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1. Introduction

The notion of fractional derivatives, as is long familiar, has its commencement in an inquiry
postured amid a correspondence in the middle of Leibnitz and L’hospital. The five millennium
extremely ancient inquiry has turned into a significant zone of exploration. As of late, it has been
demonstrated that the differential designs including derivatives of fractional order emerge in numerous
technological innovations and scientific disciplines as the statistical modeling of frameworks and
procedures in numerous fields—case in point: physical science, chemical industry, aerodynamics,
electrodynamics of complex medium, etc. For information, such as some uses and latest outcomes,
think about the treatise of Abbas et al. [1], Baleanu et al. [2], Podlubny [3], Diethelm [4], Kilbas et al. [5],
and Tarasov [6], and the papers [7–21], and the references cited therein.

Fractional differential inclusions (FDI) are speculation of fractional differential equations (FDE).
Along these lines, all models viewed regarding FDE that may be existence of solutions, continuous
dependence and parameters are also available in the concept of FDI—considering the fact that FDI
occur in the mathematical modelling of specific models in financial aspects, optimal control, etc. and
are usually investigated by numerous writers (see, for instance, [22–24] and the references therein).
Fractional equation with delay properties arise in several fields such as biological and physical with
state-dependent delay (SDD) or non-constant delay. Nowadays, existence results of mild solutions
for such problems became very attractive and several researchers are working on it. Recently, several
papers have been written on the fractional order problems with SDD [23,25–36] and the sources therein.

On the flip side, the concept of impulsive differential framework has been a target consideration
due to the fact of its extensive uses in physics, biology, engineering, medicinal fields, industry
and technology. The purpose behind this pertinence emerges from the way that impulsive
differential frameworks are a proper model for portraying procedures that, at specific moments,
change their state quickly and which cannot depict utilization of the traditional differential models.
For additional purposes of enthusiasm on this concept and on its uses (see, for example, the
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treatise by Lakshmikantham et al. [37], Ivanka M. Stamova [38], Graef et al. [39], Bainov et al. [40],
Benchohra et al. [41], the papers [22,42–50], and the references cited therein).

The existence, controllability, and other qualitative and quantitative attributes of differential and
FDEs are the most advancing area of interest (for instance, see [20,26,31–33,35,51–54]). In particular,
in [20,53,54], the authors investigate the different types of impulsive fractional differential systems
in Banach spaces under different fixed point theorems with weak conditions. In particular, in [20],
the authors define more suitable PC-mild solutions for the impulsive FDI with non-local conditions.
As of late, Carvalho dos Santos et al. [32] have analyzed the existence of solutions for FIDE with SDD
in Banach spaces. Kavitha et al. [35] acknowledged the existence of mild solutions for FIDE with SDD
by using an appropriate fixed point theorem. In [31,33], the authors offer adequate circumstances for
the existence of solutions of FDE with SDD. Lately, Benchohra et al. [26] researched the existence of
mild solutions on a compact interval for FIDE with SDD in Banach spaces. However, existence results
for IFIDI with SDD in Bh phase space adages have not yet been completely examined.

To think seriously about fractional frameworks in the infinite dimensional space, the essential
imperative move is to focus on a latest technique of the mild solution. As of late, in Wang et al. [20],
a proper thought of mild solutions was exhibited. Furthermore, they profoundly examined the current
PC-mild solution characterized by a few scientists.

Motivated by the effort of the aforementioned papers [20,22,26,30], the primary inspiration driving
this manuscript is to research the existence of mild solutions for an IFIDI with SDD of the model:

CDα
t x(t)−A x(t) ∈ F

(
t, x$(t,xt)

)
+
∫ t

0
e (t, s, xs) ds, a.e. on J − {t1, t2, · · · , tm}, (1)

∆x(tk) = Ik(x(t−k )), k = 1, 2, · · · , m, (2)

x(t) = ς(t), ς(t) ∈ Bh, (3)

where J = [0, b] with b > 0 is settled, CDα
t is the Caputo fractional derivative of the order α ∈ (0, 1)

with the lower limit zero, A is a fractional sectorial operator similar to [55] described on a Banach
space X, having its norm recognized as ‖ · ‖X, F : J ×Bh → P(X) is a multivalued map, where
(P(X) is the family of all non-empty subsets of X), e : D ×Bh → X, $ : J ×Bh → (−∞, b]
are apposite functions, and Bh is a theoretical phase space adages outlined in Preliminaries. Here,
D = {(t, s) ∈ J ×J : 0 ≤ s ≤ t ≤ b}. Here, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = b, Ik :
X→ X(k = 1, 2, · · · , m) are impulsive functions which portray the jump of the solutions at impulse
points tk, and x(t+k ) = lim

h→0
x(tk + h), x(t−k ) = lim

h→0
x(tk − h) are the right and left limits of x at the

points tk separately.
For almost any continuous function x characterized on (−∞, b] and any t ≥ 0, we designate by xt

the part of Bh characterized by xt(θ) = x(t + θ) for θ ≤ 0. Now, xt(·) speaks to the historical backdrop
of the state from every θ ∈ (−∞, 0], likely the current time t.

This manuscript is composed as the following. In Section 2, we show a few preliminaries and
lemmas that are to be utilized subsequently to demonstrate our primary outcomes. In Section 3,
the existence of mild solutions for the model (1)–(3) is discussed under a suitable fixed point theorem.
Section 4 is saved for a case to delineate the conceptual results.

To the best of our insight, there is no work giving an account of the existence results for an
IFIDI with SDD, which is communicated in the structure (1)–(3). To fill this gap, in this manuscript,
we contemplate this fascinating model.

2. Preliminaries

In this part, we display a few documentations, definitions and preparatory facts from
functional analysis, solution operator and fractional calculus theory that will be utilized throughout
this manuscript.
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Let L(X) symbolize the Banach space of all bounded linear operators from X into X, having its
norm recognized as ‖ · ‖L(X).

Let C(J ,X) symbolize the space of all continuous functions from J into X, having its norm
recognized as ‖ · ‖C(J ,X).

Let L1(J ,X) be the space of X-valued Bochner integrable functions on J with the norm:

‖y‖L1 =
∫ b

0
‖y(t)‖dt.

It needs to be outlined that, once the delay is infinite, we need to talk about the theoretical phase
space Bh in a beneficial way. In this manuscript, we deliberate phase spaces Bh, B′h that are the same
as described in [30]. Therefore, we bypass the details.

If x : (−∞, b] → X, b > 0 is continuous on J and x0 ∈ Bh, then, for every t ∈ J , the
accompanying conditions hold:

(P1) xt is in Bh;
(P2) ‖x(t)‖X ≤ H‖xt‖Bh

;
(P3) ‖xt‖Bh

≤ D1(t) sup{‖x(s)‖ : 0 ≤ s ≤ t}+D2(t)‖x0‖Bh
, where H > 0 is a constant and D1(·) :

[0,+∞)→ [0,+∞) is continuous, D2(·) : [0,+∞)→ [0,+∞) is locally bounded, and D1, D2 are
independent of x(·).

(P4) The function t→ ςt is well described and continuous from the set:

R($−) = {$(s, ψ) : (s, ψ) ∈ [0, b]×Bh}

into Bh and there is a continuous and bounded function Jς : R($−) → (0, ∞) to ensure that
‖ςt‖Bh

≤ Jς(t)‖ς‖Bh
for every t ∈ R($−).

Lemma 1. Let x : (−∞, b] → X be a function in a way that x0 = ς, x|Jk
∈ C(Jk,X) ([56] Lemma 2.1),

and, if (P4) hold, then:

‖xs‖Bh
≤ (D∗2 + Jς)‖ς‖Bh

+D∗1 sup{‖x(θ)‖X : θ ∈ [0, max{0, s}]}, s ∈ R($−) ∪J ,

where Jς = sup
t∈R($−)

Jς(t), D∗1 = sup
s∈[0,b]

D1(s), D∗2 = sup
s∈[0,b]

D2(s).

Now, we show some known results from multivalued analysis that we will apply in the spin-off.
Denote:

Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded },
Pcp(X) = {Y ∈ P(X) : Y compact},

Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}.

Remark 1. In multi-valued analysis, the definitions of convex, upper semi-continuous, completely continuous,
closed graph and measurable are classical. Hence, we omit it. For extra points of interest on this, we suggest the
reader to [13,22].

Definition 1. The multivalued map F : J ×Bh → P(X) is said to be Carathéodory if:

(i) t 7→ F (t, u) is measurable for each u ∈ Bh;
(ii) u 7→ F (t, u) is upper semicontinuous for almost all t ∈J .

Let SF ,x be a set characterized by:

SF ,x = {v ∈ L1(J ,X) : v(t) ∈ F (t, x$(t,xt)) a.e. t ∈J }.
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Presently, we speak about the subsequent lemmas which are essential to set up our primary
outcome [57,58].

Lemma 2. Let X be a Banach space. Let F : J ×Bh → Pcp,c(X) be an L1-Carathéodory multivalued map
and let Ψ be a linear continuous mapping from L1(J ,X) to C(J ,X). Then, the operator:

Ψ ◦ SF : C(J ,X)→ Pcp,c(C(J ,X)),
x 7→ (Ψ ◦ SF )(x) := Ψ(SF ,x),

is a closed graph operator in C(J ,X)× C(J ,X).

Lemma 3 (Bohnenblust–Karlin’s fixed point theorem). Let X be a Banach space and D ∈ Pcl,c(X). Suppose
that the operator G : D → Pcl,c(D) is upper semicontinuous and the set G(D) is relatively compact in X. Then,
G has a fixed point in D.

For surplus points of benefit on multivalued maps, think about the monographs of Graef et al. [39]
and Górniewicz et al. [59].

Currently, we offer some fundamental definitions and results of the fractional calculus [3,5]
concept that are used further as an aspect of this manuscript.

Definition 2. The fractional integral of order γ with the lower limit zero for a function f is determined as:

Iγ
t f (t) =

1
Γ(γ)

∫ t

0

f (s)
(t− s)1−γ

ds, t > 0, γ > 0,

the right part offered is point-wise described on [0,+∞), where Γ(·) is the gamma function.

Definition 3. The Riemann–Liouville derivative of order γ with the lower limit zero for a function f ∈
L1(J ,X) is characterized as:

Dγ
t f (t) =

1
Γ(n− γ)

dn

dtn

∫ t

0

f (s)
(t− s)1−n+γ

ds, t > 0, n− 1 < γ < n.

Definition 4. The Caputo derivative of order γ for a function f ∈ L1(J ,X) could be consisting as:

CDγ
t f (t) = Dγ

t ( f (t)− f (0)), t > 0, 0 < γ < 1.

Remark 2.

(i) Generally, the definition of solution operator and its outcomes are too standard. Hence, we will not discuss
it. For extra points of interest on this, we suggest the reader to [18,20,55].

(ii) To be able to determine a mild solution of the model (1)–(3), we require providing the mild solution of the
subsequent Cauchy problem: {

CDα
t x(t) = A x(t) + f (t), t ∈J ,

x(0) = x0 ∈ X.

The mild solution [18,55] of the above Cauchy problem can be described by:

x(t) = Sα(t)x0 +
∫ t

0
Tα(t− s) f (s)ds,

where:
Sα(t) =

1
2πi

∫
Γ

eλtλα−1R(λα, A)dλ, Tα(t) =
1

2πi

∫
Γ

eλtR(λα, A)dλ
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for a suitable path Γ and f : J → X is continuous.

Lemma 4. If A ∈ Aα(θ0, ω0), then:

‖Sα(t)‖L(X) ≤ Meωt and ‖Tα(t)‖L(X) ≤ Ceωt(1 + tα−1)

for every t > 0, ω > ω0. Thus, using:

M̃S = sup
0≤t≤b

‖Sα(t)‖L(X), M̃T = sup
0≤t≤b

Ceωt(1 + t1−α),

we get:

‖Sα(t)‖L(X) ≤ M̃S, ‖Tα(t)‖L(X) ≤ tα−1M̃T .

In accordance with the above discussion, we determine the mild solution of the model (1)–(3).

Definition 5. A function x : (−∞, b]→ X is known as a mild solution of the model (1)–(3) if the accompanying
retains: x0 = ς ∈ Bh on (−∞, 0]; ∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m, the constraint of x(·) to the interval
Jk, k = 0, 1, 2, . . . , m, is continuous and there exists v(·) ∈ L1(Jk,X), such that v(t) ∈ F (t, x$(t,xt)) a.e.
t ∈J , and x fulfills the subsequent integral equation:

x(t) =



ς(t), t ∈ (−∞, 0],

Sα(t)ς(0) +
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, xτ

)
dτds, t ∈ [0, t1],

Sα(t)ς(0) + Sα(t− t1)I1(x(t−1 ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, xτ

)
dτds, t ∈ (t1, t2],

...

Sα(t)ς(0) +
m

∑
k=1

Sα(t− tk)Ik(x(t−k ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, xτ

)
dτds, t ∈ (tm, b].

(4)

Now, we list the subsequent hypotheses:

Hypothesis 1. The semigroup Tα(t) is compact for t > 0.

Hypothesis 2. The multivalued map F : J ×Bh → X is Carathéodory, with compact convex values.

Hypothesis 3. There exists a function p ∈ L1(J ,R+) and a continuous non-decreasing function Ω1 : R+ →
(0, ∞) such that:

‖F (t, u)‖X ≤ p(t)Ω1(‖u‖Bh
), (t, u) ∈J ×Bh.

Hypothesis 4. For every (t, s) ∈ D , the function e(t, s, ·) : Bh → X is continuous and for every u ∈ Bh, the
function e(·, ·, u) : D → X is strongly measurable. We can find an integrable function m1 : J → [0, ∞) and a
constant a > 0 to ensure that:

‖
∫ t

0
e(t, s, u)ds‖X ≤ am1(t)Ω2(‖u‖Bh

),

where Ω2 : [0, ∞)→ (0, ∞) is a continuous non-decreasing function.
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Hypothesis 5. Ik ∈ C(X,X) and we can find Lk ∈ C[J ,R+] such that:

‖Ik(x)‖X ≤ Lk(t)‖x‖X, x ∈ X, t ∈J .

3. Existence Results

In this part, we show and demonstrate the existence results for the model (1)–(3).

Theorem 1. Assume that the hypotheses (1)–(5) hold. Then, model (1)–(3) has a mild solution on (−∞, b].

Proof. We will transmute the structure (1)–(3) into a fixed point problem. Recognize the multivalued
operator Υ : Bh → P(Bh) specified by Υ(h) = {h ∈ Bh} with:

h(t) =



ς(t), t ∈ (−∞, 0],

Sα(t)ς(0) +
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, xτ

)
dτds, t ∈ [0, t1],

Sα(t)ς(0) + Sα(t− t1)I1(x(t−1 ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, xτ

)
dτds, t ∈ (t1, t2],

...

Sα(t)ς(0) +
m

∑
k=1

Sα(t− tk)Ik(x(t−k ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, xτ

)
dτds, v ∈ SF,x, t ∈ (tm, b].

It is evident that the fixed points of the operator Υ are mild solutions of the model (1)–(3).
We express the function y(·) : (−∞, b]→ X as:

y(t) =

{
ς(t), t ∈ (−∞, 0],

Sα(t)ς(0), t ∈J ;

then, y0 = ς. For every function z ∈ C(J ,R) with z(0) = 0, we allocate that z is characterized by:

z(t) =

{
0, t ∈ (−∞, 0],

z(t), t ∈J .

If x(·) fulfilled Equation (4), we are able to decompose it as x(·) as x(t) = y(t) + z(t) for t ∈J ,
which suggests that xt = yt + zt for t ∈J , and the function z(·) meets:

z(t) =



∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ [0, t1],

Sα(t− t1)I1(y(t−1 ) + z(t−1 ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ (t1, t2],

z(t) =



...
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ (tm, b],

where v(s) ∈ SF,y+z.
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Let B′′h = {z ∈ B′h: z0 = 0}. Let ‖ · ‖B′′h be the seminorm in B′′h described by:

‖z‖B′′h = sup
t∈J
‖z(t)‖X + ‖z0‖Bh

= sup
t∈J
‖z(t)‖X, z ∈ B′′h .

As a result, (B′′h , ‖ · ‖B′′h ) is a Banach space. We delimit the operator Υ : B′′h → B′′h by Υ(z) = {h ∈ B′′h }
with:

h(t) =



∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ [0, t1],

Sα(t− t1)I1(y(t−1 ) + z(t−1 ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ (t1, t2],

...
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k ))

+
∫ t

0
Tα(t− s)v(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ (tm, b],

where v(s) ∈ SF ,y+z. It is vindicated that the operator Υ has a fixed point if and only if Υ has a fixed
point. Thus, let us demonstrate that Υ has a fixed point.

Remark 3. From Lemma 1 and above assumptions, we have the following estimates:

(i)

‖z$(s,zs+ys) + y$(s,zs+ys)‖Bh

≤ ‖z$(s,zs+ys)‖Bh
+ ‖y$(s,zs+ys)‖Bh

≤ D∗1 sup
0≤τ≤s

‖z(τ)‖X + (D∗2 + Jς)‖z0‖Bh
+D∗1 |y(s)|+ (D∗2 + Jς)‖y0‖Bh

≤ D∗1 sup
0≤τ≤s

‖z(τ)‖X +D∗1 ‖Sα(t)‖L(X)|ς(0)|+ (D∗2 + Jς)‖ς‖Bh

≤ D∗1 sup
0≤τ≤s

‖z(τ)‖X +D∗1 M̃SH‖ς‖Bh
+ (D∗2 + Jς)‖ς‖Bh

≤ D∗1 sup
0≤τ≤s

‖z(τ)‖X + (D∗1 M̃SH +D∗2 + Jς)‖ς‖Bh
.

If ‖z‖X < r, r > 0, then:

‖z$(s,zs+ys) + y$(s,zs+ys)‖Bh
≤ D∗1 r + cn,

where cn = (D∗1 M̃SH +D∗2 + Jς)‖ς‖Bh
.

(ii)

‖
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k ))‖X ≤ mM̃S‖Ik(y(t−k ) + z(t−k ))‖X. (5)

Since:

|Ik(y(t−k ) + z(t−k ))| ≤ Lk(t)
(
|y(t−k ) + z(t−k )|

)
≤ Lk(t)

(
sup
t∈J
|y(t) + z(t)|

)
≤ L0H‖yt + zt‖Bh

,
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where L0 = max{Lk(t)|t ∈J , k = 1, 2, 3, . . . , m}.
Now:

‖yt + zt‖Bh
≤ ‖yt‖Bh

+ ‖zt‖Bh

≤ D1(t) sup
0≤τ≤t

‖y(τ)‖X +D2(t)‖y0‖Bh
+D1(t) sup

0≤τ≤t
‖z(τ)‖X +D2(t)‖z0‖Bh

≤ D1(t)
[
‖Sα(t)‖L(X)|ς(0)|

]
+D2(t)‖ς‖Bh

+D1(t) sup
0≤τ≤t

‖z(τ)‖X

≤ D∗1 r + (D∗1 M̃SH +D∗2 )‖ς‖Bh

≤ D∗1 r + c̃n,

where c̃n = (D∗1 M̃S H +D∗2 )‖ς‖Bh
. Hence, Equation (5) becomes:

‖
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k ))‖X ≤ mM̃SL0H
[
D∗1 r + c̃n

]
.

Let:
Br = {z ∈ B′′h : z(0) = 0; ‖z‖B′′h ≤ r},

where r is any fixed finite real number that fulfills the inequality:

r > mM̃SL0H
[
D∗1 r + c̃n

]
+

M̃Tbα

α
Ω1(D

∗
1 r + cn)

∫ b

0
p(s)ds

+
aM̃Tbα

α
Ω2(D

∗
1 r + c̃n)

∫ b

0
m1(s)ds.

(6)

It is obvious that Br is a closed, convex, bounded set in B′′h . Now, we shall display that Υ meets
all the presumptions of Lemma 3. Now, we split the proof into grouping of subsequent steps:

Step 1:
Υ(z) is convex for every z ∈ B′′h . In fact, if h1 and h2 belong to Υ(z), then we can find v1, v2 ∈

SF ,y+z in a way that, for t ∈J and i = 1, 2, we sustain:

hi(t) =



∫ t

0
Tα(t− s)vi(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ [0, t1],

Sα(t− t1)I1(y(t−1 ) + z(t−1 ))

+
∫ t

0
Tα(t− s)vi(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ (t1, t2],

...
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k ))

+
∫ t

0
Tα(t− s)vi(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds, t ∈ (tm, b].

Let λ ∈ [0, 1]. Then, for every t ∈ [0, t1], we get:

λh1(t) + (1− λ)h2(t) =
∫ t

0
Tα(t− s)

[
λv1(s) + (1− λ)v2(s)

]
ds +

∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds.
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In the same way, for any t ∈ (tk, tk+1], k = 1, 2, . . . , m, we receive:

λh1(t) + (1− λ)h2(t) =
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k )) +
∫ t

0
Tα(t− s)

[
λv1(s) + (1− λ)v2(s)

]
ds

+
∫ t

0
Tα(t− s)

∫ s

0
e
(
s, τ, zτ + yτ

)
dτds.

Since F has convex values, SF ,y+z is convex, and we realize that λh1(t) + (1− λ)h2(t) ∈ Υ(z).

Step 2:
Υ(Br) ⊂ Br. Let h ∈ Υ(z) and z ∈ Br, for t ∈ [0, t1]. Then, by Remark 3, we sustain:

‖h(t)‖X ≤
∫ t

0
‖Tα(t− s)‖L(X)‖v(s)‖Xds +

∫ t

0
‖Tα(t− s)‖L(X)

∫ s

0
‖e
(
s, τ, zτ + yτ

)
‖Xdτds

≤ M̃T

∫ t

0
(t− s)α−1 p(s)Ω1(‖z$(s,zs+ys) + y$(s,zs+ys)‖Bh

)ds

+ M̃Ta
∫ t

0
(t− s)α−1m1(s)Ω2(‖zs + ys‖Bh

)ds

≤ M̃Tbα

α
Ω1(D

∗
1 r + cn)

∫ b

0
p(s)ds +

aM̃Tbα

α
Ω2(D

∗
1 r + c̃n)

∫ b

0
m1(s)ds < r.

Moreover, when t ∈ (tk, tk+1], k = 1, 2, . . . , m, from Remark 3, we have the estimate:

‖h(t)‖X ≤ ‖
m

∑
k=1

Sα(t− tk)Ik(y(t−k ) + z(t−k ))‖X +
∫ t

0
‖Tα(t− s)‖L(X)‖v(s)‖Xds

+
∫ t

0
‖Tα(t− s)‖L(X)

∫ s

0
‖e
(
s, τ, zτ + yτ

)
‖Xdτds

≤ mM̃SL0H
[
D∗1 r + c̃n

]
+

M̃Tbα

α
Ω1(D

∗
1 r + cn)

∫ b

0
p(s)ds

+
aM̃Tbα

α
Ω2(D

∗
1 r + c̃n)

∫ b

0
m1(s)ds < r,

which proves that Υ(Br) ⊂ Br.

Step 3:
We will confirm that Υ(Br) is equicontinuous. Let u, v ∈ [0, t1], with u < v, we get:

‖h(v)− h(u)‖X ≤
∫ u

0
‖Tα(v− s)− Tα(u− s)‖L(X)‖v(s)‖Xds +

∫ v

u
‖Tα(v− s)‖L(X)‖v(s)‖Xds

+
∫ u

0
‖Tα(v− s)− Tα(u− s)‖L(X)

∫ s

0
‖e(s, τ, zτ + yτ)‖Xdτds

+
∫ v

u
‖Tα(v− s)‖L(X)

∫ s

0
‖e(s, τ, zτ + yτ)‖Xdτds

≤ Q1 + Q2 + Q3 + Q4,

where:

Q1 =
∫ u

0
‖Tα(v− s)− Tα(u− s)‖L(X)‖v(s)‖Xds

≤ Ω1(D
∗
1 r + cn)

∫ u

0
‖Tα(v− s)− Tα(u− s)‖L(X)p(s)ds.



Mathematics 2017, 5, 9 10 of 16

Since ‖Tα(v− s)− Tα(u− s)‖L(X) ≤ 2M̃T(t1− s)α−1 ∈ L1(J ,R+) for s ∈ [0, t1], and Tα(v− s)−
Tα(u− s)→ 0 as u→ v, Tα is strongly continuous. This infers that lim

u→v
Q1 = 0,

Q2 =
∫ v

u
‖Tα(v− s)‖L(X)‖v(s)‖Xds

≤
Ω1(D

∗
1 r + cn)M̃T(v− u)α

α

∫ v

u
p(s)ds.

As a result, we deduce that lim
u→v

Q2 = 0,

Q3 =
∫ u

0
‖Tα(v− s)− Tα(u− s)‖L(X)

∫ s

0
‖e(s, τ, zτ + yτ)‖Xdτds

≤ aΩ2(D
∗
1 r + c̃n)

∫ u

0
‖Tα(v− s)− Tα(u− s)‖L(X)m1(s)ds.

This suggests that lim
u→v

Q3 = 0,

Q4 =
∫ v

u
‖Tα(v− s)‖L(X)

∫ s

0
‖e(s, τ, zτ + yτ)‖Xdτds

≤
aΩ2(D

∗
1 r + c̃n)M̃T(v− u)α

α

∫ v

u
m1(s)ds.

Therefore, we deduce that lim
u→v

Q4 = 0.

In the same way, for u, v ∈ (tk, tk+1], with u < v, k = 1, 2, . . . , m, we sustain:

‖h(v)− h(u)‖X ≤
m

∑
k=1
‖Sα(v− tk)− Sα(u− tk)‖X‖Ik(y(t−k ) + z(t−k ))‖X + Q1 + Q2 + Q3 + Q4

≤ L0H
[
D∗1 r + c̃n

] m

∑
k=1
‖Sα(v− tk)− Sα(u− tk)‖X + Q1 + Q2 + Q3 + Q4.

Since Sα is also strongly continuous, Sα(v − tk) − Sα(u − tk) → 0 as u → v. Hence, from the
aforementioned inequalities, we receive:

lim
u→v
‖h(v)− h(u)‖X = 0.

Thus, Υ(Br) is equicontinuous.

As an impact of actions 1, 2 and 3 with Arzela–Ascoli’s theorem ([60] (Chapter 2)), we understand
that the operator Υ : B′′h → P(B

′′
h ) is completely continuous.

Step 4:
Υ has a closed graph. Expect that zn → z∗, hn ∈ Υ(zn) with hn → h∗. We claim that h∗ ∈ Υ(z∗).

In fact, the assumption hn ∈ Υ(zn) suggests that we can find vn ∈ SF ,yn+zn in a way that, for each
t ∈ [0, t1]:

hn(t) =
∫ t

0
Tα(t− s)vn(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, znτ + yτ)dτds.

We need to demonstrate that there exists v∗ ∈ SF ,z∗+y∗ such that, for each t ∈ [0, t1]:

h∗(t) =
∫ t

0
Tα(t− s)v∗(s)ds +

∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, z∗τ + yτ)dτds.
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Set:

Θn(t) = hn(t)−
∫ t

0
Tα(t− s)vn(s)ds−

∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, znτ + yτ)dτds,

Θ∗(t) = h∗(t)−
∫ t

0
Tα(t− s)v∗(s)ds−

∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, z∗τ + yτ)dτds.

We now have, for every t ∈ [0, t1]:

‖Θn(t)−Θ∗(t)‖X → 0, as n→ ∞.

Recognize the linear continuous operator Ψ : L1([0, t1],X)→ C([0, t1],X), specified by:

Ψ(v)(t) =
∫ t

0
Tα(t− s)v(s)ds.

From Lemma 2 and the definition of Ψ, it follows that Ψ ◦ SF is a closed graph operator, and for
every t ∈ [0, t1], Θn(t) ∈ Ψ(SF ,yn+zn).

Since zn → z∗ and Ψ ◦ SF is a closed graph operator, then there exists v∗ ∈ SF ,y∗+z∗ such that,
for every t ∈ [0, t1]:

h∗(t)−
∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, z∗τ + yτ)dτds =

∫ t

0
Tα(t− s)v∗(s)ds.

In the same way, for any t ∈ (tk, tk+1], k = 1, 2, . . . , m, we get:

hn(t) =
m

∑
k=1

Sα(t− tk)Ik(yn(t−k ) + zn(t−k )) +
∫ t

0
Tα(t− s)vn(s)ds

+
∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, znτ + yτ)dτds.

We need to demonstrate that there exists v∗ ∈ SF,y∗+z∗ such that, for every t ∈ (tk, tk+1]:

h∗(t) =
m

∑
k=1

Sα(t− tk)Ik(y∗(t−k ) + z∗(t−k )) +
∫ t

0
Tα(t− s)v∗(s)ds

+
∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, z∗τ + yτ)dτds.

For every t ∈ (tk, tk+1], k = 1, 2, . . . , m, we sustain:

‖Θn(t)−Θ∗(t)‖X → 0, as n→ ∞,

where:

Θn(t) = hn(t)−
m

∑
k=1

Sα(t− tk)Ik(yn(t−k ) + zn(t−k ))−
∫ t

0
Tα(t− s)vn(s)ds

−
∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, znτ + yτ)dτds,

Θ∗(t) = h∗(t)−
m

∑
k=1

Sα(t− tk)Ik(y∗(t−k ) + z∗(t−k ))−
∫ t

0
Tα(t− s)v∗(s)ds

−
∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, z∗τ + yτ)dτds.
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Now, for every t ∈ (tk, tk+1], k = 1, 2, . . . , m, we recognize the linear operator Ψ :
L1((tk, tk+1],X)→ C((tk, tk+1],X), characterized by:

Ψ(v)(t) =
∫ t

0
Tα(t− s)v(s)ds.

From Lemma 2, it follows that Ψ ◦ SF is a closed graph operator, and, for every t ∈ (tk, tk+1],
Θn(t) ∈ Ψ(SF ,yn+zn).

Since zn → z∗, and Ψ ◦ SF is a closed graph operator, then there exists v∗ ∈ SF ,y∗+z∗ such that,
for every t ∈ (tk, tk+1]:

h∗(t)−
m

∑
k=1

Sα(t− tk)Ik(y∗(t−k )+ z∗(t−k ))−
∫ t

0
Tα(t− s)

∫ s

0
e(s, τ, z∗τ + yτ)dτds =

∫ t

0
Tα(t− s)v∗(s)ds.

Hence, Υ has a closed graph. It follows that Lemma 3 that Υ has a fixed point z ∈ B′′h . Then, the
operator Υ has a fixed point that offers ascent to a mild solution to the model (1)–(3). The proof is
now completed.

4. Applications

To exemplify our theoretical results, we treat IFIDI with SDD of the model:

CDq
t u(t, x)− ∂2

∂x2 u(t, x) ∈
∫ t

−∞
µ1(t, x, s− t)u(s− $1(t)$2(‖u(t)‖), x)ds

+
∫ t

0

∫ s

−∞
k(s− τ)P(u(τ, x))dτds, x ∈ [0, π], 0 ≤ t ≤ b, t 6= tk,

(7)

u(t, 0) = 0 = u(t, π), t ≥ 0, (8)

u(t, x) = ς(t, x), t ∈ (−∞, 0], x ∈ [0, π], (9)

∆u(tk)(x) =
∫ tk

−∞
qk(tk − s)u(s, x)ds, x ∈ [0, π], k = 1, 2, . . . , m, (10)

where CDq
t is Caputo’s fractional derivative of order 0 < q < 1, 0 < t1 < t2 < · · · < tn < b are

pre-fixed numbers and ς ∈ Bh. We consider X = L2[0, π] with the norm | · |L2 and delineate the
operator A : D(A ) ⊂ X→ X by A w = w′′ with the domain:

D(A ) = {w ∈ X : w, w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0}.

Then:

A w =
∞

∑
n=1

n2〈w, wn〉wn, w ∈ D(A ),

where wn(s) =
√

2
π sin(ns), n = 1, 2, . . . , . is the orthogonal set of eigenvectors of A . It is long familiar

that A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 in X and is given by:

T(t)w =
∞

∑
n=1

e−n2t〈w, wn〉wn, for all w ∈ X, and every t > 0.

From these outflows, it follows that (T(t))t≥0 is a uniformly bounded compact semigroup,
so that R(λ, A ) = (λ−A )−1 is a compact operator for all λ ∈ ρ(A ); that is, A ∈ Aα(θ0, ω0). In
addition, the subordination principle of solution operator (Sα(t))t≥0 such that ‖Sα(t)‖L(X) ≤ M̃S for
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t ∈ [0, b]. For phase space, we choose h = e2s, s < 0, then l =
∫ 0

−∞
h(s)ds =

1
2
< ∞, for t ∈ (−∞, 0],

and determine:

‖ς‖Bh
=
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖ς(θ)‖L2 ds.

Therefore, (t, ς) ∈ [0, b]×Bh, where ς(θ)(x) = ς(θ, x), (θ, x) ∈ (−∞, 0]× [0, π]. Set:

u(t)(x) = u(t, x), $(t, ς) = $1(t)$2(‖ς(0)‖),

and we receive:

f (t, ς)(x) =
∫ 0

−∞
µ1(t, x, θ)(ς(θ)(x))dθ,

and:

(Bς)(x) =
∫ t

0
e(t, s, ς)(x)ds =

∫ t

0

∫ 0

−∞
k(s− θ)P1(ς(θ)(x))dθds.

Along these adjustments, the aforementioned model (7)–(10) can be written in the theoretical
form as model (1)–(3).

Suppose further that:

(i) the functions $i : [0, ∞)→ [0, ∞), i = 1, 2 are continuous;
(ii) the function µ1(t, x, θ) is continuous in [0, b] × [0, π] × (−∞, 0]; and µ1(t, x, θ) ≥

0;
∫ 0

−∞
µ1(t, x, θ)dθ = p1(t, x) < ∞.

(iii) the function k(t− s) is continuous in [0, b] and k(t− s) ≥ 0,
∫ t

0

∫ 0

−∞
k(s− θ)dθds = m1(t) < ∞.

(iv) the functions qk : R → R, k = 1, 2, . . . , m are continuous and di =
∫ 0

−∞
h(s)q2

i (s)ds < ∞ for

i = 1, 2, . . . , n.
(v) The function P(·) is continuous and for each (θ, x) ∈ (−∞, 0] × [0, π]; 0 ≤ P(u(θ)(x)) ≤

Φ
( ∫ 0

−∞
e2s‖u(s, ·)‖L2 ds

)
, where Φ : [0,+∞)→ (0,+∞) is a continuous non-decreasing function.

Now, consider:

‖Bς‖L2 =

[ ∫ π

0

( ∫ t

0

∫ 0

−∞
k(s− θ)P(ς(θ)(x))dθds

)2

dx

] 1
2

≤
[ ∫ π

0

( ∫ t

0

∫ 0

−∞
k(τ − θ)Φ

( ∫ 0

−∞
e2s‖ς(s)(·)‖L2 ds

)
dθdτ

)2

dx

] 1
2

≤
[ ∫ π

0

( ∫ t

0

∫ 0

−∞
k(s− θ)dθds

)2

dx

] 1
2

Φ(‖ς‖Bh
)

≤
[ ∫ π

0
(m∗1(t))

2dx

] 1
2

Φ(‖ς‖Bh
)

≤
√

π m1(t)Φ(‖ς‖Bh
).

Since Φ : [0,+∞)→ (0,+∞) is a continuous non-decreasing function, we will take m1(t) = m1(t)
with a =

√
π and Ω2(r) = Φ(r) in hypothesis (4). Observe that F meets the hypothesis (3) with

Ω1(r) = r, p(t) = p1(t), and, if the bounds in Equation (6) are fulfilled, then model (7)–(10) has a
mild solution on (−∞, b].
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5. Conclusions

In this paper, we have studied the existence results for impulsive fractional integro-differential
systems with SDD conditions in a Banach space. More precisely, by utilizing the fractional calculus,
semigroup theory and the Bohnenblust–Karlin’s fixed point theorem, we investigate the IFIDI with
SDD in a Banach space. To validate the obtained theoretical results, we analyze one example. The
FDEs are very efficient to describe the real-life phenomena; thus, it is essential to extend the present
study to establish the other qualitative and quantitative properties such as stability and controllability.

There are two direct issues that require further study. First, we will investigate the approximate
controllability of fractional neutral integro-differential systems with SDD in the cases of a noncompact
operator and a normal topological space. Second, we will study the approximate controllability of
a new class of impulsive fractional integro-differential equations with SDD and non-instantaneous
impulses, as discussed in [48].
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