Au_n\|) \\ &\leq \phi(p, x_n) - r_n k_0 \phi(p, x_n) + \sigma_n - \gamma (1 - k - 2\gamma \|A\|^2) \|(T^n - I)Au_n\|^2 \\ &- \alpha_n (1 - \alpha_n) g(\|J_1 u_n - \gamma A^* J_2(T^n - I)Au_n\|) \end{aligned}$$
(11)

Hence, from (10), we have:

$$\alpha_n(1 - \alpha_n)g(\|J_1u_n - \gamma A^*J_2(T^n - I)Au_n\|) \le \phi(p, x_n) - \phi(p, x_{n+1}) - r_nk_0\phi(p, x_n) + \sigma_n$$

and:

$$\gamma(1-k-2\gamma ||A||^2)||(T^n-I)Au_n||^2 \le \phi(p,x_n) - \phi(p,x_{n+1}) - r_n k_0 \phi(p,x_n) + \sigma_n$$

Therefore, $\alpha_n(1-\alpha_n)g(\|J_1u_n-\gamma A^*J_2(T^n-I)Au_n\|)$ and $\gamma(1-k-2\gamma\|A\|^2)\|(T^n-I)Au_n\|^2$ tend to zero as $n \to \infty$. Since $\liminf \alpha_n(1-\alpha_n) > 0$ and $\gamma \in (0, \frac{1-k}{2\|A\|^2})$, we obtain:

$$\|J_1 u_n - \gamma A^* J_2 (T^n - I) A u_n\| \longrightarrow 0 \quad n \to \infty$$
⁽¹²⁾

$$\|(T^n - I)Au_n\|^2 \longrightarrow 0 \quad n \to \infty$$
⁽¹³⁾

Furthermore, we observe that $||J_1y_n - J_1u_n|| = (1 - \alpha_n)||J_1u_n - \gamma A^*J_2(T^n - I)Au_n|| \to 0$. Since J_1^{-1} is uniformly norm-to-norm continuous on bounded subsets, we conclude that:

$$\lim_{n \to \infty} \|y_n - u_n\| = 0 \tag{14}$$

Using (7) and Lemma 3 in (2), we have:

$$\begin{split} \phi(p, x_{n+1}) &= \phi(p, J_1^{-1}(\beta_{n,0}J_1y_n + \sum_{i=1}^{\infty} \beta_{n,i}J_1w_{n,i})) \\ &\leq \beta_{n,0}\phi(p, y_n) + \sum_{i=1}^{\infty} \beta_{n,i}\phi(p, w_{n,i}) - \beta_{n,0}\beta_{n,i}g(\|J_1y_n - J_1w_{n,i}\|) \\ &\leq \phi(p, y_n) - \beta_{n,0}\beta_{n,i}g(\|J_1y_n - J_1w_{n,i}\|) \\ &\leq \phi(p, u_n) + 3(1 - \alpha_n)\|p\|^2 - \gamma(1 - k - 2\gamma\|A\|^2)\|(T^n - I)Au_n\|^2 \\ &+ \gamma\mu_n M + (\gamma\mu_n M_0\|A\|^2 + 2)\|u_n - p\|^2 + \gamma\xi_n - \beta_{n,0}\beta_{n,i}g(\|J_1y_n - J_1w_{n,i}\|) \end{split}$$
(15)

It now follows from (3) and $\gamma \in (0, \frac{1-k}{2\|A\|^2})$ that:

$$\begin{aligned} \beta_{n,0}\beta_{n,i}g(\|J_1y_n - J_1w_{n,i}\|) &\leq \phi(p, x_n) - \phi(p, x_{n+1}) - (r_n - (\gamma\mu_n M_0 \|A\|^2 + 2))\phi(p, u_n) \\ &+ (3(1 - \alpha_n) + r_n)\|p\|^2 + \gamma\xi_n \\ &\leq \phi(p, x_n) - \phi(p, x_{n+1}) - r_nk_0\phi(p, x_n) + \sigma_n \end{aligned}$$

From Condition (a), we have $\lim_{n\to\infty} g(\|J_1y_n - J_1w_{n,i}\|) = 0$. Since g is continuous and g(0) = 0, we obtain $\lim_{n\to\infty} \|J_1y_n - J_1w_{n,i}\| = 0$. Since J_1^{-1} is uniformly norm-to-norm continuous on bounded subsets, we have:

$$\lim_{n \to \infty} \|y_n - w_{n,i}\| = 0 \qquad \forall i \in \mathbb{N}$$
(16)

which implies that $\lim_{n\to\infty} dist(y_n, S_iy_n) \leq \lim_{n\to\infty} ||y_n - w_{n,i}|| = 0$, $\forall i \in \mathbb{N}$. From (2), we obtain:

$$\|J_1 x_{n+1} - J_1 y_n\| = (1 - \beta_{n,0}) \|J_1 y_n - J_1 w_{n,i}\| \longrightarrow 0 \quad n \to \infty$$

Since J is uniformly norm-to-norm continuous on bounded subsets, we have:

$$\|x_{n+1} - y_n\| \longrightarrow 0 \quad n \to \infty \tag{17}$$

From (14), (17) *and* $\lim_{n\to\infty} r_n = 0$, we have:

$$||x_{n+1} - x_n|| \le ||x_{n+1} - y_n|| + ||y_n - u_n|| + ||u_n - x_n||$$

= $||x_{n+1} - y_n|| + ||y_n - u_n|| + r_n ||x_n|| \longrightarrow 0 \quad n \to \infty$

Consequently:

$$\begin{aligned} \|u_{n+1} - u_n\| &= \|(1 - r_{n+1})x_{n+1} - (1 - r_n)x_n)\| \\ &\leq |r_{n+1} - r_n| \|x_{n+1}\| + (1 - r_n)\|x_{n+1} - x_n\| \longrightarrow 0 \quad n \to \infty \end{aligned}$$
(18)

Using the fact that T is uniformly L-Lipschitzian, we have:

$$\begin{aligned} \|TAu_n - Au_n\| &\leq \|TAu_n - T^{n+1}Au_n\| + \|T^{n+1}Au_n - T^{n+1}Au_{n+1}\| \\ &+ \|T^{n+1}Au_{n+1} - Au_{n+1}\| + \|Au_{n+1} - Au_n\| \\ &\leq L\|Au_n - T^nAu_n\| + (1+L)\|Au_{n+1} - Au_n\| + \|T^{n+1}Au_{n+1} - Au_{n+1}\| \\ &\leq L\|Au_n - T^nAu_n\| + (1+L)\|A\|\|u_{n+1} - u_n\| + \|T^{n+1}Au_{n+1} - Au_{n+1}\| \end{aligned}$$

From (13) and (18), we obtain:

$$\|(T-I)Au_n\| \longrightarrow 0, \quad n \to \infty \tag{19}$$

Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$, such that $x_{n_j} \rightarrow z$. Using the fact that $x_{n_j} \rightarrow z$ and $||y_n - x_n|| \rightarrow 0$, $n \rightarrow \infty$, we have that $y_{n_j} \rightarrow z$. Similarly, $u_{n_j} \rightarrow z$, since $||u_n - x_n|| \rightarrow 0$, $n \rightarrow \infty$. Now, we show that $z \in \Omega$. Since $y_{n_j} \rightarrow z$ and $\lim_{n\to\infty} dist(y_n, S_i(y_n)) = 0$ and by the demi-closedness of each S_i , we have $z \in \bigcap_{i \in \mathbb{N}} F(S_i)$. On the other hand, since A is a bounded operator, it follows from $u_{n_j} \rightarrow z$ that $Au_{n_j} \rightarrow Az$. Hence, from (13), we have $||TAu_{n_j} - Au_{n_j}|| \rightarrow 0$ as $j \rightarrow \infty$. Since T is demi-closed at zero, we have that $Az \in F(T)$. Hence, $z \in \Omega$. Next, we prove that $\{x_n\}$ converges strongly to z. From (7), Lemma 1 and $\gamma \in (0, \frac{1-k}{2||A||^2})$, we have:

$$\begin{split} \phi(z, x_{n+1}) &\leq \phi(z, y_n) \leq \alpha_n \phi(z, u_n) + (1 - \alpha_n) \phi(z, J_1^{-1}(\gamma A^* J_2(T^n - I)Au_n)) \\ &\leq \alpha_n \phi(z, u_n) + (1 - \alpha_n) [\phi(z, u_n) + \phi(u_n, J_1^{-1}(\gamma A^* J_2(T^n - I)Au_n))) \\ &+ 2\langle z - u_n, J_1 u_n - \gamma A^* J_2(T^n - I)Au_n \rangle] \\ &\leq \phi(z, u_n) + (1 - \alpha_n) [\|z\|^2 + \|u_n - z + z\|^2 + 2\gamma^2 \|A\|^2 \|(T^n - I)Au_n\|^2 \\ &+ \gamma(k - 1) \|(T^n - I)Au_n\|^2 + \gamma \mu_n [M + M_0 \|A\|^2 \|u_n - z\|^2] + \gamma \xi_n \\ &\leq \phi(z, u_n) + (1 - \alpha_n) [\|z\|^2 + \|u_n - z\|^2 + \|z\|^2 + 2\langle u_n - z, Jz \rangle \\ &+ 2\gamma^2 \|A\|^2 \|(T^n - I)Au_n\|^2 + \gamma(k - 1) \|(T^n - I)Au_n\|^2 \\ &\leq \phi(z, u_n) + (1 - \alpha_n) (\|u_n - z\|^2] + \gamma \xi_n \\ &\leq \phi(z, u_n) + (1 - \alpha_n) (\|u_n - z\| + 2\langle u_n, J_1z \rangle) + \mu_n M^* + \gamma \xi_n \\ &\leq (1 - r_n) \phi(z, x_n) - 2r_n \langle x_n - z, J_1z \rangle + (1 - \alpha_n) (\|u_n - z\|^2 \\ &+ 2\langle x_n, J_1z \rangle + \mu_n M^* + \gamma \xi_n \end{split}$$

where $M^* > \gamma \sup_{n\geq 0} (M + M_0 ||A||^2 ||u_n - z||^2) > 0$. It is clear that $-2\langle u_n - z, z \rangle \to 0$, $n \to \infty$, and $\sum_{n=1}^{\infty} M^* \mu_n < \infty$, $\sum_{n=1}^{\infty} \gamma \xi_n < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha_n) (||u_n - z||^2 + 2\langle x_n, J_1 z \rangle < \infty$. Now, using Lemma 8 in (20), we have $\phi(z, x_n) \to 0$. Therefore, $x_n \to z$ as $n \to \infty$.

Case 2. Assume that there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$, such that $\phi(z, x_{n_j}) < \phi(z, x_{n_j+1}), \forall j \in \mathbb{N}$. By Lemma 9, there exists a nondecreasing sequence $\{\tau(n)\}$ of \mathbb{N} , such that for all $n \ge n_0$ (for some n_0 large enough) $\tau(n) \to \infty$ as $n \to \infty$ and such that the following inequalities hold:

$$\phi(z, x_n) < \phi(z, x_{\tau(n)+1}), \quad \phi(z, x_{\tau(n)}) < \phi(z, x_{\tau(n)+1})$$

By a similar argument as in Case 1, we obtain:

$$\phi(z, x_{\tau(n)+1}) \leq (1 - r_{\tau(n)})\phi(z, x_{\tau(n)}) - 2r_{\tau(n)}\langle x_{\tau(n)} - z, J_1 z \rangle
+ (1 - \alpha_{\tau(n)})(\|u_{\tau(n)} - z\|^2 + 2\langle x_{\tau(n)}, J_1 z \rangle) + \gamma \mu_{\tau(n)} M^* + \gamma \xi_{\tau(n)}$$
(21)

and $\lim \langle x_{\tau(n)} - z, J_1 z \rangle = 0$. Since $\phi(z, x_{\tau(n)}) \le \phi(z, x_{\tau(n)+1})$, we have:

$$\begin{aligned} r_{\tau(n)}\phi(z,x_{\tau(n)}) &\leq \phi(z,x_{\tau(n)}) - \phi(z,x_{\tau(n)+1}) - 2r_{\tau(n)}\langle x_{\tau(n)} - z,J_1z \rangle \\ &+ (1 - \alpha_{\tau(n)})(\|u_{\tau(n)} - z\|^2 + 2\langle x_{\tau(n)},J_1z \rangle) + \gamma\mu_{\tau(n)}M^* + \gamma\xi_{\tau(n)} \end{aligned}$$

By our assumption that $r_{\tau(n)} > 0$ *, we obtain:*

$$\phi(z, x_{\tau(n)}) \le -2r_{\tau(n)} \langle x_{\tau(n)} - z, J_1 z \rangle + (1 - \alpha_{\tau(n)}) (\|u_{\tau(n)} - z\|^2 + 2 \langle x_{\tau(n)}, J_1 z \rangle) + \gamma \mu_{\tau(n)} M^* + \gamma \xi_{\tau(n)} \|u_{\tau(n)} - z\|^2 + 2 \langle x_{\tau(n)}, J_1 z \rangle$$

which implies that $\lim_{n\to\infty} \phi(\bar{x}, x_{\tau(n)}) = 0$. It now follows from (21) that $\lim_{n\to\infty} \phi(\bar{x}, x_{\tau(n)+1}) = 0$. Now, since $\phi(\bar{x}, x_n) < \phi(\bar{x}, x_{\tau(n)+1})$, we obtain that $\phi(\bar{x}, x_n) \to 0$. Finally, we conclude from Lemma 5 that $\{x_n\}$ converges strongly to \bar{x} .

 _	
 _	

Theorem 2. Let E_1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0 < t < \frac{1}{\sqrt{2}}$, and let E_2 be a real smooth Banach space. Let $A : E_1 \to E_2$ be a bounded linear operator and A^* be its adjoint. Let $T_i : E_2 \to E_2$ $(i \in \mathbb{N})$ be an infinite family of k-quasi-strict pseudocontractive mappings and $\{S_i\}_{i=1}^{\infty} : E_1 \to E_1$ be an infinite family of uniformly L_i -Lipschitzian continuous and totally quasi- ϕ -asymptotically nonexpansive mappings. Let $\{x_n\}$ be the sequence generated by $x_1 \in E_1$:

$$\begin{cases} u_n = J_1^{-1}(\alpha_{n,0}J_1x_n + \sum_{i=1}^{\infty} \alpha_{n,i}(\gamma A^* J_2(T_i - I)Ax_n)) \\ y_{n,m} = J_1^{-1}(\beta_n J_1x_1 + (1 - \beta_n)J_1S_m^n x_n) \\ C_{n+1} = \{z \in C_n : sup_{m \ge 1}\phi(z, y_{n,m}) \le \beta_n\phi(z, x_1) + (1 - \beta_n)(\phi(z, x_n) + ||x_n||^2 + ||z||^2) + \xi_n\} \\ x_{n+1} = \prod_{C_{n+1}} x_1 \end{cases}$$
(22)

where $\xi_n = \nu_n \sup_{z \in \Omega} \zeta(\phi(z, u_n)) + \mu_n, \gamma \in (0, \frac{1-k}{2||A||^2})$, and $\Pi_{C_{n+1}}$ is the generalized projection of E onto C_{n+1} ; and the sequences $\{\alpha_n\}, \{\beta_{n,i}\} \subset (0, 1)$ and satisfy the following conditions:

- (a) $\{\beta_n\} \subset [0,1] \text{ and } \lim_{n\to\infty} \beta_n = 0$
- (b) $\{\alpha_{n,i}\} \subseteq [0,1], \sum_{i=0}^{\infty} \alpha_{n,i} = 1 \text{ and } \lim_{n \to \infty} \alpha_{n,0} = 1$

If $\Omega = \{x \in \bigcap_{m=1}^{\infty} F(S_m) : Ax \in \bigcap_{i=1}^{\infty} F(T_i)\}$ is nonempty and bounded and $\mu_1 = 0$, then $\{x_n\}$ converges strongly to: $\Pi_{\Omega} u$.

Proof. (I) Both Ω and C_n , $n \ge 1$, are closed and convex.

We know from Lemma 11 and Lemma 12 that $F(T_i)$ and $F(S_i)$, $i \ge 1$, are closed and convex. This implies that Ω is closed and convex. Again, by the assumption, $C_1 = E_1$ is closed and convex. Now, suppose that C_n is closed and convex for some $n \ge 1$. In view of the definition of ϕ , we have:

$$C_{n+1} = \{ z \in C_n : \sup_{m \ge 1} \phi(z, y_{n,m}) \le \beta_n \phi(z, x_1) + (1 - \beta_n)(\phi(z, x_n) + 2\langle z, J_1 x_n \rangle) + \xi_n \}$$

= $\cap_{m \ge 1} \{ z \in E_1 : \phi(z, y_{n,m}) \le \beta_n \phi(z, x_1) + (1 - \beta_n)(\phi(z, x_n) + 2\langle z, J_1 x_n \rangle) + \xi_n \} \cap C_n$
= $\cap_{m \ge 1} \{ z \in E_1 : 2\beta_n \langle z, J_1 x_1 \rangle + 2(1 - \beta_n) \langle z, J_1 x_n \rangle - 2\langle z, y_{n,m} \rangle \le \beta_n \|x_1\|^2 + 2(1 - \beta_n) \|x_n\|^2$
 $- \|y_{n,m}\|^2 + \|z\|^2 \} \cap C_n$

from which, it follows that C_{n+1} is closed and convex.

(II)
$$\Omega \subset C_n$$
, $n \geq 1$.

It is clear that $\Omega \subset E_1$. Suppose that $\Omega \subset C_n$ for some $n \ge 1$. Let $u \in \Omega \subset C_n$, then we have:

$$\begin{split} \phi(u, u_n) &= \phi(u, J_1^{-1}(\alpha_{n,0}J_1x_n + \sum_{i=1}^{\infty} \alpha_{n,i}(\gamma A^*J_2(T_i - I)Ax_n))) \\ &\leq \alpha_{n,0}\phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}\phi(u, J_1^{-1}(\gamma A^*J_2(T_i - I)Ax_n)) \\ &\leq \phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}[\phi(x_n, J_1^{-1}(\gamma A^*J_2(T_i - I)Ax_n) \\ &+ 2\langle u - x_n, J_1x_n - \gamma A^*J_2(T_i - I)Ax_n \rangle \\ &\leq \phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}[\|x_n\|^2 + 2\langle u - x_n, J_1x_n \rangle + \gamma^2 \|A\|^2 \|(T_i - I)Ax_n\|^2 \\ &- 2\langle x_n, J_1^{-1}(\gamma A^*J_2(T_i - I)Ax_n) \rangle + 2\langle u - x_n, \gamma A^*J_2(T_i - I)Ax_n \rangle \end{split}$$
(23)

From Lemma 1, we have:

$$-2\langle x_n, \gamma A^* J_2(T_i - I)Ax_n \rangle \le \|\gamma A^* J_2(T_i - I)Ax_n\|^2 + 2\|tx_n\|^2 - \|x_n + \gamma A^* J_2(T_i - I)Ax_n\|^2 \le \gamma^2 \|A\|^2 \|(T_i - I)Ax_n\|^2 + \|x_n\|^2$$
(24)

Since $Au \in \bigcap_{i=1}^{\infty} F(T_i)$ and T_i is a *k*-quasi-strictly pseudocontractive mapping:

$$\langle x_{n} - u, \gamma A^{*} J_{2}(T_{i} - I) A x_{n} \rangle = \gamma \langle A(x_{n} - u), J_{2}(T_{i} - I) A x_{n} \rangle$$

$$= \gamma \langle A(x_{n} - u) + (T_{i} - I) A x_{n} - (T_{i} - I) A x_{n}, J_{2}(T_{i} - I) A x_{n} \rangle$$

$$= \gamma (\langle T_{i} A(x_{n}) - A u, J_{2}(T_{i} - I) A x_{n} \rangle - \| (T_{i} - I) A x_{n} \|^{2})$$

$$\leq \gamma (\frac{1}{2} (\| T_{i} A x_{n} - A u \|^{2} + \| (T_{i} - I) A x_{n} \|^{2})) - \gamma \| (T_{i} - I) A x_{n} \|^{2}$$

$$= \frac{\gamma}{2} (\| T_{i} A x_{n} - A u \|^{2} - \| (T_{i} - I) A x_{n} \|^{2})$$

$$\leq \frac{\gamma}{2} (\| A x_{n} - A u \|^{2} + (k - 1) \| (T_{i} - I) A x_{n} \|^{2})$$

$$\leq \frac{1}{2} \| x_{n} - u \|^{2} + \frac{\gamma}{2} (k - 1) \| (T_{i} - I) A x_{n} \|^{2}$$

$$(25)$$

Substituting (24) and (25) into (23), we obtain:

$$\phi(u, u_n) \le \alpha_{n,0}\phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}\phi(u, J_1^{-1}(\gamma A^* J_2(T_i - I)Ax_n))
\le \phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}[2\langle u, J_1x_n \rangle - \gamma(1 - k - 2\gamma ||A||^2)||(T_i - I)Ax_n||^2 + ||x_n - u||^2]$$

$$\le \phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}(||x_n||^2 + ||u||^2) - \gamma(1 - k - 2\gamma ||A||^2)||(T_i - I)Ax_n||^2$$
(26)

It now follows from Lemma 2(d) and Equation (22):

$$\begin{split} \phi(u, y_{n,m}) &\leq \beta_n \phi(u, x_1) + (1 - \beta_n) \phi(u, S_n^m u_n) \\ &\leq \beta_n \phi(u, x_1) + (1 - \beta_n) [\phi(u, u_n) + \nu_n \zeta(\phi(u, u_n)) + \mu_n] \\ &\leq \beta_n \phi(u, x_1) + (1 - \beta_n) [\phi(u, u_n) + \nu_n \sup_{u \in \Omega} \zeta(\phi(u, u_n)) + \mu_n] \\ &= \beta_n \phi(u, x_1) + (1 - \beta_n) (\phi(u, u_n) + \xi_n) \quad \forall m \geq 1 \\ &\leq \beta_n \phi(u, x_1) + (1 - \beta_n) (\phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i} (\|x_n\|^2 + \|u\|^2) \\ &+ \xi_n) - \gamma (1 - 2\gamma \|A\|^2) \|(T_i - I) A x_n\|^2 \quad \forall m \geq 1 \\ &\leq \beta_n \phi(u, x_1) + (1 - \beta_n) (\phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i} (\|x_n\|^2 + \|u\|^2) + \xi_n) \quad \forall m \geq 1 \end{split}$$

Therefore, we have:

$$\sup_{m \ge 1} \phi(u, y_{n,m}) \le \beta_n \phi(u, x_1) + (1 - \beta_n)(\phi(u, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}(\|x_n\|^2 + \|u\|^2) + \xi_n)$$

$$\le \beta_n \phi(u, x_1) + (1 - \beta_n)(\phi(u, x_n) + \|x_n\|^2 + \|u\|^2 + \xi_n)$$
(28)

This argument shows that $u \in C_{n+1}$, and so, $F \subset C_{n+1}$.

(III) $\{x_n\}$ converges strongly to some point $p^* \in E_1$.

Since $x_n = \prod_{C_n} x_1$, from Lemma 6, we have $\langle x_n - y, J_1 x_1 - J_1 x_n \rangle \ge 0$, $\forall y \in C_n$. Again, since $\Omega \subset C_n$, we obtain $\langle x_n - u, J_1 x_1 - J_1 x_n \rangle \ge 0$, $\forall u \in \Omega$. It now follows from Lemma 2(a) that for each $u \in \Omega$ and each $n \ge 1$:

$$\phi(x_n, x_1) = \phi(\Pi_{C_n} x_1, x_1) \le \phi(u, x_1) - \phi(u, x_n) \le \phi(u, x_1)$$
(29)

Therefore, $\{\phi(x_n, x_1)\}$ is bounded, and so is $\{x_n\}$. Since $x_n = \prod_{C_n} x_1$ and $x_{n+1} = \prod_{C_n+1} x_1 \in C_{n+1} \subset C_n$, we have $\phi(x_n, x_1) \leq \phi(x_{n+1}, x_1)$, $n \geq 1$. This implies that $\{\phi(x_n, x_1)\}$ is nondecreasing. Hence, $\lim_{n\to\infty} \phi(x_n, x_1)$ exists. Since *E* is reflexive, there exists a subsequence $x_{n_i} \subset x_n$, such that $x_{n_i} \rightharpoonup p^*$ (some point in *E*₁). Since *C_n* is closed and convex and $C_{n+1} \subset C_n$, it follows that C_n is weakly closed and $p^* \in C_n$ for each $n \geq 1$. Now, in view of $x_{n_i} = \prod_{C_{n_i}} x_1$, we have $\phi(x_{n_i}, x_1) \leq \phi(p^*, x_1)$, $\forall n_i \geq 1$. Since the norm $\|.\|$ is weakly lower semicontinuous, we have:

$$\liminf_{n_i \to \infty} \phi(x_{n_i}, x_1) = \liminf_{n_i \to \infty} \{ \|x_{n_i}\|^2 + \|x_1\|^2 - 2\langle x_{n_i}, J_1 x_1 \rangle \} \ge \|p^*\|^2 + \|x_1\|^2 - 2\langle p^*, x_1 \rangle = \phi(p^*, x_1)$$

and so:

$$\phi(p^*, x_1) \leq \liminf_{n_i \to \infty} \phi(x_{n_i}, x_1) \leq \limsup_{n_i \to \infty} \phi(x_{n_i}, x_1) \leq \phi(p^*, x_1)$$

This implies that $\lim_{n_i} \phi(x_{n_i}, x_1) = \phi(x_1, p^*)$, and so, $||x_{n_i}|| \to ||p^*||$. Since $x_{n_i} \to p^*$ and E_1 is uniformly convex, we obtain $\lim_{n_i\to\infty} x_{n_i} = p^*$. Now, the convergence of $\{\phi(x_n, x_1)\}$, together

with $\lim_{n_i\to\infty} \phi(x_{n_i}, x_1) = \phi(p^*, x_1)$, implies that $\lim_{n\to\infty} \phi(x_n, x_1) = \phi(p^*, x_1)$. If there exists some subsequence $\{x_{n_i}\} \subset \{x_n\}$, such that $x_{n_i} \to q$, then from Lemma 2(a), we have:

$$\begin{split} \phi(p^*,q) &= \lim_{n_i,n_j \to \infty} \phi(x_{n_i}, x_{n_j}) = \lim_{n_i,n_j \to \infty} \phi(x_{n_i}, \Pi_{C_j} x_1) \le \lim_{n_i,n_j \to \infty} (\phi(x_{n_i}, x_1) - \phi(\Pi_{C_j} x_1, x_1)) \\ &\le \lim_{n_i,n_j \to \infty} (\phi(x_{n_i}, x_1) - \phi(x_{n_j}, x_1)) = \phi(p^*,q) - \phi(p^*,q) = 0 \end{split}$$

i.e., $p^* = q$, and so:

$$\lim_{n \to \infty} x_n = p^* \tag{30}$$

By the way, it follows from from (26) that $\phi(u, u_n)$ is bounded, so:

$$\lim_{n \to \infty} \xi_n = \lim_{n \to \infty} \{ \nu_n \sup_{p \in \Omega} \zeta(\phi(p, u_n)) + \mu_n \} = 0$$
(31)

(IV) $p^* \in \Omega$. Since $x_{n+1} \in C_{n+1}$, from (28), (30) and (31):

$$\sup_{m\geq 1}\phi(x_{n+1}, y_{n,m}) \leq \beta_n\phi(x_{n+1}, x_1) + (1 - \beta_n)[\phi(x_{n+1}, x_n) + \sum_{i=1}^{\infty} \alpha_{n,i}(\|x_n\|^2 + \|x_{n+1}\|^2) + \xi_n] \to 0$$
(32)

Since $x_{n+1} \in C_{n+1}$, from (27) and (32) we have:

$$\gamma(1-k-2\gamma ||A||^{2})||(T_{i}-I)Ax_{n}||^{2} \leq \beta_{n}\phi(x_{n+1},x_{1}) + (1-\beta_{n})(\phi(x_{n+1},x_{n}) + \sum_{i=1}^{\infty} \alpha_{n,i}(||x_{n+1}||^{2} + ||x_{n}||^{2}) + \xi_{n}) - \phi(x_{n+1},y_{n,m}) \to 0 \quad n \to \infty$$
(33)

Since $\gamma \in (0, \frac{1-k}{2\|A\|^2})$, we have:

$$\|(T_i - I)Ax_n\| \to 0 \quad n \to \infty \tag{34}$$

Since $x_n \rightarrow p^*$, it follows from (32) and Lemma 5 that for each $m \ge 1$:

$$\lim_{n \to \infty} y_{n,m} = p^* \tag{35}$$

Since $\{x_n\}$ is a bounded sequence and $\{S_m\}_{m=1}^{\infty}$ is uniformly totally quasi-asymptotically nonexpansive, $\{S_m^n x_n\}_{m,n=1}^{\infty}$ is uniformly bounded. In view of $\beta_n \to 0$ and (22), we conclude that for each $m \ge 1$:

$$\|J_1 y_{n,m} - J_1 S_m^n x_n\| = \lim_{n \to \infty} \beta_n \|J_1 x_1 - J_1 S_m^n x_n\| = 0$$
(36)

Since for each $m \ge 1$, $J_1 y_{n,m} \to J_1 p^*$, it follows that for each $m \ge 1$, $\lim_{n\to\infty} J_1 S_m^n x_n = J_1 p^*$. Since J_1 is continuous on each bounded subset of E_1 , for each $m \ge 1$:

$$\lim_{n \to \infty} S_m^n x_n = p^* \tag{37}$$

On the other hand, by the assumption that for each $m \ge 1$, S_m is uniformly L_m -Lipschitzian continuous, we have:

$$\|S_m^{n+1}x_n - S_m^n x_n\| \le \|S_m^{n+1}x_n - S_m^{n+1}x_{n+1}\| + \|S_m^{n+1}x_{n+1} - x_{n+1}\| + \|x_{n+1} - x_n\| + \|x_n - S_m^n x_n\|$$

$$\le (L_m + 1)\|x_{n+1} - x_n\| + \|S_m^{n+1}x_{n+1} - x_{n+1}\| + \|x_n - S_m^n x_n\|$$
(38)

From (37) and $x_n \to p^*$, we have that $\lim_{n\to\infty} ||S_m^{n+1}x_n - S_m^n x_n|| = 0$ and $\lim_{n\to\infty} S_m^{n+1}x_n = p^*$, i.e., $\lim_{n\to\infty} S_m S_m^n x_n = p^*$. In view of the closedness of S_m , it follows that $S_m p^* = p^*$, i.e., for each

 $m \ge 1$, $p^* \in F(S_m)$. By the arbitrariness of $m \ge 1$, we have $p^* \in \bigcap_{m=1}^{\infty} F(S_m)$. On the other hand, since A is bounded, it follows from $x_{n_i} \rightharpoonup p^*$ that $Ax_{n_i} \rightharpoonup Ap^*$. Hence, from (34), we have that:

$$||T_iAx_{n_i} - Ax_{n_i}|| \longrightarrow 0, \quad i \to \infty$$

Since T_i is demi-closed at zero, we have that $Az \in F(T_i)$. Hence, $z \in \Omega$.

(V) Finally, $p^* \in \Pi_{\Omega} x_1$, and so, $x_n \to \Pi_{\Omega} x_1$.

Let $w = \Pi_{\Omega} x_1$. Since $w \in \Omega \subset C_n$ and $x_n = \Pi_{C_n} x_1$, we have $\phi(x_n, x_1) \leq \phi(w, x_1)$, $n \geq 1$. This implies that $\phi(p^*, x_1) = \lim_{n \to \infty} \phi(x_n, x_1) \leq \phi(w, x_1)$. Since $w = \Pi_{\Omega} x_1$, it follows that $p^* = w$, and hence, $x_n \to p^* = \Pi_{\Omega} x_1$. \Box

Corollary 1. Let E_1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0 < t < \frac{1}{\sqrt{2}}$, and let E_2 be a real smooth Banach space. Let $A : E_1 \to E_2$ be a bounded linear operator and A^* be its adjoint. Let $T : E_2 \to E_2$ be a k-quasi-strict pseudocontractive mapping and T be demi-closed at zero. Let $\{S_n\}_{n=1}^{\infty} : E_1 \to CB(E_1)$ be a family of multivalued quasinonexpansive mappings, such that for each $i \ge 1$, S_i is demi-closed at zero. Assume that for each $p \in Fix(S_i)$, $S_i(p) = \{p\}$. Let $\{x_n\}$ be the sequence generated by $x_1 \in E_1$:

$$\begin{cases} u_n = (1 - r_n) x_n \\ y_n = J_1^{-1} (\alpha_n J_1 u_n + (1 - \alpha_n) \gamma A^* J_2 (T - I) A u_n) \\ x_{n+1} = J_1^{-1} (\beta_{n,0} J_1 y_n + \sum_{i=1}^{\infty} \beta_{n,i} J_1 w_{n,i}) \quad w_{n,i} \in S_i y_n \end{cases}$$

where $\gamma \in (0, \frac{1-k}{2\|A\|^2})$; the sequences $\{\alpha_n\}, \{\beta_{n,i}\} \subset (0,1)$ satisfy the following conditions:

- (a) $\sum_{i=0}^{\infty} \beta_{n,i} = 1 \text{ and } \liminf_{n \neq 0} \beta_{n,i} > 0,$
- (b) $\lim_{n\to\infty} \alpha_n = 1$, $\sum_{n=1}^{\infty} (1-\alpha_n) < \infty$ and $(1-\alpha_n) = o(r_n)$.

Then, $\{x_n\}$ *converges strongly to an element of* Ω *.*

Proof. Since every *k*-quasi-strictly pseudocontractive mapping is clearly (k, 0, 0)-totally asymptotically strictly pseudocontractive, the result follows. \Box

Corollary 2. Let E_1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0 < t < \frac{1}{\sqrt{2}}$, and let E_2 be a real smooth Banach space. Let $A : E_1 \to E_2$ be a bounded linear operator and A^* be its adjoint. Let $T : E_2 \to E_2$ be a uniformly L-Lipschitzian continuous and $(k, \{\mu_n\}, \{\xi_n\})$ -totally asymptotically strictly pseudocontractive mapping satisfying the following conditions:

(a) $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \xi_n < \infty$,

(b) $\{r_n\}$ is a real sequence in (0,1), such that $\mu_n = o(r_n)$, $\xi_n = o(r_n)$, $\lim r_n = 0$, $\sum_{n=1}^{\infty} r_n = \infty$,

(c) there exist constants $M_0 > 0$, $M_1 > 0$, such that $\zeta(\lambda) \le M_0 \lambda^2$, $\forall \lambda > M_1$.

Let $\mathfrak{F} = \{S(t) : 0 \le t < \infty\}$ be a one-parameter nonexpansive semigroup on E_1 . Suppose further that $\Omega = \{x \in \cap_{t \ge 0} F(S(t)) : Ax \in F(T)\} \neq \emptyset$, and $\{x_n\}$ is the sequence generated by $x_1 \in E_1$:

$$\begin{cases} u_n = (1 - r_n)x_n \\ y_n = J_1^{-1}(\alpha_n J_1 u_n + (1 - \alpha_n)\gamma A^* J_2(T^n - I)Au_n) \\ x_{n+1} = J_1^{-1}(\beta_n J_1 y_n + (1 - \beta_n)(\frac{1}{t_n} \int_0^{t_n} S(u) du J_1 y_n)) \end{cases}$$

where $\gamma \in (0, \frac{1-k}{2\|A\|^2})$; the sequence $\{\alpha_n\} \subset (0, 1), 0 < \epsilon \leq \beta_n \leq b < 1$, and $\lim_{n\to\infty} \alpha_n = 1$, $\sum_{n=1}^{\infty} (1-\alpha_n) < \infty$ and $(1-\alpha_n) = o(r_n)$. Then, $\{x_n\}$ converges strongly to to an element of Ω . **Proof.** Since $\{\sigma_t(x) = \frac{1}{t} \int_0^t S(u) x du : t \ge 0\}$ is a u.a.r. nonexpansive semigroup, the result follows from Corollary 1. \Box

In the following, we shall provide an example to illustrate the main result of this paper.

Example 1. Let C be the unit ball of the real Hilbert space l^2 , and let $T : C \to C$ be a mapping defined by:

$$T(x_1, x_2, ...) = (0, x_1, a_2 x_2, a_3 x_3, ...)$$

where $\{a_i\}$ is a sequence in (0, 1), such that $\prod_{i=2}^{\infty} a_i = \frac{1}{2}$. It was shown in [27] that T is a $(0, k_n - 1, \xi_n)$ -totally asymptotically strictly pseudocontractive mapping and $F(T) = \{0\}$, where $k_n = 2 \prod_{i=2}^{n} a_i$. Let B be the unit interval in \mathbb{R} , and let $S_i : B \to B$ be a mapping defined by:

$$S_i(x) = \begin{cases} \frac{1}{2^i} x & x \in [0, \frac{1}{2} \\ 0 & x \in (\frac{1}{2}, 1] \end{cases}$$

Then, $\bigcap_{i=1}^{\infty} Fix(S_i) = \{0\}$ and:

$$|S_i x - 0| = |\frac{1}{2^i} x - 0| = \frac{1}{2^i} |x| \le |x|$$

Therefore, each S_i *is a quasinonexpansive mapping. Let* $A : B \to C$ *be the linear operator defined by:*

 $A(x) = (0, x, a_2 x, a_3 a_2 x, a_4 a_3 a_2 x, ...), \quad x \in B \subset \mathbb{R}.$

Then, A is bounded and $||A|| = 1 + a_2^2 + (a_3a_2)^2 + (a_4a_3a_2)^2 + \cdots$. *It now follows that:*

$$A^*: C \to B, \quad A^*(x_1, x_2, \cdots) = x_2 + a_2 x_3 + a_3 a_2 x_4 + a_4 a_3 a_2 x_5 + \cdots$$

We now put, for $n \in \mathbb{N}$ *,* $\alpha_n = \frac{1}{3}$ *,* $r_n = \frac{1}{n}$ *,* $\beta_{n,0} = \frac{1}{2}$ *,* $\beta_{n,0} = \frac{1}{3^i}$ and $\lambda = \frac{1}{4}(1 + a_2^2 + \dots + (a_n \dots a_2)^2)$. *Furthermore, we have:*

$$\Omega = \{ x \in F(T) : Ax \in \bigcap_{i=1}^{\infty} F(S_i) \} = \{ 0 \}$$

Now, all of the assumptions in Theorem 1 are satisfied. Let us consider the following numerical algorithm:

$$T^{n}(x_{1}, x_{2}, ...) = (0, 0, ..., 0, a_{n} ... a_{2} x_{1}^{2}, a_{n+1} ... a_{2} x_{2}, ...)$$

$$T^{n}(Au_{n}) - Au_{n} = (0, -u_{n}, -a_{2}u_{n}, -a_{3}a_{2}u_{n}, ..., -a_{n} ... a_{2}u_{n}, 0, 0, ...$$

$$A^{*}(T^{n}(Au_{n}) - Au_{n}) = -u_{n}(1 + a_{2}^{2} + (a_{3}a_{2})^{2} + ... + (a_{n} ... a_{2})^{2})$$

$$y_{n} = \frac{1}{6}u_{n} = \frac{1}{6}(1 - \frac{1}{n})x_{n}, \quad x_{n+1} = \frac{1}{2}y_{n} + \sum_{i=1}^{\infty} \frac{1}{3^{i}}(\frac{1}{2^{i}}y_{n}) = \frac{1}{10}y_{n}$$

$$x_{n+1} = \frac{1}{60}(1 - \frac{1}{n})x_{n}$$

By Theorem 1, the sequence $\{x_n\}$ converges to the unique element of Ω .

4. Application

Let *E* be a uniformly-smooth Banach space, E^* be the dual of *E*, *J* be the duality mapping on *E* and $F : E \to 2^{E^*}$ be a multi-valued operator. Recall that *F* is called monotone if $\langle u - v, x - y \rangle \ge 0$, for any $(x, u), (y, v) \in G(F)$, where $G(F) = \{(x, u) : x \in D(F), u \in F(x)\}$. A monotone operator *F* is said to be maximally monotone if its graph G(F) is not properly contained in the graph of any other monotone operator. For a maximally-monotone operator $F : E \to 2^{E^*}$ and r > 0, we can define a single-valued operator:

$$J_r^F = (I + rF)^{-1}I : E \to E$$

It is known that for any r > 0, J_r^F is firmly nonexpansive, and its domain is all of E, also $0 \in F(x)$ if and only if $x \in Fix(J_r^F)$.

Theorem 3. Let E_1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0 < t < 1/\sqrt{2}$, and let E_2 be a real smooth Banach space and $T : E_1 \to E_2$ be a bounded linear operator. Let $A : E_2 \to 2^{E_2^*}$ and $B_i : E_1 \to 2^{E_1^*}$, for i = 1, 2, ..., be maximal monotone mappings, such that $A^{-1}0 \neq \emptyset$ and $\bigcap_{i=1}^{\infty} B_i^{-1}0 \neq \emptyset$. Suppose:

$$\Omega = \{ x \in E_1 : 0 \in \bigcap_{i=1}^{\infty} B_i(x) \text{ such that } 0 \in A(Tx) \} \neq \emptyset$$

Let $\{x_n\}$ *be a sequence generated by* $x_0 \in E_1$ *and:*

$$\begin{cases} u_n = (1 - r_n)x_n \\ y_n = J_1^{-1}(\alpha_n J_1 u_n + (1 - \alpha_n)\gamma T^* J_2(J_r^A T u_n - T u_n) \\ x_{n+1} = J_1^{-1}(\beta_{n,0} J_1 y_n + \sum_{i=1}^{\infty} \beta_{n,i} J_1 J_{\mu}^{B_i} y_n \end{cases}$$

where $r, \mu > 0, \gamma \in (0, \frac{1-k}{2||T||^2})$, and the sequences $\{\alpha_n\}, \{\beta_{n,i}\} \subset (0,1)$ satisfy the following conditions:

(1) $\sum_{i=0}^{\infty} \beta_{n,i} = 1$ and $\liminf_{n \neq 0} \beta_{n,0} \beta_{n,i} > 0$,

(2) $\lim_{n\to\infty} \alpha_n = 1$, $\sum_{n=1}^{\infty} (1-\alpha_n) < \infty$ and $(1-\alpha_n) = o(r_n)$.

Then, $\{x_n\}$ *converges strongly to an element of* Ω *.*

Proof. Since J_r^A and $J_{\mu}^{B_i}$ are nonexpansive, the result follows from Corollary 1.

Remark 1. Set $S_i = J_r^{B_i}$ in Corollary 1, where B_i is a maximal monotone mapping, then Corollary 1 improves Theorem 4.2 of Takahashi et al. [12].

Moudafi [28] introduced the split monotone variational inclusion (SMVIP) in Hilbert spaces. We present the SMVIP in a Banach space. Let E_1 and E_2 be two real Banach spaces and J_1 and J_2 be the duality mapping of E_1 and E_2 , respectively. Given the operators $f : E_1 \rightarrow E_1$, $g : E_2 \rightarrow E_2$, a bounded linear operator $A : E_1 \rightarrow E_2$ and two multi-valued mappings $B_1 : E_1 \rightarrow 2^{E_1^*}$ and $B_2 : E_2 \rightarrow 2^{E_2^*}$, the SMVI is formulated as follows:

find a point $x \in C$ such that $0 \in J_1(f(x)) + B_1(x)$

and such that the point:

 $y = A(x) \in E_2$ solves $0 \in J_2(g(y)) + B_2(y)$

Note that if *C* and *Q* are nonempty closed convex subsets of E_1 and E_2 , (resp.) and $B_1 = N_C$ and $B_2 = N_Q$, where N_C and N_Q are normal cones to *C* and *Q* (resp.), then the split monotone variational inclusion problem reduces to the split variational inequality problem (SVIP), which is formulated as follows: find a point:

 $x \in C$ such that $\langle J_1(f(x)), w - x \rangle \ge 0$ for all $w \in C$

and such that the point:

$$y = Ax \in Q$$
 solves $\langle J_2(g(y)), z - y \rangle \ge 0$ for all $z \in Q$

SVIP is quite general and enables the split minimization between two spaces in such a way that the image of a solution of one minimization problem, under a given bounded linear operator, is a solution of another minimization problem.

Let $h : C \to E$ be an operator, and let $C \subset E$. The operator h is called inverse strongly monotone with constant $\beta > 0$, or in brief $(\beta - ism)$, on E if:

$$\langle h(x) - h(y), Jx - Jy \rangle \ge \beta \|h(x) - h(y)\|^2, \quad \forall x, y \in C$$

Remark 2. If $h : E \to E$ is an α – ism operator on E and $B : E \to 2^{E^*}$ is a maximal monotone mapping, then $J^B_{\lambda}(I - \lambda h)$ is averaged for each $\lambda \in (0, 2\alpha)$.

Theorem 4. Let E_1 be a real uniformly-convex and two-uniformly-smooth Banach space with the best smoothness constant t satisfying $0 < t < 1/\sqrt{2}$, and let E_2 be a real smooth Banach space and $T : E_1 \to E_2$ be a bounded linear operator. Let $A : E_2 \to 2^{E_2^*}$ and, for $i = 1, 2, ..., B_i : E_1 \to 2^{E_1^*}$ be maximal monotone mappings, such that $A^{-1}0 \neq \emptyset$ and $\bigcap_{i=1}^{\infty} B_i^{-1}0 \neq \emptyset$; and that $h : E_2 \to E_2$ is an α – ism operator and $g_i : E_1 \to E_1$ is a γ_i – ism operator. Assume that $\rho = \alpha \inf_{i \in \mathbb{N}} \gamma_i > 0$ and $\tau \in (0, 2\rho)$. Suppose SMVI:

$$\begin{cases} x \in \bigcap_{i=1}^{\infty} B_i^{-1} 0 & 0 \in J_1(g_i(x)) + B_i(x) \\ Tx \in A^{-1} 0 & 0 \in J_2(h(Tx)) + A(Tx) \end{cases} \quad \forall i \in \mathbb{N}$$

has a nonempty solution set Ω . Let $\{x_n\}$ be a sequence generated by $x_0 \in E_1$ and:

$$\begin{cases} u_n = (1 - r_n)x_n \\ y_n = J_1^{-1}(\alpha_n J_1 u_n + (1 - \alpha_n)\gamma T^* J_2((J_r^A (I - \tau h) - I)T u_n)) \\ x_{n+1} = J_1^{-1}(\beta_{n,0} J_1 y_n + \sum_{i=1}^{\infty} \beta_{n,i} J_1 J_{\mu}^{B_i} (I - \tau g_i) y_n) \end{cases}$$

where $\gamma \in (0, \frac{1-k}{2||T||^2})$; the sequences $\{\alpha_n\}, \{\beta_{n,i}\} \subset (0, 1)$ satisfy the following conditions:

(1) $\sum_{i=0}^{\infty} \beta_{n,i} = 1$ and $\liminf_{n \neq 0} \beta_{n,0} \beta_{n,i} > 0$,

(2)
$$\lim_{n\to\infty} \alpha_n = 1$$
, $\sum_{n=1}^{\infty} (1 - \alpha_n) < \infty$ and $(1 - \alpha_n) = o(r_n)$.
Then, $\{x_n\}$ converges strongly to an element of Ω .

Proof. The results follow from Remark 2, Lemma 4(iii) and Corollary 1.

We mention in passing that the above theorem improves and extends Theorems 6.3 and 6.5 of [13] to Banach spaces. Indeed, we removed an extra condition and obtained a strong convergence theorem, which is more desirable than the weak convergence already obtained by the authors.

Acknowledgments: We wish to thank the academic editor for his right choice of reviewers, and the anonymous reviewers for their comments and criticisms.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Alsulami, S.M.; Latif, A.; Takahashi, W. Strong convergence theorems by hybrid methods for the split feasibility problem in Banach spaces. *J. Nonlinear Convex Anal.* **2015**, *16*, 2521–2538.
- Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem. *J. Nonlinear Convex Anal.* 2012, 13, 759–775.
- 3. Masad, E.; Reich, S. A note on the multiple-set split feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 2008, 7, 367–371.
- 4. Censor, Y.; Segal, A. The split common fixed point problem for directed operators. J. Convex Anal. 2009, 16, 587–600.

- 5. Moudafi, A.; Thera, M. Proximal and dynamical approaches to equilibrium problems. In *Lecture Notes in Economics and Mathematical Systems*; Springer-Verlag: New York, NY, USA, 1999; Volume 477, pp. 187–201.
- 6. Moudafi, A. The split common fixed point problem for demicontractive mappings. J. Inverse Probl. 2010, 26, doi:10.1088/0266-5611/26/5/055007.
- 7. Takahashi, W. The split feasibility problem in Banach Spaces. J. Nonlinear Convex Anal. 2014, 15, 1349–1355.
- 8. Takahashi, W. The split feasibility problem and the shrinking projection method in Banach spaces. *J. Nonlinear Convex Anal.* **2015**, *16*, 1449–1459.
- 9. Takahashi, W.; Yao, J.C. Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces. *Fixed Point Theory Appl.* **2015**, 205, 87.
- 10. Tang, J.; Chang, S.S.; Wang, L.; Wang, X. On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces. *J. Inequal. Appl.* **2015**, *23*, 205–221, doi:10.1007/s11228-014-0285-4.
- Chang, S.S.; Lee, H.W.J.; Chan, C.K.; Zhang, W.B. A modified halpern-type iteration algorithm for totally quasi-φ-asymptotically nonexpansive mappings with applications. *Appl. Math. Comput.* 2012, 218, 6489–6497, doi:10.1016/j.amc.2011.12.019.
- 12. Takahashi, W.; Xu, H.K.; Yao, J.C. Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces. *Set-Valued Var. Anal.* 2014, 23, 205–221.
- 13. Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. *Numer. Algorithms* **2012**, *59*, 301–323.
- 14. Xu, H.K. Inequalities in Banach spaces with applications. J. Nonlinear Anal. 1991, 16, 1127–1138.
- Alber, Y.I. Metric and generalized projection operators in Banach spaces: Properties and applications. In *Theory and Applications of Nonlinear Operators of Accretive and Monotone Type*; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1996; Volume 178, pp. 15–50.
- 16. Kohsaka, F.; Takahashi, W. Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. *Abstr. Appl. Anal.* **2004**, 2004, 239–249.
- 17. Chen, R.; Song, Y. Convergence to common fixed point of nonexpansive semigroups. *J. Comput. Appl. Math.* **2007**, 200, 566–575.
- 18. Baillon, J.B.; Bruck, R.E.; Reich, S. On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. *Houston J. Math.* **1978**, *4*, 1–9.
- 19. Goebel, K.; Reich, S. *Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings;* Marcel Dekker: New York, NY, USA, 1984.
- 20. Xu, H.K. Averaged Mappings and the Gradient-Projection Algorithm. J. Optim. Theory Appl. 2011, 150, 360–378.
- 21. Kamimura, S.; Takahashi, W. Strong convergence of a proximal-type algorithm in a Banach space. *SIAM J. Optim.* **2003**, *13*, 938–945.
- 22. Chang, S.S.; Kim, J.K.; Wang, X.R. Modified block iterative algorithm for solving convex feasibility problems in Banach spaces. *J. Inequal. Appl.* **2010**, *2010*, 869684.
- 23. Xu, H.K. Iterative algorithm for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256.
- 24. Mainge, P.E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. *Set-Valued Anal.* **2008**, *16*, 899–912.
- 25. Alber, Y.I.; Espinola, R.; Lorenzo, P. Strongly convergent approximations to fixed points of total asymptotically nonexpansive mappings. *Acta Math. Sin. Engl. Ser.* **2008**, *24*, 1005–1022.
- 26. Osilike, M.O.; Isiogugu, F.O. Weak and strong convergence theorems for nonspreading-type mappings in Hilbert space. *Nonlinear Anal.* **2011**, 74, 1814–1822.
- 27. Cioranescu, I. *Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems;* Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990.
- 28. Moudafi, A. Split monotone variational inclusions. J. Optim. Theory Appl. 2011, 150, 275–283.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).