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Abstract: In this paper, inspired by the concept of b-metric space, we introduce the concept of
extended b-metric space. We also establish some fixed point theorems for self-mappings defined on
such spaces. Our results extend/generalize many pre-existing results in literature.
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1. Introduction

The idea of b-metric was initiated from the works of Bourbaki [1] and Bakhtin [2]. Czerwik [3]
gave an axiom which was weaker than the triangular inequality and formally defined a b-metric
space with a view of generalizing the Banach contraction mapping theorem. Later on, Fagin et al. [4]
discussed some kind of relaxation in triangular inequality and called this new distance measure as
non-linear elastic mathing (NEM). Similar type of relaxed triangle inequality was also used for trade
measure [5] and to measure ice floes [6]. All these applications intrigued and pushed us to introduce
the concept of extended b-metric space. So that the results obtained for such rich spaces become more
viable in different directions of applications.

Definition 1. Let X be a non empty set and s ≥ 1 be a given real number. A function d : X× X → [0, ∞) is
called b-metric (Bakhtin [2], Czrerwik [3]) if it satisfies the following properties for each x, y, z ∈ X.

(b1): d(x, y) = 0⇔ x = y;
(b2): d(x, y) = d(y, x);
(b3): d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Example 1. 1. Let X := lp(R) with 0 < p < 1 where lp(R) := {{xn} ⊂ R : ∑∞
n=1 |xn|p < ∞}.

Define d : X× X → R+ as:

d(x, y) =
( ∞

∑
n=1
|xn − yn|p

)1/p

where x = {xn}, y = {yn}. Then d is a b-metric space [7–9] with coefficient s = 21/p.
2. Let X := Lp[0, 1] be the space of all real functions x(t), t ∈ [0, 1] such that

∫ 1
0 |x(t)|

p < ∞ with 0 < p < 1.
Define d : X× X → R+ as:

d(x, y) =
( ∫ 1

0
|x(t)− y(t)|pdt

)1/p
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Then d is b-metric space [7–9] with coefficient s = 21/p.

The above examples show that the class of b-metric spaces is larger than the class of metric spaces.
When s = 1, the concept of b-metric space coincides with the concept of metric space. For some details
on subject see [7–12].

Definition 2. Let (X, d) be a b-metric space. A sequence {xn} in X is said to be:

(I) Cauchy [12] if and only if d(xn, xm)→ 0 as n, m→ ∞;
(II) Convergent [12] if and only if there exist x ∈ X such that d(xn, x) → 0 as n → ∞ and we write

limn→∞ xn = x;
(III) The b-metric space (X, d) is complete [12] if every Cauchy sequence is convergent.

In the following we recollect the extension of Banach contraction principle in case of
b-metric spaces.

Theorem 1. Let (X, d) be a complete b-metric space with constant s ≥ 1, such that b-metric is a continuous
functional. Let T : X → X be a contraction having contraction constant k ∈ [0, 1) such that ks < 1. Then T
has a unique fixed point [13].

2. Results

In this section, we introduce a new type of generalized metric space, which we call as an extended
b-metric space. We also establish some fixed point theorems arising from this metric space.

Definition 3. Let X be a non empty set and θ : X × X → [1, ∞). A function dθ : X × X → [0, ∞) is called
an extended b-metric if for all x, y, z ∈ X it satisfies:

(dθ1) dθ(x, y) = 0 iff x = y;
(dθ2) dθ(x, y) = dθ(y, x);
(dθ3) dθ(x, z) ≤ θ(x, z)[dθ(x, y) + dθ(y, z)].

The pair (X, dθ) is called an extended b-metric space.

Remark 1. If θ(x, y) = s for s ≥ 1 then we obtain the definition of a b-metric space.

Example 2. Let X = {1, 2, 3}. Define θ : X× X → R+ and dθ : X× X → R+ as:

θ(x, y) = 1 + x + y

dθ(1, 1) = dθ(2, 2) = dθ(3, 3) = 0

dθ(1, 2) = dθ(2, 1) = 80, dθ(1, 3) = dθ(3, 1) = 1000, dθ(2, 3) = dθ(3, 2) = 600

Proof. (dθ1) and (dθ2) trivially hold. For (dθ3) we have:

dθ(1, 2) = 80, θ(1, 2) [dθ(1, 3) + dθ(3, 2)] = 4(1000 + 600) = 6400

dθ(1, 3) = 1000, θ(1, 3) [dθ(1, 2) + dθ(2, 3)] = 5(80 + 600) = 3400

Similar calculations hold for dθ(2, 3). Hence for all x, y, z ∈ X

dθ(x, z) ≤ θ(x, z)[dθ(x, y) + dθ(y, z)]

Hence (X, dθ) is an extended b-metric space.
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Example 3. Let X = C([a, b],R) be the space of all continuous real valued functions define on [a, b].
Note that X is complete extended b-metric space by considering dθ(x, y) = supt∈[a,b] |x(t) − y(t)|2,
with θ(x, y) = |x(t)|+ |y(t)|+ 2, where θ : X× X → [1, ∞).

The concepts of convergence, Cauchy sequence and completeness can easily be extended to the
case of an extended b-metric space.

Definition 4. Let (X, dθ) be an extended b-metric space.

(i) A sequence {xn} in X is said to converge to x ∈ X, if for every ε > 0 there exists N = N(ε) ∈ N
such that dθ(xn, x) < ε, for all n ≥ N. In this case, we write limn→∞ xn = x.

(ii) A sequence {xn} in X is said to be Cauchy, if for every ε > 0 there exists N = N(ε) ∈ N such that
dθ(xm, xn) < ε, for all m, n ≥ N.

Definition 5. An extended b-metric space (X, dθ) is complete if every Cauchy sequence in X is convergent.

Note that, in general a b-metric is not a continuous functional and thus so is an extended b-metric.

Example 4. Let X = N
⋃

∞ and let d : X× X → R be defined by [14]:

d(x, y) =


0 if m = n

| 1
m −

1
n | if m, n are even or mn = ∞

5 if m, n are odd and m 6= n

2 otherwise

Then (X, d) is a b-metric with s = 3 but it is not continuous.

Lemma 1. Let (X, dθ) be an extended b-metric space. If dθ is continuous, then every convergent sequence has
a unique limit.

Our first theorem is an analogue of Banach contraction principle in the setting of extended b-metric
space. Throughout this section, for the mapping T : X → X and x0 ∈ X, O(x0) = {x0, T2x0, T3x0, · · · }
represents the orbit of x0.

Theorem 2. Let (X, dθ) be a complete extended b-metric space such that dθ is a continuous functional.
Let T : X → X satisfy:

dθ(Tx, Ty) ≤ kdθ(x, y) for all x, y ∈ X (1)

where k ∈ [0, 1) be such that for each x0 ∈ X, limn,m→∞ θ(xn, xm) < 1
k , here xn = Tnx0, n = 1, 2, · · · .

Then T has precisely one fixed point ξ. Moreover for each y ∈ X, Tny→ ξ.

Proof. We choose any x0 ∈ X be arbitrary, define the iterative sequence {xn} by:

x0, Tx0 = x1, x2 = Tx1 = T(Tx0) = T2(x0) . . . , xn = Tnx0 . . . .

Then by successively applying inequality (1) we obtain:

dθ(xn, xn+1) ≤ kndθ(x0, x1) (2)

By triangular inequality and (2), for m > n we have:
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dθ(xn, xm) ≤ θ(xn, xm)kndθ(x0, x1) + θ(xn, xm)θ(xn+1, xm)kn+1dθ(x0, x1) + · · ·+
θ(xn, xm)θ(xn+1, xm)θ(xn+2, xm)...θ(xm−2, xm)θ(xm−1, xm)km−1dθ(x0, x1)

≤ dθ(x0, x1)
[
θ(x1, xm)θ(x2, xm) · · · θ(xn−1, xm)θ(xn, xm)kn +

θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)kn+1 + · · ·+

θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)...θ(xm−2, xm)θ(xm−1, xm)km−1
]

Since, limn,m→∞ θ(xn+1, xm)k < 1 so that the series ∑∞
n=1 kn ∏n

i=1 θ(xi, xm) converges by ratio test
for each m ∈ N. Let:

S =
∞

∑
n=1

kn
n

∏
i=1

θ(xi, xm), Sn =
n

∑
j=1

kj
j

∏
i=1

θ(xi, xm)

Thus for m > n above inequality implies:

dθ(xn, xm) ≤ dθ(x0, x1)
[
Sm−1 − Sn

]
Letting n→ ∞ we conclude that {xn} is a Cauchy sequence. Since X is complete let xn → ξ ∈ X:

dθ(Tξ, ξ) ≤ θ(Tξ, ξ)[dθ(Tξ, xn) + dθ(xn, ξ)]

≤ θ(Tξ, ξ)[kdθ(ξ, xn−1) + dθ(xn, ξ)]

dθ(Tξ, ξ) ≤ 0 as n → ∞

dθ(Tξ, ξ) = 0

Hence ξ is a fixed point of T. Moreover uniqueness can easily be invoked by using inequality (1),
since k < 1.

In the following we include another variant which is analogue to fixed point theorem by Hicks
and Rhoades [15]. We need the following definition.

Definition 6. Let T : X → X and for some x0 ∈ X, O(x0) = {x0, f x0, f 2x0, · · · } be the orbit of x0.
A function G from X into the set of real numbers is said to be T-orbitally lower semi-continuous at t ∈ X if
{xn} ⊂ O(x0) and xn → t implies G(t) ≤ limn→∞ inf G(xn) .

Theorem 3. Let (X, dθ) be a complete extended b-metric space such that dθ is a continuous functional.
Let T : X → X and there exists x0 ∈ X such that:

dθ(Ty, T2y) ≤ kdθ(y, Ty) for each y ∈ O(x0) (3)

where k ∈ [0, 1) be such that for x0 ∈ X, limn,m→∞ θ(xn, xm) < 1
k , here xn = Tnx0, n = 1, 2, · · · .

Then Tnx0 → ξ ∈ X (as n → ∞). Furthermore ξ is a fixed point of T if and only if G(x) = d(x, Tx) is
T-orbitally lower semi continuous at ξ.

Proof. For x0 ∈ X we define the iterative sequence {xn} by:

x0, Tx0 = x1, x2 = Tx1 = T(Tx0) = T2(x0) . . . , xn = Tnx0 . . . .

Now for y = Tx0 by successively applying inequality (3) we obtain:

dθ(Tnx0, Tn+1x0) = dθ(xn, xn+1) ≤ kndθ(x0, x1) (4)
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Following the same procedure as in the proof of Theorem 2 we conclude that {xn} is a Cauchy
sequence. Since X is complete then xn = Tnx0 → ξ ∈ X. Assume that G is orbitally lower semi
continuous at ξ ∈ X, then:

dθ(ξ, Tξ) ≤ lim inf
n→∞

dθ(Tnx0, Tn+1x0) (5)

≤ lim inf
n→∞

kndθ(x0, x1) = 0 (6)

Conversely, let ξ = Tξ and xn ∈ O(x) with xn → ξ. Then:

G(ξ) = d(ξ, Tξ) = 0 ≤ lim inf
n→∞

G(xn) = d(Tnx0, Tn+1x0) (7)

Remark 2. When θ(x, y) = 1 a constant function then Theorem 3 reduces to main result of Hicks and Rhoades
([15] (Theorem 1)). Hence Theorem 3 extends/generalizes ([15] (Theorem 1) ).

Example 5. Let X = [0, ∞). Define dθ(x, y) : X× X → R+ and θ : X× X → [1, ∞) as:

dθ(x, y) = (x− y)2, θ(x, y) = x + y + 2

Then dθ is a complete extended b-metric on X. Define T : X → X by Tx = x
2 . We have:

dθ(Tx, Ty) =
( x

2
− y

2

)2
≤ 1

3
(x− y)2 = kdθ(x, y)

Note that for each x ∈ X, Tnx = x
2n . Thus we obtain:

lim
m,n→∞

θ(Tmx, Tnx) = lim
m,n→∞

( x
2m +

x
2n + 2

)
< 3

Therefore, all conditions of Theorem 3 are satisfied hence T has a unique fixed point.

Example 6. Let X = [0, 1
4 ]. Define dθ(x, y) : X× X → R+ and θ : X× X → [1, ∞) as:

dθ(x, y) = (x− y)2, θ(x, y) = x + y + 2

Then dθ is a complete extended b-metric on X. Define T : X → X by Tx = x2. We have:

dθ(Tx, Ty) ≤ 1
4

dθ(x, y)

Note that for each x ∈ X, Tnx = x2n. Thus we obtain:

lim
m,n→∞

θ(Tmx, Tnx) < 4

Therefore, all conditions of Theorem 3 are satisfied hence T has a unique fixed point.

3. Application

In this section, we give existence theorem for Fredholm integral equation. Let X = C([a, b],R) be
the space of all continuous real valued functions define on [a, b]. Note that X is complete extended
b-metric space by considering dθ(x, y) = supt∈[a,b] |x(t) − y(t)|2, with θ(x, y) = |x(t)| + |y(t)| + 2,
where θ : X× X → [1, ∞). Consider the Fredholm integral equation as:
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x(t) =
∫ b

a
M(t, s, x(s))ds + g(t), t, s ∈ [a, b] (8)

where g : [a, b] → R and M : [a, b] × [a, b] × R → R are continuous functions. Let T : X → X the
operator given by:

Tx(t) =
∫ b

a
M(t, s, x(s))ds + g(t) for t, s ∈ [a, b]

where, the function g : [a, b]→ R and M : [a, b]× [a, b]×R→ R are continuous. Further, assume that
the following condition hold:

|M(t, s, x(s))−M(t, s, Tx(s))| ≤ 1
2
|x(s)− Tx(s)| for each t, s ∈ [a, b] and x ∈ X

Then the integral Equation (8) has a solution.
We have to show that the operator T satisfies all the conditions of Theorem 3. For any x ∈ X

we have:

|Tx(t)− T(Tx(t))|2 ≤
(∫ b

a
|M(t, s, x(s))−M(t, s, Tx(s))|ds

)2

≤ 1
4

dθ(x, Tx)

All conditions of Theorem 3 follows by the hypothesis. Therefore, the operator T has a fixed point,
that is, the Fredholm integral Equation (8) has a solution.
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