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Abstract: In a certain class of graphs, a graph is called minimizing if the least eigenvalue of its
adjacency matrix attains the minimum. A connected graph containing two or three cycles is called
a bicyclic graph if its number of edges is equal to its number of vertices plus one. Let Gc

1,n and Gc
2,n

be the classes of the connected graphs of order n whose complements are bicyclic with exactly two
and three cycles, respectively. In this paper, we characterize the unique minimizing graph among
all the graphs which belong to Gc

n = Gc
1,n ∪ Gc

2,n, a class of the connected graphs of order n whose
complements are bicyclic.
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1. Introduction

Let G be a finite, simple and undirected graph with the vertex-set V(G) = {vi: 1 ≤ i ≤ n} and the
edge-set E(G) such that |V(G)| = n and |E(G)| = m are order and size of the graph G, respectively.
The adjacency matrix A(G) = [ai,j] of the graph G is a matrix of order n, where ai,j = 1 if vi is adjacent
to vj and ai,j = 0, otherwise. The zeros of det(A(G)− λI) are called the eigenvalues of A(G), where I
is an identity matrix of order n. Since A(G) is real and symmetric, all the eigenvalues say that λ1(G),
λ2(G), ..., λn(G) are real and called the eigenvalues of the graph G. If λ1(G) is the least, then one can
arrange the eigenvalues as λ1(G) ≤ λ2(G) ≤ ... ≤ λn(G), and the eigenvector corresponding to the
least eigenvalue is called the first eigenvector. For further study, we refer [1,2].

In 1957, Collatz and Sinogowitz investigated the spectrum of an undirected graph with respect
to the adjacency matrix [3]. The literature on spectra of graphs has grown enormously since that
time. The investigation on the spectral radius (largest eigenvalue) of graphs is an important topic
in the theory of graph spectra [1,2,4–6]. In literature, the least eigenvalue received less attention
comparatively to the spectral radius.

In a certain class of graphs, a graph is called minimizing if the least eigenvalue of its adjacency
matrix attains the minimum. A graph G is called a nested split if its vertices can be ordered so that
jq ∈ EG implies ip ∈ EG, where i ≤ j and p ≤ q. Let G(m, n) denote the class of connected graphs of
order n and size m, where 0 < m <(n

2). Bell et al. [7] characterized the minimizing graphs in G(m, n)
as follows.

Theorem 1. Let G be a minimizing graph in G(m, n). Then, G is either (i) a bipartite graph; or (ii) a joining of
two nested split graphs (not both totally disconnected).

It is observed that the complements of the minimizing graphs in G(m, n) are either disconnected
or contain a clique of order greater than or equal to the half of the order of the graphs. This motivated
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discussion of the least eigenvalue of the graphs whose complements are connected and contain cliques
of small sizes. Fan et al. [8] characterized the unique minimizing graph in the class of graphs of order
n whose complements are trees. Wang et al. [9] characterized the unique minimizing graph in the
class of graphs whose complements are unicyclic. Recently, the minimizing graph of the graphs
which belong to Gc

1,n is studied in [10], where Gc
1,n is a class of the connected graphs of order n whose

complements are bicyclic with exactly two cycles. In this note, we continue this study and characterize
the unique minimizing graph among all the graphs which belong to a class of the connected graphs of
order n whose complements are bicyclic with two or three cycles. The main result of this paper is
stated as follows.

Theorem 2. Let G1,n and G2,n be the classes of the bicyclic graphs of order n in which each bicyclic graph has
exactly two and three cycles, respectively. Let Bc ∈ Gc

n be a connected graph of order n such that its complement
is a bicyclic graph i.e., B ∈ G1,n ∪ G2,n. Then:

λmin(B(d
n− 2

2
e, bn− 2

2
c)c) ≤ λmin(Bc)

where n ≥ 30 and equality holds if and only if B = B(d n−2
2 e, b

n−2
2 c).

The results related to the bounds of the least eigenvalue can be found in [5,11]. For further study,
we refer [12–17]. The rest of the paper is organized as follows: in Section 2, we present some basic
definitions and terminologies that are frequently used in the main results and Section 3 includes the
main results from the minimizing graph of the connected graphs whose complements are bicyclic.

2. Preliminaries

A star of size n is a tree that is obtained by joining one specific vertex to the remaining n
vertices, where the fixed vertex is called center and all other vertices are called pendent vertices.
It is denoted by K1,n and its vertex-set and edge-set are defined as V(K1,n) = {vi: 1 ≤ i ≤ n + 1}
and E(K1,n) = {v1vi: 2 ≤ i ≤ n + 1}, respectively. Moreover, S1

1,n is a graph obtained by joining any
one pair of pendent vertices of K1,n. If we choose a pair of pendent vertices of K1,n consisting of vn

and vn+1, then V(S1
1,n) = {vi: 1 ≤ i ≤ n + 1} and E(S1

1,n) = {v1vi: 2 ≤ i ≤ n + 1} ∪ {vnvn+1} are
the vertex-set and the edge-set of the graph S1

1,n, respectively. Similarly, S2
1,n is a graph obtained

by joining any two distinct pairs of pendent vertices of K1,n such that V(S2
1,n) = V(S1

1,n) and
E(S2

1,n) = E(S1
1,n) ∪ {vn−2vn−1}, where (vn−2, vn−1) is chosen as the second pair of pendent vertices

different from (vn, vn+1). If two chosen pairs of vertices have one vertex that is the same, then, by
joining these pairs of vertices, we obtain the graph S∗,21,n−1 with the same vertex-set and the edge-set

E(S∗,21,n ) = {v1vi: 2 ≤ i ≤ n + 1} ∪ {vn−1vn, vnvn+1}.
Since bicyclic graphs are connected graphs in which the number of edges equals the number of

vertices plus one. We conclude that S2
1,n is a bicyclic graph with exactly two cycles and n− 4 pendent

vertices and S∗,21,n is a bicyclic graph with exactly three cycles and n− 3 pendent vertices. In particular,

S2
1,4 is a bicyclic graph of order 5 with exactly two cycles and S∗,21,3 is a bicyclic graph of order 4 with

three cycles. In the following definitions, we define some more graphs that are bicyclic.

Definition 1. Let K1,p be a star and S∗,21,3 be a bicyclic graph with three cycles and four vertices.
The bicyclic graph denoted by B(p) is obtained by joining one pendent vertex of K1,p with a
vertex of degree 3 of the graph S∗,21,3 , where p ≥ 2. The vertex-set and the edge-set of B(p) are
defined as V(B(p)) = {vi

1: 1 ≤ i ≤ p − 1} ∪ {vi: 2 ≤ i ≤ 5} ∪ {vi
6: 1 ≤ i ≤ 2} and

E(B(p)) = {vi
1v2: 1 ≤ i ≤ p− 1} ∪ {v2v3, v3v4, v4v5} ∪ {v4vi

6: 1 ≤ i ≤ 2} ∪ {v5vi
6: 1 ≤ i ≤ 2}.
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Definition 2. Let K1,p be a star and S∗,21,q be a bicyclic graph with three cycles and q− 3 pendent vertices.
The bicyclic graph denoted by B(p, q) is obtained by joining a pendent vertex of K1,p with a pendent vertex
of the graph S∗,21,q , where p ≥ 2 and q ≥ 4. The vertex-set and the edge-set of B(p, q) are defined as

V(B(p, q)) = {vi
1: 1 ≤ i ≤ p − 1} ∪ {vi: 2 ≤ i ≤ 6} ∪ {vi

7: 1 ≤ i ≤ 2} ∪ {vi
8: 1 ≤ i ≤ q − 4} and

E(B(p, q)) = {vi
1v2: 1 ≤ i ≤ p− 1} ∪ {v2v3, v3v4, v4v5, v5v6} ∪ {v5vi

7: 1 ≤ i ≤ 2} ∪ {v5vi
8: 1 ≤ i ≤

q− 4} ∪ {v6vi
7: 1 ≤ i ≤ 2}.

Let G1,n and G2,n be the classes of bicyclic graphs of order n such that each bicyclic graph has exactly
two and three cycles, respectively. In particular, Figure 1 shows H1 and H2 as the examples of the bicyclic
graphs with exactly two cycles that belong to G1,n, and H3 as an example of the bicyclic graphs with
exactly three cycles which belongs to G2,n. Let Gc

1,n be a class of the connected graphs of order n whose
complements are bicyclic with exactly two cycles i.e., Gc

1,n = {Gc: Gc is connected and G ∈ G1,n}.
Let Gc

2,n be a class of connected graphs of order n whose complements are bicyclic with exactly three
cycles i.e., Gc

2,n = {Gc: Gc is connected and G ∈ G2,n}. Now, we define Gc
n = Gc

1,n ∪ Gc
2,n and note that

(S2
1,n−1)

c and (S∗,21,n−1)
c being disconnected do not belong to Gc

n, where n > 4.

H1

H2

H3

Figure 1. Bicyclic graphs.

By interlacing theorem, for a graph G containing at least one edge, we have λmin(G) ≤ −1.
In particular, if G is a complete graph or disjoint union of complete graphs with at least one non-trivial
copy, then λmin(G) = −1. Moreover, if G contains K1,2 as an induced subgraph, then G verifies that
λmin(G) ≤ λmin(K1,2) = −

√
2. Thus, for a graph G (tree), λmin(Gc) = −1 if and only if G is a star.

Consequently, if G being a tree is not a star, then Gc is connected and λmin(Gc) < −1. For a unicyclic
graph G, λmin(Gc) ≤ −1, where equality holds if G ∼= C4 (as (C4)

c is 2P2, where P2 is a path of order 2).
Similarly, for a bicyclic graph G with exactly three cycles, λmin(Gc) ≤ −1, where equality holds if
G ∼= S∗,21,3 and for a bicyclic graph G with exactly two cycles, λmin(Gc) ≤ −2, where equality holds if
G ∼= S2

1,n for n > 3.
A vector X ∈ Rn is said to be defined on the graph G of order n, if there is a one to one map φ

from V(G) to the entries of X such that φ(u) = Xu for each u ∈ V(G). If X is an eigenvector of A(G),
then it is naturally defined on V(G), i.e., Xu is the entry of X corresponding to the vertex u. Thus, it is
easy to find that:

XTA(G)X = 2 ∑
uv∈E(G)

XuXv (1)

and λ is an eigenvalue of G corresponding to the eigenvector X if and only if X 6= 0. For each v ∈ V(G),
we obtain the following eigen-equation of the graph G:

λXv = ∑
u∈NG(v)

Xu (2)



Mathematics 2017, 5, 18 4 of 12

where NG(v) is the set of neighbors of v in G. For an arbitrary unit vector X ∈ Rn:

λmin(G) ≤ XTA(G)X (3)

with equality if and only if X is a first eigenvector of G.
Moreover, if Gc is a complement of the graph G, then A(Gc) = J− I−A(G), where J and I are

the all-ones matrix and the identity matrix of same size as of the adjacency matrix A(G), respectively.
Thus, for any vector X ∈ Rn :

XTA(Gc)X = XT(J− I)X− XTA(G)X (4)

Let X1 be the first eigenvector of the graph B(p)c with entries corresponding to the vertices as
defined in Definition 1. By Eigen-Equation (2), the vertices vi

1 for 1 ≤ i ≤ p− 1, v2, v3, v4, v5 and vi
6 for

1 ≤ i ≤ 2 have values in X1, say X1, X2, X3, X4, X5 and X6, respectively. Moreover, if λmin(B(p)c) = λ1,
then, we have: 

λ1X1 = (p− 2)X1 + X3 + X4 + X5 + 2X6,
λ1X2 = X4 + X5 + 2X6,
λ1X3 = (p− 1)X1 + X5 + 2X6,
λ1X4 = (p− 1)X1 + X2,
λ1X5 = (p− 1)X1 + X2 + X3,
λ1X6 = (p− 1)X1 + X2 + X3 + X6.

(5)

Take X1 = (X1, X2, X3, X4, X5, X6)
T . Then, the matrix equation of the above system of equations

is (A− λ1I)X1 = 0, where A is a matrix of order 6. Thus, λ1 is the least root of the polynomial:

f1(λ, p) = det(A− λI) = (−2 + p) + (8− 6p)λ + (6p)λ2 + (−8 + 4p)λ3 + (−4− 4p)λ4 − (1− p)λ5 + λ6. (6)

Let X2 be the first eigenvector of the graph B(p, q)c with entries corresponding to the vertices
as defined in Definition 2. By Eigen-Equation (2), the vertices vi

1 for 1 ≤ i ≤ p− 1, v2, v3, v4, v5, v6,
vi

7 for 1 ≤ i ≤ 2 and vi
8 for 1 ≤ i ≤ q− 4 have values in X2, say X1, X2, X3, X4, X5, X6, X7 and X8,

respectively. Moreover, if λmin(B(p, q)c) = λ2, then we have:

λ2X1 = (p− 2)X1 + X3 + X4 + X5 + X6 + 2X7 + (q− 4)X8,
λ2X2 = X4 + X5 + X6 + 2X7 + (q− 4)X8,
λ2X3 = (p− 1)X1 + X5 + X6 + 2X7 + (q− 4)X8,
λ2X4 = (p− 1)X1 + X2 + X6 + 2X7 + (q− 4)X8,
λ2X5 = (p− 1)X1 + X2 + X3,
λ2X6 = (p− 1)X1 + X2 + X3 + X4 + (q− 4)X8,
λ2X7 = (p− 1)X1 + X2 + X3 + X4 + X7 + (q− 4)X8,
λ2X8 = (p− 1)X1 + X2 + X3 + X4 + X6 + 2X7 + (q− 5)X8.

(7)

Take X2 = (X1, X2, X3, X4, X5, X6, X7, X8)
T . Then, the matrix equation of the above system of

equations is (A−λ2I)X2 = 0, where A is a matrix of order 8. Thus, λ2 is the least root of the polynomial:

f2(λ, p, q) = det(A− λI)
= (−5 + p + q) + (22− 10p− 6q + 2pq)λ
+(−12 + 20p + 6q− 7pq)λ2 + (−30 + 2p + 10q + 2pq)λ3

+(−5− 11p− 3q + 7pq)λ4 + (22− 11p− 11q + 2pq)λ5

+(17− 6p− 6q)λ6 + (6− p− q)λ7 + λ8. (8)

Now, we state some results that are used in the main theorem.
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Lemma 1. [8] Let T be a tree with non-negative or non-positive real vectors X = (X1, X2, X3, ..., Xn)T

defined on T . The entries of X are ordered as |X1| ≥ |X2| ≥ |X3| ≥ ... ≥ |Xn|, where |V(T )| = n. Then:

∑
uv∈E(T )

XuXv ≤ ∑
uv∈E(K1,p)

XuXv,

where X is defined on the star K1,p such that its central vertex of degree p = n− 1 has value X1, and
equality holds if and only if T = K1,n−1.

Lemma 2. [9] Let U be a unicyclic graph with non-negative or non-positive real vectors
X = (X1, X2, X3, ..., Xn)T defined on U . The entries of X are ordered as |X1| ≥ |X2| ≥ |X3| ≥ ... ≥ |Xn|,
where |V(U )| = n. Then:

∑
uv∈E(U )

XuXv ≤ ∑
uv∈S1

1,q

XuXv,

where X is defined on the unicyclic graph S1
1,q such that the vertex of degree q = n− 1 has value X1

and two vertices of degree two have values X2 and X3. The equality holds only if U = S1
1,q.

3. Main Results

In this section, we present the main results related to the minimizing graph of the connected
graphs whose complements are bicyclic.

Lemma 3. If n ≥ 8, then λmin(B(n− 6, 4)c) < λmin(B(n− 5)c).

Proof. Consider λ1 = λmin(B(n− 5)c) and λ2 = λmin(B(n− 6, 4)c) are the least roots of f1(λ, n− 5)
and f2(λ, n− 6, 4), respectively. Define

g(λ, n− 5) = (λ + 1)2 f1(λ, n− 5).

Since λ1 < −1, λ1 is the least root of g(λ, n − 5). By (6) f1(−3.5, n − 5) = 113981 − 9666n,
g(−3.5, n − 5) ≤ 0 for n ≥ 8. Moreover, if λ → −∞. Then, g(λ, n − 5) → +∞, which implies
λ1 ≤ −3.5. Now, for λ ≤ −3.5 and n ≥ 8,

g(λ, n− 5)− f2(λ, n− 6, 4) = −(n− 7)λ(2− 3λ + 7λ3 + 2λ4 = −(n− 7)λ(λ + 1)(λ + 3.3385)(0.5986− 1.677λ + 2λ2) > 0.

Consequently, f2(λ, n − 6, 4) < g(λ, n − 4) for λ ≤ −3.5 and n ≥ 8. In particular, λ2 < λ1,
which implies λmin(B(n− 6, 4)c) < λmin(B(n− 5)c) for n ≥ 8.

Lemma 4. Let p and q be positive integers such that p ≥ q ≥ 5 and p + q + 2 = n. Then,

λmin(B(d
n− 2

2
e, bn− 2

2
c)c) ≤ λmin(B(p, q)c)

with equality if and only if p = d n−2
2 e and q = b n−2

2 c, where,
(a) n ≥ 30 if n ≡ 0 (mod 2); and (b) n ≥ 25 if n ≡ 1 (mod 2).

Proof. From Equation (8), we have:

f2(−3, p, q) = 712− 248p + 46q− 42pq. (9)

(a) If n ≡ 0(mod 2), then p = n−2
2 and q = n−2

2 . Thus, (9) becomes f2(−3, n−2
2 , n−2

2 ) =

−(n − 4.7427)(n + 10.3617) (b) If n ≡ 1(mod 2), then p = n−1
2 and q = n−3

2 . Thus,
(9) becomes f2(−3, n−1

2 , n−3
2 ) = − 1

2 (n − 6.0108)(n + 11.6298). From both cases (a) and (b),
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f2(−3, d n−2
2 e, b

n−2
2 c) < 0 for n ≥ 30 and n ≥ 25, respectively. This shows that λ2 < −3, where λ2 is

the least root of f2(λ, p, q). Moreover:

f2(λ, p− 1, q + 1) =
+(−5 + p + q) + (24− 8p− 8q + 2pq)λ
+(−19 + 13p + 13q− 7pq)λ2 + (−24 + 4p + 8q + 2pq)λ3

+(−4− 4p− 10q + 7pq)λ4 + (20− 9p− 13q + 2pq)λ5

+(17− 6p− 6q)λ6 + (6− p− q)λ7+λ8, and

f2(λ, p, q) − f2(λ, p− 1, q + 1)
= −2(p− q− 1)λ(λ− 1

2 )(λ + 2)(λ + 1 +
√

2)(λ + 1−
√

2).

We note that if p > q + 1 and λ < −3, then f2(λ, p, q) − f2(λ, p − 1, q + 1) > 0. In addition,
f2(−3, p− 1, q + 1) < 0. Consequently:

λmin(B(p− 1, q + 1)c) < λmin(B(p, q)c).

It follows that λmin(B(d n−2
2 e, b

n−2
2 c)c) ≤ λmin(B(p, q)c), where equality holds if and only if

p = d n−2
2 e and q = b n−2

2 c.

Lemma 5. Let B ∈ Gn be a bicyclic graph of order n and X = (X1, X2, X3, ..., Xn)T be a non-negative or
non-positive real vector defined on B such that the entries of X are ordered as |X1| ≥ |X2| ≥ |X3| ≥ ... ≥ |Xn|:

(a) If B ∈ G1,n, then ∑
uv∈E(B)

XuXv ≤ ∑
uv∈E(S2

1,n−1)

XuXv, where X is defined on S2
1,n−1 such that one

vertex of degree n− 1 has value X1 and four vertices of degree 2 have values X2, X3, X4 and X5,
respectively. The remaining values Xi for 6 ≤ i ≤ n are assigned to the n− 5 pendent vertices.
The above equality holds only if B = S2

1,n−1,
(b) ∑

uv∈E(S2
1,n−1)

XuXv ≤ ∑
uv∈E(S∗,21,n−1)

XuXv, where X is defined on S∗,21,n−1 such that one vertex of degree

n − 1, one vertex of degree 3 and two vertices of degree 2 have values X1, X2, X3 and X4,
respectively. Furthermore, the remaining values are assigned to the n− 4 pendent vertices,

(c) If B ∈ G2,n, then ∑
uv∈E(B)

XuXv ≤ ∑
uv∈E(S∗,21,n−1)

XuXv, where equality holds only if B = S∗,21,n−1.

Proof. (a) Without loss of generality, assume that X is non-negative. Otherwise, we consider −X. Let v
be a vertex of the bicyclic graph B with value X1 assigned by the first eigenvector X. Suppose that
there exists a vertex u that is not adjacent with v. Since B is a connected graph, there exists a neighbor
of u, say w, which is on the path of B containing v and u. If we delete uw and add a new edge vu in B,
then we have a new bicyclic graph B̃ with exactly two cycles such that:

∑
uv∈E(B)

XuXv ≤ ∑
uv∈E(B̃)

XuXv.

Repeating this process on the bicyclic graph B̃ for the non-neighbor of v. Thus, we obtain a bicyclic
graph which is infact a star K1,n−1 with center v and two edges u

′
v
′

and u
′′
v
′′

that are non incident to
the vertex v. Thus, we have:

∑
uv∈E(B)

XuXv ≤ ∑
uv∈E(B̃)

XuXv ≤
n

∑
i=2

X1Xi + Xu′Xv′ + Xu′′Xv′′ .
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Since X2X3 + X4X5 ≥ Xu′Xv′ + Xu′′Xv′′ and
n
∑

i=2
X1Xi + X2X3 + X4X5 = S2

1,n−1, we obtain:

∑
uv∈E(B)

XuXv ≤ ∑
uv∈E(S2

1,n−1)

XuXv.

The equality holds if v is adjacent to all other vertices and there are two non incident edges to the
vertex v in B, which implies that B = S2

1,n−1.

(b) Since X3X4 ≥ X4X5:

∑
uv∈E(S2

1,n−1)

XuXv =
n

∑
i=2

X1Xi + X2X3 + X4X5

≤
n
∑

i=2
X1Xi + X2X3 + X3X4

= ∑
uv∈E(S∗,21,n−1)

XuXv.

Consequently, ∑
uv∈E(S2

1,n−1)

XuXv ≤ ∑
uv∈E(S∗,21,n−1)

XuXv.

(c) Proof is similar to (a).

Lemma 6. Let Bc ∈ Gc
n be a connected graph order n ≥ 10 such that its complement is a bicyclic graph and X

be a first eigenvector of Bc. Then, X has at least two positive and two negative entries.

Proof. Suppose, on the contrary, that only one vertex v of Bc has positive value assigned by X. Since Bc

is connected, B 6= S2
1,n−1 and B 6= S∗,21,n−1. Thus, there exists a vertex u as a neighbor of the vertex v in

B such that NB(u)\{v} 6= Φ, where NB(u) is set of neighbors of u in B. By (2) the eigen-equation of
the vertex u for Bc is:

0 ≤ λmin(Bc)Xu = ∑
w∈NBc (u)

Xw ≤ 0 (10)

This shows that Xu = 0 and Xw = 0 for each w ∈ NBc(u), where NBc(u) is set of neighbors of u
in Bc. Thus, all of the vertices of NB(u) have non zero entries assigned by X. Now, we discuss the
following three cases:

(a) When both of the vertices v and u are non-cycles. Then, we have three observations:
(i) NB(u)\{v} ∩ NB(v)\{u} = Φ; otherwise, B is not bicyclic; (ii) each pair of
vertices of the set NB(u)\{v} is non adjacent; otherwise, B is not bicyclic; and (iii) at
most one neighbor of u may be on any cycle; otherwise, u will be also on a cycle.
Define NB(u)\{v} = {s : s as adjacent to u in B} such that Xs 6= 0 for each s ∈ NB(u)\{v}.
Thus, the eigen-equation of the vertex v for the graph Bc, λmin(Bc)Xv = ∑

t∈NBc (v)
Xt becomes

λmin(Bc)Xv = ∑
s∈B(u)\{v}

Xs. By adding Xv to both sides, we have:

(1 + λmin(Bc))Xv = Xv + ∑
s∈B(u)\{v}

Xs (11)

Suppose that s0 ∈ NB(u)\{v} such that s0 is non adjacent to s for each s ∈ NB(u)\{v},
where s 6= s0 as observed in (ii). Thus, the eigen-equation of the vertex s0 for the graph Bc

is λmin(Bc)Xs0 = ∑
s∈B(u)\{s0}

Xs, which implies:
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(1 + λmin(Bc))Xs0 = Xs0 + ∑
s∈B(u)\{s0}

Xs (12)

From (11) and (12), (1 + λmin(Bc))(Xs0 − Xv) = 0. Since n ≥ 10, B 6= S2
1,n−1, B 6= S∗,21,n−1 and

λmin(Bc) < −1. Consequently, Xs0 = Xv are two positive entries of X, which is a contradiction to
our supposition.

(b) When both the vertices are on the cycle(s). Here, we have two possibilities: (i) the vertex u
is a common vertex of the cycles with degree of at least 4. Then, by (10), Xu = 0, which is
a contradiction, as B is neither S2

1,n−1 nor S∗,21,n−1; (ii) the vertex u is not a common vertex of the
cycles with degree of at least 4. If u and v are on a cycle of length 3, then there is a neighbor
of u that is also a neighbor of v in B, say z. If NB(u)\{v} = {z}, then by the eigen-equation of
v for Bc, Xv = 0, which is a contradiction. If NB(u)\{v, z} 6= Φ, then we follow (a) and have
all the vertices of NB(u)\{v, z} with the same value as v, which is again a contradiction. If u
and v are on a cycle(s) of a length of at least 4, then NB(u)\{v} ∩ NB(v)\{u} = Φ, and we have
a contradiction using the procedure of (a).

(c) When one vertex is on a cycle(s) and the other is a non-cycle, then NB(u)\{v} ∩ NB(v)\{u} = Φ;
otherwise, B is not a bicycle. If v is on a cycle and u is non-cycle, then by repeating (a), we have
a contradiction. If u is on a cycle and v is non-cycle, then we have two possibilities: (i) if u is
a common vertex of the cycles with a degree of at least 4; then, by (b) (i), we have a contradiction;
(ii) if u is not a common vertex of the cycles with degree at least 4. Suppose that u is on a cycle
of length 3, then u has neighbors u1 and u2 such that u1 is adjacent to u2 and one is a common
vertex of the cycles, say u1. By the eigen-equations for these two neighbors of u in Bc, we have
Xu1 = Xu2 , which is contradiction. If u is on a cycle of a length of at least 4, then, by (a), we have
a contradiction. If u is a common vertex of two cycles, then the vertex which is non adjacent to all
other neighbors of u has equal value to the value of v by (a), which is again a contradiction.

Therefore, X contains at least two positive entries. If we consider −X, then we have at least two
negative entries. Consequently, X has at least two positive and two negative entries.

Theorem 3. Let G1,n and G2,n be the classes of the bicyclic graphs of order n in which each bicyclic graph has
exactly two and three cycles, respectively. Let Bc ∈ Gc

n be a connected graph of order n such that its complement
is a bicyclic graph i.e B ∈ G1,n ∪ G2,n. Then:

λmin(B(p, q)c) ≤ λmin(Bc)

where p ≥ q ≥ 6, p + q + 2 = n ≥ 30 and equality holds if and only if B = B(p, q).

Proof. Define V+ = {v : Xv ≥ 0, v ∈ V(Bc)} and V− = {v : Xv < 0, v ∈ V(Bc)}. By Lemma 6,
both contain at least two elements. Suppose that B+ and B− are subgraphs of B induced by V+ and V−,
respectively. Moreover, assume that E ′ is a set of edges between V+ and V− in B. As B is connected, E ′

is non empty. Thus, we have:

∑
uv∈E(B)

XuXv = ∑
uv∈B+

XuXv + ∑
uv∈B−

XuXv + ∑
uv∈E ′

XuXv (13)

Now, for the edges of the cycles of B, we have two cases: (i) all the edges of the cycles of B are
only in B+ or B−; and (ii) both the subgraphs B+ and B− contain the edges of the cycles of B.

(i) Without loss of generality, we suppose that B+ does not include any edge of the cycles of B;
otherwise, we take −X as a first eigenvector. Let B̄ be a graph obtained from B such that the subgraph
B̄+ and B̄− of B̄ induced by B+ and B− are tree and bicyclic, respectively (bicyclic with two cycles if
B ∈ G1,n or bicyclic with three cycles if B ∈ G2,n). By the deletion and addition of some edges in the
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tree B̄+, we have a star K1,p with center u
′
, where p + 1 = |V+| ≥ 7 and u

′
has a maximum modulus

value among all the values of B̄+ given by X. Thus, by Lemma 1, we have:

∑
uv∈B+

XuXv ≤ ∑
uv∈B̄+

XuXv ≤ ∑
uv∈K1,p

XuXv

Similarly, by the deletion and addition of some edges in the bicyclic subgraph B̄−, we have S2
1,q

if B ∈ G1,n (or S∗,21,q if B ∈ G2,n) with v
′

adjacent to all other vertices in S2
1,q (or S∗,21,q ). Moreover, v

′
has

maximum modulus value among all the values of B̄− and q + 1 = |V−| ≥ 7.
If B ∈ G1,n, then by Lemma 5((a) and (b)), we have:

∑
uv∈B−

XuXv ≤ ∑
uv∈B̄−

XuXv ≤ ∑
uv∈S2

1,q

XuXv ≤ ∑
uv∈S∗,21,q

XuXv

If B ∈ G2,n, then by Lemma 5(c), we have:

∑
uv∈B−

XuXv ≤ ∑
uv∈B̄−

XuXv ≤ ∑
uv∈S∗,21,q

XuXv

In this case, we conclude that:

∑
uv∈B+

XuXv + ∑
uv∈B−

XuXv ≤ ∑
uv∈K1,p

XuXv + ∑
uv∈S∗,21,q

XuXv

(ii) Let B̄ be a graph obtained from B such that both the subgraphs B̄+ and B̄− induced by the
subgraphs B+ and B− of B are unicyclic. By the deletion and addition of some edges in B̄+, we have
S1

1,p with u
′

adjacent to all other vertices in S1
1,p. Moreover, u

′
has a maximum modulus value among

all the values of B̄+ given by X and p + 1 = |V+| ≥ 7. Thus, by Lemma 1, we have:

∑
uv∈B+

XuXv ≤ ∑
uv∈B̄+

XuXv ≤ ∑
uv∈S1

1,p

XuXv

Similarly, by the deletion and addition of some edges in B̄−, we have S1
1,q with v

′
adjacent to all

other vertices in S1
1,q. Moreover, v

′
has a maximum modulus value among all the values of B̄− given

by X and q + 1 = |V−| ≥ 7. Again, by Lemma 1, we have:

∑
uv∈B−

XuXv ≤ ∑
uv∈B̄−

XuXv ≤ ∑
uv∈S1

1,q

XuXv

From the above two inequalities, we have:

∑
uv∈B+

XuXv + ∑
uv∈B−

XuXv ≤ ∑
uv∈S1

1,p

XuXv + ∑
uv∈S1

1,q

XuXv

Without loss of generality, assume that the modulus values of the vertices of B̄− are greater than
the modulus values of the vertices of B̄+ assigned by X. Suppose that w and w

′
are vertices in B̄+ such

that the edge ww
′

is non incident with u
′
. Delete the edge ww

′
and the edge the edge rr

′
, where r and

r
′

are vertices in B̄− such that the edge rr
′

is non incident with v
′
, and use Lemma 5(b). Then:

∑
uv∈S1

1,p

XuXv + ∑
uv∈S1

1,q

XuXv = ∑
uv∈K1,p

XuXv + XwXw′ + ∑
uv∈S1

1,q

XuXv
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≤ ∑
uv∈K1,p

XuXv + ∑
uv∈S1

1,q

XuXv + XrXr

= ∑
uv∈K1,p

XuXv + ∑
uv∈S2

1,q

XuXv

≤ ∑
uv∈K1,p

XuXv + ∑
uv∈S∗,21,q

XuXv

Consequently, from both the cases:

∑
uv∈B+

XuXv + ∑
uv∈B−

XuXv ≤ ∑
uv∈K1,p

XuXv + ∑
uv∈S∗,21,q

XuXv (14)

Let u
′′

and v
′′

be the vertices of B− and B+ with minimum modulus among all the vertices of B−
and B+, respectively. Then:

∑
uv∈E ′

XuXv ≤ Xu′′Xv′′ (15)

Using (14) and (15) in (13), we have:

∑
uv∈B

XuXv ≤ ∑
uv∈K1,p

XuXv + ∑
uv∈S∗,21,q

XuXv + Xu′′Xv′′ (16)

Since p ≥ q ≥ 6, the vertices u
′′

and v
′′

can be taken from the pendent vertices of K1,p and S∗,21,q ,
respectively. Thus, (16) becomes:

∑
uv∈B

XuXv ≤ ∑
uv∈B(p,q)

XuXv

Now, consider the following inequality:

λmin(Bc) = XTA(Bc)X = XT(J− I−A(B))X

= XT(J− I)X− XTA(B)X

≥ XT(J− I)X− XTA(B(p, q))X

= XTA(B(p, q)c)X ≥ λmin(B(p, q)c)

Consequently:
λmin(B(p, q)c) ≤ λmin(Bc)

where p ≥ q ≥ 6, p + q + 2 = n ≥ 30 and equality holds if and only if B = B(p, q).
Now to complete the proof, we prove that the set E ′ consists of exactly one edge and the set V+

does not contain any vertex with zero value given by X. Before this, we prove that X3 < X1 < X2 and
X5 < X6 < X7 < X8 < X4.

Suppose B(p, q) has labeled vertices as in Definition 2. Therefore, v2 = u
′
, v5 = v

′
, v3 = u

′′
and

v4 = v
′′
. The vertices v2 and v3 are unique in B+ with maximum and minimum moduli, and v4 and

v5 are unique in B− with maximum and minimum moduli, respectively. By Lemma 6, as X is the
first eigenvector of the minimizing graph B(p, q), X1, X2, X3 are non negative and X4, X5, X6, X7, X8

are negative values of X. Now, by (7), λ2(X2 − X1) = −(p − 2)X1 − X3 < 0 and λ2(X1 − X3) =

−X1 + X3 + X4 < 0, which implies X2−X1 > 0 and X1−X3 > 0. Therefore, X3 < X1 < X2. Similarly,
λ2(X4 − X8) = X8 − X3 − X4 < 0, λ2(X8 − X7) = −X8 + X6 + X7 < 0, λ2(X7 − X6) = X7 < 0 and
λ2(X6 − X5) = X4 + (q− 4)x8 < 0. Thus, X5 < X6 < X7 < X8 < X4.
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By (13)–(16) and the above discussion, we have B+ = B̄+ = K1,p and B− = B̄− = S∗,21,q .

Consequently, E ′ contains exactly one edge u
′′
v
′′
= v3v4. Now, if the value of v2 is zero, i.e., X2 = 0,

then X1 = X3 = 0 because 0 < X3 < X1 < X2. By (7) x5 = 0, which is a contradiction. If value of
v1 is zero i.e., X1 = 0, then X3 = 0 as 0 < X3 < X1. Solving the first two equations of (7), X2 = 0.
This shows X5 = 0, which is again a contradiction. If the value of v3 is zero, i.e., X3 = 0, then delete the
edges v3v4 and v4v5, and join v4 with v2 and one of the pendent vertexes of S∗,21,q . Thus, we get a graph
B(p + 1, q− 1) with the same X such that λmin(B(p + 1, q− 1)c) ≤ λmin(Bc), which is a contradiction
if p ≥ q by Lemma 4. Consequently, V+ does not contain any vertex with zero value given by X,
which completes the proof.

Now, we give the proof of the main theorem (Theorem 2) of this paper, which is stated in Section 1
(Introduction).

Proof of Theorem 2. This proof follows Lemma 4 and Theorem 3.

4. Conclusions

Petrović et al. [13] proved: if G ∈ Gn is any bicyclic graph of order n, then λmin(G∗4 ) ≤ λmin(G)

and equality holds if and only if G = G∗4 , where G∗4 ∼= S∗,21,n−1. It shows that S∗,21,n−1 is a unique
minimizing graph in Gn, where Gn is a class of bicyclic graphs of order n. However, in this paper, we
proved that B(d n−2

2 e, b
n−2

2 c)c is a unique minimizing graph in Gc
n, where Gc

n is a class of the connected
graphs of order n whose complements are bicyclic.
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