

Article A Generalization of *b*-Metric Space and Some Fixed Point Theorems

Tayyab Kamran ^{1,2,*,†}, Maria Samreen ^{1,†} and Qurat UL Ain ^{1,†}

- ¹ Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan; maria.samreen@hotmail.com (M.S.); quratulainqau15@gmail.com (Q.U.A.)
- ² Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
- * Correspondence: tayyabkamran@gmail.com; Tel.: +92-51-9064-2201
- + These authors contributed equally to this work.

Academic Editor: Pasquale Vetro Received: 17 November 2016; Accepted: 20 March 2017; Published: 23 March 2017

Abstract: In this paper, inspired by the concept of *b*-metric space, we introduce the concept of extended *b*-metric space. We also establish some fixed point theorems for self-mappings defined on such spaces. Our results extend/generalize many pre-existing results in literature.

Keywords: fixed point; *b*-metric

1. Introduction

The idea of *b*-metric was initiated from the works of Bourbaki [1] and Bakhtin [2]. Czerwik [3] gave an axiom which was weaker than the triangular inequality and formally defined a *b*-metric space with a view of generalizing the Banach contraction mapping theorem. Later on, Fagin et al. [4] discussed some kind of relaxation in triangular inequality and called this new distance measure as non-linear elastic mathing (NEM). Similar type of relaxed triangle inequality was also used for trade measure [5] and to measure ice floes [6]. All these applications intrigued and pushed us to introduce the concept of extended *b*-metric space. So that the results obtained for such rich spaces become more viable in different directions of applications.

Definition 1. Let X be a non empty set and $s \ge 1$ be a given real number. A function $d : X \times X \rightarrow [0, \infty)$ is called b-metric (Bakhtin [2], Czrerwik [3]) if it satisfies the following properties for each $x, y, z \in X$.

(b1): $d(x, y) = 0 \Leftrightarrow x = y;$ (b2): d(x, y) = d(y, x);(b3): $d(x, z) \le s[d(x, y) + d(y, z)].$

The pair (X, d) is called a b-metric space.

Example 1. 1. Let $X := l_p(\mathbb{R})$ with $0 where <math>l_p(\mathbb{R}) := \{\{x_n\} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$. Define $d : X \times X \to \mathbb{R}^+$ as:

$$d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}$$

where $x = \{x_n\}, y = \{y_n\}$. Then *d* is a b-metric space [7–9] with coefficient $s = 2^{1/p}$. 2. Let $X := L_p[0,1]$ be the space of all real functions $x(t), t \in [0,1]$ such that $\int_0^1 |x(t)|^p < \infty$ with 0 . $Define <math>d : X \times X \to \mathbb{R}^+$ as:

$$d(x,y) = \left(\int_0^1 |x(t) - y(t)|^p dt\right)^{1/p}$$

Then d is b-metric space [7–9] *with coefficient* $s = 2^{1/p}$.

The above examples show that the class of *b*-metric spaces is larger than the class of metric spaces. When s = 1, the concept of *b*-metric space coincides with the concept of metric space. For some details on subject see [7–12].

Definition 2. Let (X, d) be a b-metric space. A sequence $\{x_n\}$ in X is said to be:

- (*I*) *Cauchy* [12] *if and only if* $d(x_n, x_m) \rightarrow 0$ *as* $n, m \rightarrow \infty$;
- (II) Convergent [12] if and only if there exist $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$ and we write $\lim_{n\to\infty} x_n = x$;
- (III) The b-metric space (X, d) is complete [12] if every Cauchy sequence is convergent.

In the following we recollect the extension of Banach contraction principle in case of *b*-metric spaces.

Theorem 1. Let (X, d) be a complete b-metric space with constant $s \ge 1$, such that b-metric is a continuous functional. Let $T : X \to X$ be a contraction having contraction constant $k \in [0, 1)$ such that ks < 1. Then T has a unique fixed point [13].

2. Results

In this section, we introduce a new type of generalized metric space, which we call as an extended *b*-metric space. We also establish some fixed point theorems arising from this metric space.

Definition 3. Let X be a non empty set and θ : $X \times X \rightarrow [1, \infty)$. A function d_{θ} : $X \times X \rightarrow [0, \infty)$ is called an extended b-metric if for all $x, y, z \in X$ it satisfies:

The pair (X, d_{θ}) *is called an extended b-metric space.*

Remark 1. If $\theta(x, y) = s$ for $s \ge 1$ then we obtain the definition of a *b*-metric space.

Example 2. Let $X = \{1, 2, 3\}$. Define $\theta : X \times X \to \mathbb{R}^+$ and $d_{\theta} : X \times X \to \mathbb{R}^+$ as:

$$\theta(x,y) = 1 + x + y$$

$$d_{\theta}(1,1) = d_{\theta}(2,2) = d_{\theta}(3,3) = 0$$
$$d_{\theta}(1,2) = d_{\theta}(2,1) = 80, d_{\theta}(1,3) = d_{\theta}(3,1) = 1000, d_{\theta}(2,3) = d_{\theta}(3,2) = 600$$

Proof. $(d_{\theta}1)$ and $(d_{\theta}2)$ trivially hold. For $(d_{\theta}3)$ we have:

 $d_{\theta}(1,2) = 80, \ \theta(1,2) \left[d_{\theta}(1,3) + d_{\theta}(3,2) \right] = 4(1000 + 600) = 6400$

$$d_{\theta}(1,3) = 1000, \ \theta(1,3) \left[d_{\theta}(1,2) + d_{\theta}(2,3) \right] = 5(80 + 600) = 3400$$

Similar calculations hold for $d_{\theta}(2,3)$. Hence for all $x, y, z \in X$

$$d_{\theta}(x,z) \le \theta(x,z) [d_{\theta}(x,y) + d_{\theta}(y,z)]$$

Hence (X, d_{θ}) is an extended *b*-metric space. \Box

Example 3. Let $X = C([a,b],\mathbb{R})$ be the space of all continuous real valued functions define on [a,b]. Note that X is complete extended b-metric space by considering $d_{\theta}(x,y) = \sup_{t \in [a,b]} |x(t) - y(t)|^2$, with $\theta(x,y) = |x(t)| + |y(t)| + 2$, where $\theta : X \times X \to [1,\infty)$.

The concepts of convergence, Cauchy sequence and completeness can easily be extended to the case of an extended *b*-metric space.

Definition 4. Let (X, d_{θ}) be an extended b-metric space.

- (*i*) A sequence $\{x_n\}$ in X is said to converge to $x \in X$, if for every $\epsilon > 0$ there exists $N = N(\epsilon) \in \mathbb{N}$ such that $d_{\theta}(x_n, x) < \epsilon$, for all $n \ge N$. In this case, we write $\lim_{n \to \infty} x_n = x$.
- (ii) A sequence $\{x_n\}$ in X is said to be Cauchy, if for every $\epsilon > 0$ there exists $N = N(\epsilon) \in \mathbb{N}$ such that $d_{\theta}(x_m, x_n) < \epsilon$, for all $m, n \ge N$.

Definition 5. An extended b-metric space (X, d_{θ}) is complete if every Cauchy sequence in X is convergent.

Note that, in general a *b*-metric is not a continuous functional and thus so is an extended *b*-metric.

Example 4. Let $X = \mathbb{N} \bigcup \infty$ and let $d : X \times X \to \mathbb{R}$ be defined by [14]:

$$d(x,y) = \begin{cases} 0 & if \ m = n \\ |\frac{1}{m} - \frac{1}{n}| & if \ m, \ n \ are \ even \ or \ mn = \infty \\ 5 & if \ m, \ n \ are \ odd \ and \ m \neq n \\ 2 & otherwise \end{cases}$$

Then (X, d) is a b-metric with s = 3 but it is not continuous.

Lemma 1. Let (X, d_{θ}) be an extended b-metric space. If d_{θ} is continuous, then every convergent sequence has a unique limit.

Our first theorem is an analogue of Banach contraction principle in the setting of extended *b*-metric space. Throughout this section, for the mapping $T : X \to X$ and $x_0 \in X$, $\mathcal{O}(x_0) = \{x_0, T^2x_0, T^3x_0, \cdots\}$ represents the orbit of x_0 .

Theorem 2. Let (X, d_{θ}) be a complete extended b-metric space such that d_{θ} is a continuous functional. Let $T : X \to X$ satisfy:

$$d_{\theta}(Tx, Ty) \le kd_{\theta}(x, y) \quad \text{for all } x, y \in X$$
(1)

where $k \in [0,1)$ be such that for each $x_0 \in X$, $\lim_{n,m\to\infty} \theta(x_n, x_m) < \frac{1}{k}$, here $x_n = T^n x_0$, $n = 1, 2, \cdots$. Then T has precisely one fixed point ξ . Moreover for each $y \in X$, $T^n y \to \xi$.

Proof. We choose any $x_0 \in X$ be arbitrary, define the iterative sequence $\{x_n\}$ by:

$$x_0, Tx_0 = x_1, x_2 = Tx_1 = T(Tx_0) = T^2(x_0) \dots, x_n = T^n x_0 \dots$$

Then by successively applying inequality (1) we obtain:

$$d_{\theta}(x_n, x_{n+1}) \leq k^n d_{\theta}(x_0, x_1) \tag{2}$$

By triangular inequality and (2), for m > n we have:

Since, $\lim_{n,m\to\infty} \theta(x_{n+1}, x_m) k < 1$ so that the series $\sum_{n=1}^{\infty} k^n \prod_{i=1}^n \theta(x_i, x_m)$ converges by ratio test for each $m \in \mathbb{N}$. Let:

$$S = \sum_{n=1}^{\infty} k^n \prod_{i=1}^{n} \theta(x_i, x_m), \ S_n = \sum_{j=1}^{n} k^j \prod_{i=1}^{j} \theta(x_i, x_m)$$

Thus for m > n above inequality implies:

$$d_{\theta}(x_n, x_m) \leq d_{\theta}(x_0, x_1) \Big[S_{m-1} - S_n \Big]$$

Letting $n \to \infty$ we conclude that $\{x_n\}$ is a Cauchy sequence. Since X is complete let $x_n \to \xi \in X$:

$$d_{\theta}(T\xi,\xi) \leq \theta(T\xi,\xi)[d_{\theta}(T\xi,x_n) + d_{\theta}(x_n,\xi)]$$

$$\leq \theta(T\xi,\xi)[kd_{\theta}(\xi,x_{n-1}) + d_{\theta}(x_n,\xi)]$$

$$d_{\theta}(T\xi,\xi) \leq 0 \text{ as } n \to \infty$$

$$d_{\theta}(T\xi,\xi) = 0$$

Hence ξ is a fixed point of *T*. Moreover uniqueness can easily be invoked by using inequality (1), since k < 1. \Box

In the following we include another variant which is analogue to fixed point theorem by Hicks and Rhoades [15]. We need the following definition.

Definition 6. Let $T : X \to X$ and for some $x_0 \in X$, $\mathcal{O}(x_0) = \{x_0, fx_0, f^2x_0, \dots\}$ be the orbit of x_0 . A function G from X into the set of real numbers is said to be T-orbitally lower semi-continuous at $t \in X$ if $\{x_n\} \subset \mathcal{O}(x_0)$ and $x_n \to t$ implies $G(t) \leq \lim_{n \to \infty} \inf G(x_n)$.

Theorem 3. Let (X, d_{θ}) be a complete extended b-metric space such that d_{θ} is a continuous functional. Let $T : X \to X$ and there exists $x_0 \in X$ such that:

$$d_{\theta}(Ty, T^{2}y) \le kd_{\theta}(y, Ty) \quad \text{for each } y \in \mathcal{O}(x_{0})$$
(3)

where $k \in [0,1)$ be such that for $x_0 \in X$, $\lim_{n,m\to\infty} \theta(x_n, x_m) < \frac{1}{k}$, here $x_n = T^n x_0$, $n = 1, 2, \cdots$. Then $T^n x_0 \to \xi \in X$ (as $n \to \infty$). Furthermore ξ is a fixed point of T if and only if G(x) = d(x, Tx) is T-orbitally lower semi continuous at ξ .

Proof. For $x_0 \in X$ we define the iterative sequence $\{x_n\}$ by:

$$x_0, Tx_0 = x_1, x_2 = Tx_1 = T(Tx_0) = T^2(x_0) \dots, x_n = T^n x_0 \dots$$

Now for $y = Tx_0$ by successively applying inequality (3) we obtain:

$$d_{\theta}(T^{n}x_{0}, T^{n+1}x_{0}) = d_{\theta}(x_{n}, x_{n+1}) \le k^{n}d_{\theta}(x_{0}, x_{1})$$
(4)

Mathematics 2017, 5, 19

Following the same procedure as in the proof of Theorem 2 we conclude that $\{x_n\}$ is a Cauchy sequence. Since *X* is complete then $x_n = T^n x_0 \rightarrow \xi \in X$. Assume that *G* is orbitally lower semi continuous at $\xi \in X$, then:

$$d_{\theta}(\xi, T\xi) \leq \liminf_{n \to \infty} d_{\theta}(T^{n}x_{0}, T^{n+1}x_{0})$$
(5)

$$\leq \liminf_{n \to \infty} k^n d_\theta(x_0, x_1) = 0 \tag{6}$$

Conversely, let $\xi = T\xi$ and $x_n \in O(x)$ with $x_n \to \xi$. Then:

$$G(\xi) = d(\xi, T\xi) = 0 \le \liminf_{n \to \infty} G(x_n) = d(T^n x_0, T^{n+1} x_0)$$
(7)

Remark 2. When $\theta(x, y) = 1$ a constant function then Theorem 3 reduces to main result of Hicks and Rhoades ([15] (Theorem 1)). Hence Theorem 3 extends/generalizes ([15] (Theorem 1)).

Example 5. Let $X = [0, \infty)$. Define $d_{\theta}(x, y) : X \times X \to \mathbb{R}^+$ and $\theta : X \times X \to [1, \infty)$ as:

$$d_{\theta}(x,y) = (x-y)^2, \quad \theta(x,y) = x+y+2$$

Then d_{θ} is a complete extended b-metric on X. Define $T: X \to X$ by $Tx = \frac{x}{2}$. We have:

$$d_{\theta}(Tx, Ty) = \left(\frac{x}{2} - \frac{y}{2}\right)^2 \le \frac{1}{3}(x - y)^2 = kd_{\theta}(x, y)$$

Note that for each $x \in X$, $T^n x = \frac{x}{2^n}$. Thus we obtain:

$$\lim_{m,n\to\infty}\theta(T^mx,T^nx) = \lim_{m,n\to\infty}\left(\frac{x}{2^m} + \frac{x}{2^n} + 2\right) < 3$$

Therefore, all conditions of Theorem 3 are satisfied hence T has a unique fixed point.

Example 6. Let $X = [0, \frac{1}{4}]$. Define $d_{\theta}(x, y) : X \times X \to \mathbb{R}^+$ and $\theta : X \times X \to [1, \infty)$ as:

$$d_{\theta}(x,y) = (x-y)^2, \quad \theta(x,y) = x+y+2$$

Then d_{θ} is a complete extended b-metric on X. Define $T : X \to X$ by $Tx = x^2$. We have:

$$d_{\theta}(Tx,Ty) \leq \frac{1}{4}d_{\theta}(x,y)$$

Note that for each $x \in X$, $T^n x = x^{2n}$. Thus we obtain:

$$\lim_{m,n\to\infty}\theta(T^mx,T^nx)<4$$

Therefore, all conditions of Theorem 3 are satisfied hence T has a unique fixed point.

3. Application

In this section, we give existence theorem for Fredholm integral equation. Let $X = C([a, b], \mathbb{R})$ be the space of all continuous real valued functions define on [a, b]. Note that X is complete extended *b*-metric space by considering $d_{\theta}(x, y) = \sup_{t \in [a, b]} |x(t) - y(t)|^2$, with $\theta(x, y) = |x(t)| + |y(t)| + 2$, where $\theta : X \times X \to [1, \infty)$. Consider the Fredholm integral equation as:

Mathematics 2017, 5, 19

$$x(t) = \int_{a}^{b} M(t, s, x(s)) ds + g(t), \quad t, s \in [a, b]$$
(8)

where $g: [a, b] \to \mathbb{R}$ and $M: [a, b] \times [a, b] \times \mathbb{R} \to \mathbb{R}$ are continuous functions. Let $T: X \to X$ the operator given by:

$$Tx(t) = \int_{a}^{b} M(t,s,x(s))ds + g(t) \text{ for } t,s \in [a,b]$$

where, the function $g: [a, b] \to \mathbb{R}$ and $M: [a, b] \times [a, b] \times \mathbb{R} \to \mathbb{R}$ are continuous. Further, assume that the following condition hold:

$$|M(t,s,x(s)) - M(t,s,Tx(s))| \le \frac{1}{2}|x(s) - Tx(s)|$$
 for each $t,s \in [a,b]$ and $x \in X$

Then the integral Equation (8) has a solution.

We have to show that the operator *T* satisfies all the conditions of Theorem 3. For any $x \in X$ we have:

$$|Tx(t) - T(Tx(t))|^2 \leq \left(\int_a^b |M(t,s,x(s)) - M(t,s,Tx(s))|ds\right)^2$$

$$\leq \frac{1}{4}d_\theta(x,Tx)$$

All conditions of Theorem 3 follows by the hypothesis. Therefore, the operator T has a fixed point, that is, the Fredholm integral Equation (8) has a solution.

Author Contributions: All authors contributed equally to the main text.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974.
- 2. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37.
- 3. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11.
- 4. Fagin, R.; Stockmeyer, L. Relaxing the triangle inequality in pattern matching. *Int. J. Comput. Vis.* **1998**, *30*, 219–231.
- 5. Cortelazzo, G.; Mian, G.; Vezzi, G.; Zamperoni, P. Trademark shapes description by string matching techniques. *Pattern Recognit.* **1994**, *27*, 1005–1018.
- McConnell, R.; Kwok, R.; Curlander, J.; Kober, W.; Pang, S. Ψ-S correlation and dynamic time warping: Two methods for tracking ice floes. *IEEE Trans. Geosci. Remote Sens.* 1991, 29, 1004–1012.
- 7. Heinonen, J. Lectures on Analysis on Metric Spaces; Springer: Berlin, Germany, 2001.
- 8. Czerwik, S. Nonlinear set-valued contraction mappings in *b*-metric spaces. *Atti Sem. Mat. Univ. Modena* **1998**, *46*, 263–276.
- 9. Berinde, V. Generalized contractions in quasimetric spaces. In *Seminar on Fixed Point Theory*; Babes-Bolyai University: Cluj-Napoca, Romania, 1993; pp. 3–9.
- 10. Boriceanu, M.; Bota, M.; Petruşel, A. Multivalued fractals in *b*-metric spaces. *Cent. Eur. J. Math.* **2010**, *8*, 367–377.
- 11. Samreen, M.; Kamran, T.; Shahzad, N. Some fixed point theorems in *b*-metric space endowed with graph. *Abstr. Appl. Anal.* **2013**, 2013, 967132.
- 12. Kadak, U. On the Classical Sets of Sequences with Fuzzy b-metric. Gen. Math. Notes 2014, 23, 2219–7184.
- 13. Kir, N.; Kiziltun, H. On Some well known fixed point theorems in b-Metric spaces. *Turk. J. Anal. Number Theory* **2013**, *1*, 13–16.

- 14. Hussain, N.; Doric, D.; Kadelburg, Z.; Radenovic, S. Suzuki-type fixed point results in metric type spaces. *Fixed Point Theory Appl.* **2012**, 2012, 126.
- 15. Hicks, T.L.; Rhoades, B.E. A Banach type fixed point theorem. *Math. Jpn.* 1979, 24, 327–330.

 \odot 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).