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1. Introduction and Preliminaries

Modular metric spaces are a natural and interesting generalization of classical modulars over
linear spaces, like Lebesgue, Orlicz, Musielak–Orlicz, Lorentz, Orlicz–Lorentz, Calderon–Lozanovskii
spaces and others. The concept of modular metric spaces was introduced in [1,2]. Here, we look at
modular metric spaces as the nonlinear version of the classical one introduced by Nakano [3] on vector
spaces and modular function spaces introduced by Musielak [4] and Orlicz [5].

Recently, many authors studied the behavior of the electrorheological fluids, sometimes referred
to as “smart fluids” (e.g., lithium polymethacrylate). A perfect model for these fluids is obtained by
using Lebesgue and Sobolev spaces, Lp and W1,p, in the case that p is a function [6].

Let X be a nonempty set and ω : (0,+∞) × X × X → [0,+∞] be a function; for simplicity,
we will write:

ωλ(x, y) = ω(λ, x, y),

for all λ > 0 and x, y ∈ X.

Definition 1. [1,2] A function ω : (0,+∞) × X × X → [0,+∞] is called a modular metric on X if the
following axioms hold:

(i) x = y if and only if ωλ(x, y) = 0 for all λ > 0;
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

If in the above definition, we utilize the condition:

(i’) ωλ(x, x) = 0 for all λ > 0 and x ∈ X;
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instead of (i), then ω is said to be a pseudomodular metric on X. A modular metric ω on X is called
regular if the following weaker version of (i) is satisfied:

x = y if and only if ωλ(x, y) = 0 for some λ > 0.

Again, ω is called convex if for λ, µ > 0 and x, y, z ∈ X, the inequality holds:

ωλ+µ(x, y) ≤ λ

λ + µ
ωλ(x, z) +

µ

λ + µ
ωµ(z, y).

Remark 1. Note that if ω is a pseudomodular metric on a set X, then the function λ→ ωλ(x, y) is decreasing
on (0,+∞) for all x, y ∈ X. That is, if 0 < µ < λ, then:

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Definition 2. References [1,2] suppose that ω be a pseudomodular on X and x0 ∈ X and fixed. Therefore,
the two sets:

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0)→ 0 as λ→ +∞}

and:
X∗ω = X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) < +∞}.

Xω and X∗ω are called modular spaces (around x0).

It is evident that Xω ⊂ X∗ω, but this inclusion may be proper in general. Assume that ω is a
modular on X; from [1,2], we derive that the modular space Xω can be equipped with a (nontrivial)
metric, induced by ω and given by:

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ} for all x, y ∈ Xω.

Note that if ω is a convex modular on X, then according to [1,2], the two modular spaces coincide,
i.e., X∗ω = Xω, and this common set can be endowed with the metric d∗ω given by:

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1} for all x, y ∈ Xω.

Such distances are called Luxemburg distances.
Example 2.1 presented by Abdou and Khamsi [7] is an important motivation for developing the

modular metric spaces theory. Other examples may be found in [1,2].

Definition 3. Reference [8] assume Xω to be a modular metric space, M a subset of Xω and (xn)n∈N be a
sequence in Xω. Therefore:

(1) (xn)n∈N is called ω-convergent to x ∈ Xω if and only if ωλ(xn, x) → 0, as n → +∞ for all λ > 0.
x will be called the ω-limit of (xn).

(2) (xn)n∈N is called ω-Cauchy if ωλ(xm, xn)→ 0, as m, n→ +∞ for all λ > 0.
(3) M is called ω-closed if the ω-limit of a ω-convergent sequence of M always belong to M.
(4) M is called ω-complete if any ω-Cauchy sequence in M is ω-convergent to a point of M.
(5) M is called ω-bounded if for all λ > 0, we have δω(M) = sup{ωλ(x, y); x, y ∈ M} < +∞.

Recently Paknazar et al. [9] introduced the following concept.

Definition 4. If in Definition 1, we replace (iii) by:

(iv) ωmax{λ,µ}(x, y) ≤ ωλ(x, z) + ωµ(z, y)
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for all λ, µ > 0 and x, y, z ∈ X
Then, Xω is called the non-Archimedean modular metric space. Since (iv) implies (iii), every

non-Archimedean modular metric space is a modular metric space.

One of the most important generalizations of Banach contraction mappings was given by
Geraghty [10] in the following form.

Theorem 1 (Geraghty [10]). Suppose that (X, d) is a complete metric space and T : X → X is self-mapping.
Suppose that there exists β : [0,+∞)→ [0, 1) satisfying the condition:

β(tn)→ 1 implies tn → 0, as n→ +∞.

If T satisfies the following inequality:

d(Tx, Ty) ≤ β(d(x, y))d(x, y), for all x, y ∈ X, (1)

hence T has a unique fixed point.

Moreover, Kirk [11] explored some significant generalizations of the Banach contraction principle
to the case of non-self mappings. Let A and B be nonempty subsets of a metric space (X, d). A mapping
T : A → B is called a k-contraction if there exists k ∈ [0, 1), such that d(Tx, Ty) ≤ kd(x, y), for all
x, y ∈ A. Evidently, k-contraction coincides with Banach contraction mapping if we take A = B.

Furthermore, a non-self contractive mapping may not have a fixed point. In this case, we try to
find an element x such that d(x, Tx) is minimum, i.e., x and Tx are in close proximity to each other. It is
clear that d(x, Tx) is at least d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}. We are interested in investigating
the existence of an element x such that d(x, Tx) = d(A, B). In this case, x is a best proximity point of
the non-self-mapping T. Evidently, a best proximity point reduces to a fixed point T as a self-mapping.

The reader can refer to [12–16]. Note that best proximity point theorems furnish an approximate
solution to the equation Tx = x, when there are not any fixed points for T.

Here, we collect some notions and concepts that will be utilized throughout the rest of this work.
We denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A, B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A, B) for some x ∈ A}. (2)

In 2003, Kirk et al. [12] established sufficient conditions for determining when the sets A0 and B0

are nonempty.
Furthermore, in [14], the authors proved that any pair (A, B) of nonempty closed convex subsets

of a real Hilbert space satisfies the P-property. Clearly for any nonempty subset A of (X, d), the pair
(A, A) has the P-property.

Recently, Zhang et al. [16] introduced the following notion and showed that it is weaker than
the P-property.

Definition 5. Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with A0 6= ∅. Then, the pair
(A, B) is said to have the weak P-property if and only if for any x1, x2 ∈ A0 and y1, y2 ∈ B0 :

d(x1, y1) = d(A, B) and d(x2, y2) = d(A, B)⇒ d(x1, x2) ≤ d(y1, y2). (3)

Finally, we recall the following result of Caballero et al. [17].
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Theorem 2. Assume that (A, B) is a pair of nonempty closed subsets of a complete metric space (X, d), such
that A0 is nonempty. Let T : A→ B be a Geraghty-contraction satisfying T(A0) ⊆ B0. Assume that the pair
(A, B) has the P-property. Then, there exists a unique x∗ ∈ A such that d(x∗, Tx∗) = d(A, B).

Recently, Kumam et al. [18] introduced the useful notion of triangular α-proximal admissible
mapping as follows. See also [19]:

Definition 6 (Reference [18]). Let A and B be two nonempty subsets ofa metric space (X, d) and α : A× A→
[0,+∞) be a function. We say that a non-self-mapping T : A→ B is triangular α-proximal admissible if, for all
x, y, z, x1, x2, u1, u2 ∈ A:

(T1)


α(x1, x2) ≥ 1
d(u1, Tx1) = d(A, B)
d(u2, Tx2) = d(A, B)

=⇒ α(u1, u2) ≥ 1,

(T2)

{
α(x, z) ≥ 1
α(z, y) ≥ 1

=⇒ α(x, y) ≥ 1.

Let Θ denote the set of all functions θ : R+4 → R+ satisfying:
(Θ1) θ is continuous and increasing in all of its variables;
(Θ2) θ(t1, t2, t3, t4) = 0 iff t1.t2.t3.t4 = 0.
For more details on Θ, see [20].

Let F denote the set of all functions β : [0,+∞)→ [0, 1) satisfying the condition:

β(tn)→ 1 implies tn → 0, as n→ +∞.

2. Best Proximity Point Results

At first, we introduce the following concept, which will be suitable for our main Theorem.

Definition 7. Suppose that (A, B) is a pair of nonempty subsets of a modular metric space Xω with Aλ
0 6= ∅

for all λ > 0. We say the pair (A, B) has the weak Pλ-property if and only if for any x1, x2 ∈ A0, y1, y2 ∈ B0

and λ > 0 :

ωλ(x1, y1) = ωλ(A, B) and ωλ(x2, y2) = d(A, B)⇒ ωλ(x1, x2) ≤ ωλ(y1, y2), (4)

where:
ωλ(A, B) =: inf{ωλ(x, y)| x ∈ A and y ∈ B},

Aλ
0 =: {x ∈ A : ωλ(x, y) = ωλ(A, B) for some y ∈ B}.

Now, let us introduce the concept of Suzuki-type (α, β, θ, γ)-contractive mapping.

Definition 8. Let A and B be two nonempty subsets of a modular metric space Xω where Aλ
0 6= ∅ for all

λ > 0 and α : Xω × Xω → [0, ∞) is a function. A mapping T : A → B is said to be a Suzuki-type
(α, β, θ, γ)−contractive mapping if there exists β ∈ F and θ ∈ Θ, such that for all x, y ∈ A and λ > 0 with
1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) and α(x, y) ≥ 1, one has:

ωλ(Tx, Ty) ≤ β
(

M(x, y)
)

M(x, y) + γ
(

N(x, y, θ)
)

N(x, y, θ) (5)

where γ : [0, ∞)→ [0, ∞) is a bounded function, ω∗λ(x, y) = ωλ(x, y)−ωλ(A, B),
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M(x, y) = max
{

ωλ(x, y),
ωλ(x, Tx) + ωλ(y, Ty)

2
−ωλ(A, B),

ωλ(x, Ty) + ωλ(y, Tx)
2

−ωλ(A, B)
}

and:

N(x, y, θ) = θ

(
ωλ(x, Tx)−ωλ(A, B), ωλ(y, Ty)−ωλ(A, B),

ωλ(x, Ty)−ωλ(A, B), ωλ(y, Tx)−ωλ(A, B)
)

.

Now, we are ready to prove our main result.

Theorem 3. Let A and B be two nonempty subsets of a non-Archimedean modular metric space Xω with
ω regular, such that A is ω−complete and Aλ

0 is nonempty for all λ > 0. Assume that T is a Suzuki-type
(α, β, θ, γ)-contractive mapping satisfying the following assertions:

(i) T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0, and the pair (A, B) satisfies the weak Pλ-property,
(ii) T is a triangular α-proximal admissible mapping,

(iii) there exist elements x0 and x1 in Aλ
0 for all λ > 0, such that:

ωλ(x1, Tx0) = ωλ(A, B) and α(x0, x1) ≥ 1

(iv) if {xn} is a sequence in A, such that α(xn, xn+1) ≥ 1 for all n ∈ N∪ {0} with xn → x ∈ A as n→ ∞,
then α(xn, x) ≥ 1 for all n ∈ N.

Then, there exists an x∗ in A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0. Further, the best
proximity point is unique if, for every x, y ∈ A, such that ωλ(x, Tx) = ωλ(A, B) = ωλ(y, Ty), we have
α(x, y) ≥ 1.

Proof. By (iii), there exist elements x0 and x1 in Aλ
0 for all λ > 0, such that:

ωλ(x1, Tx0) = ωλ(A, B) and α(x0, x1) ≥ 1.

On the other hand, T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0. Therefore, there exists x2 ∈ A0, such that:

ωλ(x2, Tx1) = ωλ(A, B).

Now, since T is triangular α-proximal admissible, we have α(x1, x2) ≥ 1. That is:

ωλ(x2, Tx1) = ωλ(A, B) and α(x1, x2) ≥ 1.

Again, since T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0, there exists x3 ∈ Aλ
0 , such that:

ωλ(x3, Tx2) = ωλ(A, B).

Thus, we have:

ωλ(x2, Tx1) = ωλ(A, B) and ωλ(x3, Tx2) = ωλ(A, B) and α(x1, x2) ≥ 1.

Again, since T is triangular α-proximal admissible, α(x2, x3) ≥ 1. Hence:

ωλ(x3, Tx2) = ωλ(A, B) and α(x2, x3) ≥ 1.
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Continuing this process, we get:

ωλ(xn+1, Txn) = ωλ(A, B) and α(xn, xn+1) ≥ 1 for all n ∈ N∪ {0}. (6)

Since (A, B) has the weak Pλ-property, we derive that:

ωλ(xn, xn+1) ≤ ωλ(Txn−1, Txn) for any n ∈ N. (7)

Now, by (6), we get:

ωλ(xn−1, Txn−1) ≤ ωλ(xn−1, xn) + ωλ(xn, Txn−1) = ωλ(xn−1, xn) + ωλ(A, B). (8)

Clearly, if there exists n0 ∈ N, such that ωλ(xn0 , xn0+1) = 0, then we have nothing to prove.
In fact:

0 = ωλ(xn0 , xn0+1) = ωλ(Txn0−1, Txn0).

Since ω is regular, we get, Txn0−1 = Txn0 . Thus, we conclude that:

ωλ(A, B) = ωλ(xn0 , Txn0−1) = ωλ(xn0 , Txn0).

For the rest of the proof, we suppose that ωλ(xn, xn+1) > 0 for any n ∈ N. Now, from (8),
we deduce that:

1
2

ω∗λ(xn−1, Txn−1) ≤ ω∗λ(xn−1, Txn−1) ≤ ωλ(xn, xn−1). (9)

Applying (6) and (7), we obtain:

M(xn−1, xn) = max
{

ωλ(xn−1, xn),
ωλ(xn−1, Txn−1) + ωλ(xn, Txn)

2
−ωλ(A, B),

ωλ(xn−1, Txn) + ωλ(xn, Txn−1)

2
−ωλ(A, B)

}
≤ max

{
ωλ(xn−1, xn),

ωλ(xn−1, xn) + ωλ(xn, Txn−1) + ωλ(xn, xn+1) + ωλ(xn+1, Txn)

2
−ωλ(A, B),

ωλ(xn−1, xn+1) + ωλ(xn+1, Txn) + ωλ(xn, Txn−1)

2
−ωλ(A, B)

}
= max

{
ωλ(xn−1, xn),

ωλ(xn−1, xn) + ωλ(A, B) + ωλ(xn, xn+1) + ωλ(A, B)
2

−ωλ(A, B),

ωλ(xn−1, xn+1) + ωλ(A, B) + ωλ(A, B)
2

−ωλ(A, B)
}

= max
{

ωλ(xn−1, xn),
ωλ(xn−1, xn) + ωλ(xn, xn+1)

2
,

ωλ(xn−1, xn+1)

2

}
≤ max{ωλ(xn−1, xn),

ωλ(xn−1, xn) + ωλ(xn, xn+1)

2
}

≤ max{ωλ(xn−1, xn), ωλ(xn, xn+1)}.

Thus:
M(xn−1, xn) ≤ max{ωλ(xn−1, xn), ωλ(xn, xn+1)}. (10)

Furthermore:
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N(xn−1, xn, θ) = θ

(
ωλ(xn−1, Txn−1)−ωλ(A, B), ωλ(xn, Txn)−ωλ(A, B), (11)

ωλ(xn−1, Txn)−ωλ(A, B), ωλ(xn, Txn−1)−ωλ(A, B)
)

= θ

(
ωλ(xn−1, Txn−1)−ωλ(A, B), ωλ(xn, Txn)−ωλ(A, B),

ωλ(xn−1, Txn)−ωλ(A, B), 0
)
= 0.

Since T is a Suzuki-type (α, β, θ, γ)-contractive mapping, we have:

ωλ(xn, xn+1) ≤ ωλ(Txn−1, Txn)

≤ β(M(xn−1, xn))M(xn−1, xn) + γ(N(xn−1, xn, θ))N(xn−1, xn, θ)

< M(xn−1, xn) + γ(N(xn−1, xn, θ))N(xn−1, xn, θ).
(12)

From (10) to (12), we deduce:

ωλ(xn, xn+1) < max{ωλ(xn−1, xn), ωλ(xn, xn+1)}.

Now if, max{ωλ(xn−1, xn), ωλ(xn, xn+1)} = ωλ(xn, xn+1) then,

ωλ(xn, xn+1) < ωλ(xn, xn+1),

which is a contradiction. Hence:

ωλ(xn−1, xn) ≤ M(xn−1, xn) ≤ max{ωλ(xn−1, xn), ωλ(xn, xn+1)} = ωλ(xn−1, xn),

and so:
M(xn−1, xn) = ωλ(xn−1, xn), (13)

for all n ∈ N. Now, by (12), we get:

ωλ(xn, xn+1) = ωλ(Txn−1, Txn)

≤ β(ωλ(xn−1, xn))ωλ(xn−1, xn)

< ωλ(xn−1, xn),
(14)

for all n ∈ N. Consequently, {ωλ(xn, xn+1)} is a non-increasing sequence, which is bounded from
below, and so, lim

n→∞
ωλ(xn, xn+1) := L exists. Let L > 0. Then, from (14), we have:

ωλ(xn, xn+1)

ωλ(xn−1, xn)
≤ β(ωλ(xn−1, xn)) ≤ 1,

for each n ≥ 1, which implies:
lim

n→∞
β(ωλ(xn, xn+1)) = 1.

On the other hand, since β ∈ F , we conclude:

L = lim
n→∞

ωλ(xn, xn+1) = 0. (15)

Since, ωλ(xn, Txn−1) = ωλ(A, B) holds for all n ∈ N and (A, B) satisfies the weak Pλ-property, so
for all m, n ∈ N with n < m, we obtain, ωλ(xm, xn) ≤ ωλ(Txm−1, Txn−1). Note that:
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M(xm, xn) = max
{

ωλ(xm, xn),
ωλ(xm, Txm) + ωλ(xn, Txn)

2
−ωλ(A, B),

ωλ(xm, Txn) + ωλ(xn, Txm)

2
−ωλ(A, B)

}
≤ max

{
ωλ(xm, xn),

ωλ(xm, xm+1) + ωλ(xm+1, Txm) + ωλ(xn, xn+1) + ωλ(xn+1, Txn)

2
−ωλ(A, B),

ωλ(xm, xn+1) + ωλ(xn+1, Txn) + ωλ(xn, xm+1) + ωλ(xm+1, Txm)

2
−ωλ(A, B)

}
= max

{
ωλ(xm, xn),

ωλ(xm, xm+1) + ωλ(xn, xn+1)

2
, ωλ(xm, xn+1)

}
≤ max

{
ωλ(xm, xn),

ωλ(xm, xm+1) + ωλ(xn, xn+1)

2
,

ωλ(xm, xn) + ωλ(xn, xn+1)

}
.

As lim
n→∞

ωλ(xn, xn+1) = 0, we have:

lim
m,n→∞

ωλ(xm, xn) ≤ lim
m,n→∞

M(xm, xn) ≤ lim
m,n→∞

ωλ(xm, xn),

that is:
lim

m,n→∞
M(xm, xn) = lim

m,n→∞
ωλ(xm, xn). (16)

Furthermore:

0 ≤ N(xm, xn,θ)

= θ

(
ωλ(xm, Txm)−ωλ(A, B), ωλ(xn, Txn)−ωλ(A, B),

ωλ(xm, Txn)−ωλ(A, B), ωλ(xn, Txm)−ωλ(A, B)
)

≤ θ

(
ωλ(xm, xm+1) + ωλ(A, B)−ωλ(A, B), ωλ(xn, Txn)−ωλ(A, B),

ωλ(xm, Txn)−ωλ(A, B), ωλ(xn, Txm)−ωλ(A, B)
)

≤ θ

(
ωλ(xm, xm+1), ωλ(xn, Txn)−ωλ(A, B), ωλ(xm, Txn)−ωλ(A, B),

ωλ(xn, Txm)−ωλ(A, B)
)

.

Again, by lim
n→∞

ωλ(xn, xn+1) = 0, we have:
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0 ≤ lim
m,n→∞

N(xm, xn, θ)

≤ lim
m,n→∞

θ

(
ωλ(xm, xm+1), ωλ(xn, Txn)−ωλ(A, B), ωλ(xm, Txn)−ωλ(A, B),

ωλ(xn, Txm)−ωλ(A, B)
)

≤ lim
m,n→∞

θ

(
0, ωλ(xn, Txn)−ωλ(A, B), ωλ(xm, Txn)−ωλ(A, B),

ωλ(xn, Txm)−ωλ(A, B)
)
= 0.

That is:
lim

m,n→∞
N(xm, xn, θ) = 0. (17)

Now, we show that {xn} is a Cauchy sequence. On the contrary, assume that:

ε = lim sup
m,n→∞

ωλ(xn, xm) > 0. (18)

Now, since lim
n→+∞

ωλ(xn, xn+1) = 0, then:

ωλ(A, B) ≤ lim
m→+∞

ωλ(xm, Txm)

≤ lim
m→+∞

[ωλ(xm, xm+1) + ωλ(xm+1, Txm)]

= lim
m→+∞

[ωλ(xm, xm+1) + ωλ(A, B)] = ωλ(A, B),

which implies that lim
m→+∞

ωλ(xm, Txm) = ωλ(A, B), that is:

lim
m→+∞

1
2

ω∗λ(xm, Txm) = lim
m→+∞

1
2
[ωλ(xm, Txm)−ωλ(A, B)] = 0.

On the other hand, from (18), it is follows that there exists N ∈ N, such that, for all m, n ≥ N,
we have:

1
2

ω∗λ(xm, Txm) ≤ ωλ(xn, xm).

Furthermore, we can show that:

α(xm, xn) ≥ 1, where n > m. (19)

Indeed, since T is a triangular α-proximal admissible mapping and:{
α(xm, xm+1) ≥ 1
α(xm+1, xm+2) ≥ 1

,

from Condition (T2) of Definition 6, we have:

α(xm, xm+2) ≥ 1.

Again, since T is a triangular α-proximal admissible mapping and:{
α(xm, xm+2) ≥ 1
α(xm+2, xm+3) ≥ 1

,
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from Condition (T2) of Definition 6, we have:

α(xm, xm+3) ≥ 1.

Continuing this process, we get (19).
Now, using the triangle inequality, we have:

ωλ(xn, xm) ≤ ωλ(xn, xn+1) + ωλ(xn+1, xm+1) + ωλ(xm+1, xm). (20)

From (5) and (20) we have:

ωλ(xn, xm)

≤ ωλ(xn, xn+1) + ωλ(Txn, Txm) + ωλ(xm+1, xm)

≤ ωλ(xn, xn+1) + β(M(xn, xm))M(xn, xm) + γ(N(xn, xm, θ))N(xn, xm, θ)

+ωλ(xm+1, xm).

(21)

Now, (16), (17), (21) and: lim
n→∞

ωλ(xn, xn+1) = 0, imply:

lim
m,n→∞

ωλ(xn, xm) ≤ lim
m,n→∞

β(M(xn, xm)) lim
m,n→∞

M(xm, xn)

+ lim
m,n→∞

γ(N(xn, xm, θ)) lim
m,n→∞

N(xm, xn, θ)

= lim
m,n→∞

β(M(xn, xm)) lim
m,n→∞

ωλ(xm, xn).

By (18), we get:
1 ≤ lim

m,n→∞
β(M(xn, xm)).

Therefore, lim
m,n→∞

β(M(xn, xm)) = 1, so lim
m,n→∞

M(xn, xm) = 0. This implies:

lim
m,n→∞

ωλ(xn, xm) = 0,

which is a contradiction. Therefore, {xn} is a Cauchy sequence. Since (xn) ⊂ A and (A, d) is a complete
metric space, we can find x∗ ∈ A, such that xn → x∗ as n→ ∞. From (iv), we know that, α(xn, x) ≥ 1
for all n ∈ N. Next, using (14), we have:

ω∗λ(xn, Txn) = ωλ(xn, Txn)−ωλ(A, B)
≤ ωλ(xn, xn+1) + ωλ(xn+1, Txn)−ωλ(A, B)
= ωλ(xn, xn+1),

(22)

and:

ω∗λ(xn+1, Txn+1) = ωλ(xn+1, Txn+1)−ωλ(A, B)
≤ ωλ(Txn, Txn+1) + ωλ(xn+1, Txn)−ωλ(A, B)
= ωλ(Txn, Txn+1)

= ωλ(xn+1, xn+2)

≤ ωλ(xn, xn+1).

(23)

Therefore, (22) and (23) imply that:

1
2
[ω∗λ(xn, Txn) + ω∗λ(xn+1, Txn+1)] ≤ ωλ(xn, xn+1). (24)
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Now, suppose that:

1
2

ω∗λ(xn, Txn) > ωλ(xn, x∗) and
1
2

ω∗λ(xn+1, Txn+1) > ωλ(xn+1, x∗),

for some n ∈ N. Hence, using (24), we can write:

ωλ(xn, xn+1) ≤ ωλ(xn, x∗) + ωλ(xn+1, x∗)

<
1
2
[ω∗λ(xn, Txn) + ω∗λ(xn+1, Txn+1)]

≤ ωλ(xn, xn+1),

which is a contradiction. Then, for any n ∈ N, either:

1
2

ω∗λ(xn, Txn) ≤ ωλ(xn, x∗) or
1
2

ω∗λ(xn+1, Txn+1) ≤ ωλ(xn+1, x∗)

holds.
We shall show that ωλ(x∗, Tx∗) = ωλ(A, B). Suppose, to the contrary, that:

ωλ(x∗, Tx∗) 6= ωλ(A, B).

From (5) with x = xn and y = x∗, we get:

ωλ(Txn, Tx∗) ≤ β
(

M(xn, x∗)
)

M(xn, x∗) + γ
(

N(xn, x∗, θ)
)

N(xn, x∗, θ). (25)

On the other hand:

M(xn,x∗)

= max
{

ωλ(xn, x∗),
ωλ(xn, Txn) + ωλ(x∗, Tx∗)

2
−ωλ(A, B),

ωλ(xn, Tx∗) + ωλ(x∗, Txn)

2
−ωλ(A, B)

}
≤ max

{
ωλ(xn, x∗),

ωλ(xn, xn+1) + ωλ(xn+1, Txn) + ωλ(x∗, Tx∗)
2

−ωλ(A, B),

ωλ(xn, x∗) + ωλ(x∗, Tx∗) + ωλ(x∗, xn+1) + ωλ(xn+1, Txn)

2
−ωλ(A, B)

}
= max

{
ωλ(xn, x∗),

ωλ(xn, xn+1) + ωλ(A, B) + ωλ(x∗, Tx∗)
2

−ωλ(A, B),

ωλ(xn, x∗) + ωλ(x∗, Tx∗) + ωλ(x∗, xn+1) + ωλ(A, B)
2

−ωλ(A, B)
}

,

and so:

lim
k→∞

M(xn, x∗) ≤ ωλ(x∗, Tx∗)−ωλ(A, B)
2

. (26)

Furthermore, we have:

ωλ(x∗, Tx∗) ≤ ωλ(x∗, Txn) + ωλ(Txn, Tx∗)

≤ ωλ(x∗, xn+1) + ωλ(xn+1, Txn) + ωλ(Txn, Tx∗)

≤ ωλ(x∗, xn+1) + ωλ(A, B) + ωλ(Txn, Tx∗).
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Taking limit as n→ ∞ in the above inequality, we have:

ωλ(x∗, Tx∗)−ωλ(A, B) ≤ lim
n→∞

ωλ(Txn, Tx∗). (27)

Further, we get:

ωλ(xn, Txn) ≤ ωλ(xn, xn+1) + ωλ(xn+1, Txn) = ωλ(xn, xn+1) + ωλ(A, B).

Taking the limit as n→ ∞ in the above inequality, we get:

lim
n→∞

ωλ(xn, Txn) ≤ ωλ(A, B),

and so, lim
n→∞

ωλ(xn, Txn) = ωλ(A, B). Now, we have:

lim
n→∞

N(xn, x∗, θ)

= θ

(
lim

n→∞
ωλ(xn, Txn)−ωλ(A, B),

ωλ(x∗, Tx∗)−ωλ(A, B), lim
n→∞

ωλ(xn, Tx∗)−ωλ(A, B),

lim
n→∞

ωλ(x∗, Txn)−ωλ(A, B)
)

= θ

(
0, ωλ(x∗, Tx∗)−ωλ(A, B),

lim
n→∞

ωλ(xn, Tx∗)−ωλ(A, B), lim
n→∞

ωλ(x∗, Txn)−ωλ(A, B)
)
= 0,

that is:
lim

n→∞
N(xn, x∗, θ) = 0. (28)

From (25) to (28), we deduce that:

ωλ(x∗, Tx∗)−ωλ(A, B) ≤ lim
n→∞

ωλ(Txn, Tx∗)

≤ lim
n→∞

β(M(xn, x∗)) lim
n→∞

M(xn, x∗)

+ lim
n→∞

γ(N(xn, x∗, θ)) lim
n→∞

N(xn, x∗, θ)

= lim
n→∞

β(M(xn, x∗))(
ωλ(x∗, Tx∗)−ωλ(A, B)

2
)

< ωλ(x∗, Tx∗)−ωλ(A, B),

which is a contradiction. Therefore, ωλ(x∗, Tx∗) = ωλ(A, B), and x∗ is a best proximity point of T.
We now show the uniqueness of the best proximity point of T. Suppose that x∗ and y∗ are two distinct
best proximity points of T. This implies:

ωλ(x∗, Tx∗) = ωλ(A, B) = ωλ(y∗, Ty∗). (29)

Using the weak P1-property, we have:

ωλ(x∗, y∗) ≤ ωλ(Tx∗, Ty∗). (30)

Since:
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M(x∗, y∗)

= max
{

ωλ(x∗, y∗),
ωλ(x∗, Tx∗) + ωλ(y∗, Ty∗)

2
−ωλ(A, B),

ωλ(x∗, Ty∗) + ωλ(y∗, Tx∗)
2

−ωλ(A, B)
}

= max
{

ωλ(x∗, y∗), 0,
ωλ(x∗, Ty∗) + ωλ(y∗, Tx∗)

2
−ωλ(A, B)

}
≤ max

{
ωλ(x∗, y∗), 0,

ωλ(x∗, Tx∗) + ωλ(Tx∗, Ty∗) + ωλ(y∗, Ty∗) + ωλ(Ty∗, Tx∗)
2

−ωλ(A, B)
}

≤ max
{

ωλ(x∗, y∗), 0,

ωλ(A, B) + ωλ(x∗, y∗) + ωλ(A, B) + ωλ(y∗, x∗)
2

−ωλ(A, B)
}

= ωλ(x∗, y∗).

Furthermore:

N(x∗, y∗, θ)

= θ

(
ωλ(x∗, Tx∗)−ωλ(A, B), ωλ(y∗, Ty∗)−ωλ(A, B),

ωλ(x∗, Ty∗)−ωλ(A, B), ωλ(y∗, Tx∗)−ωλ(A, B)
)

= θ

(
ωλ(A, B)−ωλ(A, B), ωλ(A, B)−ωλ(A, B),

ωλ(x∗, Ty∗)−ωλ(A, B), ωλ(y∗, Tx∗)−ωλ(A, B)
)

= θ

(
0, 0, ωλ(x∗, Ty∗)−ωλ(A, B), ωλ(y∗, Tx∗)−ωλ(A, B)

)
= 0.

As T is a Suzuki-type (α, β, θ, γ)-contractive mapping and 1
2 ω∗λ(x∗, Tx∗) = 0 ≤ ωλ(x∗, y∗) and

α(x∗, y∗) ≥ 1, then, we obtain:

ωλ(x∗, y∗) ≤ ωλ(Tx∗, Ty∗)

≤ β(M(x∗, y∗))M(x∗, y∗) + γ(N(x∗, y∗, θ))N(x∗, y∗, θ)

= β(ωλ(x∗, y∗))ωλ(x∗, y∗)

< ωλ(x∗, y∗),

which is a contradiction. This completes the proof of the theorem.

If in Theorem 3, we take β(t) = r where r ∈ [0, 1) and γ(t) = L where L ≥ 0, then we obtain the
following best proximity point result.

Corollary 1. Let (A, B) be a pair of nonempty subsets of a non-Archimedean modular metric space Xω with ω

regular, such that A is complete and Aλ
0 is nonempty for all λ > 0. Let T : A→ B be a non-self mapping, such

that T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0 and for all x, y ∈ A with 1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) and α(x, y) ≥ 1; one has:

ωλ(Tx, Ty) ≤ rM(x, y) + LN(x, y, θ)
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where r ∈ [0, 1), L ≥ 0 and θ ∈ Θ. Suppose that the pair (A, B) has the weak P1-property and the following
assertions hold:

(i) T is a triangular α-proximal admissible mapping,
(ii) there exist elements x0 and x1 in Aλ

0 for all λ > 0, such that:

ωλ(x1, Tx0) = ωλ(A, B) and α(x0, x1) ≥ 1.

(iii) if {xn} is a sequence in A, such that α(xn, x) ≥ 1 for all n ∈ N with xn → x ∈ A as n → ∞,
then α(xn, x) ≥ 1 for all n ∈ N.

Then, there exists an x∗ in A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0. Further, the best
proximity point is unique if, for every x, y ∈ A, such that ωλ(x, Tx) = ωλ(A, B) = ωλ(y, Ty), we have:
α(x, y) ≥ 1.

If in Corollary 1 we take, θ(t1, t2, t3, t4) = min{t1, t2, t3, t4}, we obtain the following best
proximity result.

Corollary 2. Let (A, B) be a pair of nonempty subsets of a non-Archimedean modular metric space Xω with ω

regular, such that A is complete and Aλ
0 is nonempty for all λ > 0. Let T : A→ B be a non-self mapping, such

that T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0 and for all x, y ∈ A with 1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) and α(x, y) ≥ 1; we have:

ωλ(Tx, Ty) ≤ rM(x, y) + LN(x, y)

where r ∈ [0, 1), L ≥ 0,

M(x, y) =max
{

ωλ(x, y),
ωλ(x, Tx) + ωλ(y, Ty)

2
−ωλ(A, B),

ωλ(x, Ty) + ωλ(y, Tx)
2

−ωλ(A, B)
}

and:
N(x, y) = min {ωλ(x, Tx), ωλ(y, Ty), ωλ(x, Ty), ωλ(y, Tx)} −ωλ(A, B).

Suppose that the pair (A, B) has the weak Pλ-property and the following assertions hold:

(i) T is a triangular α-proximal admissible mapping,
(ii) there exist elements x0 and x1 in Aλ

0 for all λ > 0, such that:

ωλ(x1, Tx0) = ωλ(A, B) and α(x0, x1) ≥ 1.

(iii) if {xn} is a sequence in A, such that α(xn, xn+1) ≥ 1 for all n ∈ N with xn → x ∈ A as n → ∞,
then α(xn, x) ≥ 1 for all n ∈ N.

Then, there exists an x∗ in A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0. Further, the best
proximity point is unique if, for every x, y ∈ A, such that ωλ(x, Tx) = ωλ(A, B) = ωλ(y, Ty), we have
α(x, y) ≥ 1.

The following example illustrates our results.

Example 1. Consider the space X = R2 endowed with the non-Archimedean modular metric
ω: X× X → (0,+∞) given by:

ωλ((x1, x2), (y1, y2)) =
1
λ

(
|x1 − y1|+ |x2 − y2|

)
,
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for all (x1, x2), (y1, y2) ∈ X. Define the sets:

A = {(1, 0), (4, 5), (5, 4)} ∪ (−∞,−1]× (−∞,−1]

and:
B = {(0, 0), (0, 4), (4, 0)} ∪ [10, ∞)× [10, ∞)

so that ωλ(A, B) = 1
λ , Aλ

0 = {(1, 0)}, Bλ
0 = {(0, 0)} for all λ > 0, and the pair (A, B) has the weak

Pλ-property. Furthermore, let T : A→ B be defined by:

T(x1, x2) =


(10x2

1, 15x4
2) if x1, x2 ∈ (−∞,−1],

(x1, 0) if x1, x2 /∈ (−∞,−1] with x1 ≤ x2,

(0, x2) if x1, x2 /∈ (−∞,−1] with x1 > x2.

Notice that T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0.
Now, consider the function β : [0,+∞)→ [0, 1) given by:

β(t) =


0 if t = 0,
ln(1+t)

t if 0 < t ≤ 1,
8
9 if 1 < t ≤ 10,
10
11 if t > 10,

and note that β ∈ F . Furthermore, define α : X× X → [0, ∞) by:

α(x, y) =

{
2, x, y ∈ {(1, 0), (4, 5), (5, 4)}
1
4 , otherwise.

.

Clearly, ωλ((1, 0), T(1, 0)) = ωλ(A, B) = 1
λ and α((1, 0), (1, 0)) ≥ 1.

Assume that 1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) and α(x, y) ≥ 1, for some x, y ∈ A. Then:

x = (1, 0), y = (4, 5) or
x = (1, 0), y = (5, 4) or
y = (1, 0), x = (4, 5) or
y = (1, 0), x = (5, 4).

Since ωλ(Tx, Ty) = ωλ(Ty, Tx) and M(x, y) = M(y, x) for all x, y ∈ A, without any loss of
generality, we can assume that:

(x, y) = ((1, 0), (4, 5)) or (x, y) = ((1, 0), (5, 4)).

Now, we want to distinguish the following cases:

(i) if (x, y) = ((1, 0), (4, 5)), then:

ωλ(T(1, 0), T(4, 5)) =
4
λ
≤ 8

9
· 8

λ
= β(M((1, 0), (4, 5)))[M((1, 0), (4, 5))];

(ii) if (x, y) = ((1, 0), (5, 4)), then:

ωλ(T(1, 0), T(5, 4)) = 4 ≤ 8
9
· 8

λ
= β(M((1, 0), (5, 4)))[M((1, 0), (5, 4))].
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Consequently, we have:

1
2

ω∗λ(x, Tx) ≤ ωλ(x, y) and α(x, y) ≥ 1 ⇒ ωλ(Tx, Ty) ≤ β(M(x, y))[M(x, y)]

and hence, T is a Suzuki-type (α, β, θ, γ)-contractive mapping with γ(t) = 0. Let:


α(x, y) ≥ 1
ωλ(u, Tx) = ωλ(A, B) = 1

λ

ωλ(v, Ty) = ωλ(A, B) = 1
λ ,

then: 
x, y ∈ {(1, 0), (4, 5), (5, 4)}
ωλ(u, Tx) = ωλ(A, B) = 1

λ

ωλ(v, Ty) = ωλ(A, B) = 1
λ ,

and so, u = v = (1, 0). i.e., α(u, v) ≥ 1. Furthermore, assume that α(x, y) ≥ 1 and α(y, z) ≥ 1. Then,
x, y, z ∈ {(1, 0), (4, 5), (5, 4)}, i.e., α(x, z) ≥ 1. Therefore, T is a triangular α−proximal admissible
mapping. Moreover, if {xn} is a sequence, such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x
as n → +∞, then {xn} ⊆ {(1, 0), (4, 5), (5, 4)}, and hence, x ∈ {(1, 0), (4, 5), (5, 4)}. Consequently,
α(xn, x) ≥ 1 for all n ∈ N∪ {0}. Hence, as you see, all of the conditions of Theorem 3 hold true, and T
has a unique best proximity point. Here, x = (1, 0) is the unique best proximity point of T.

If in Theorem 3, we take α(x, y) = 1 for all x, y ∈ A, then we can deduce the following corollary.

Corollary 3. Let (A, B) be a pair of nonempty subsets of a non-Archimedean modular metric space Xω with ω

regular, such that A is complete and Aλ
0 is nonempty for all λ > 0. Let T : A→ B be a non-self mapping, such

that T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0, and there exists β ∈ F and θ ∈ Θ, such that 1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) implies:

ωλ(Tx, Ty) ≤ β
(

M(x, y)
)

M(x, y) + γ
(

N(x, y, θ)
)

N(x, y, θ).

Suppose that the pair (A, B) has the weak Pλ-property. Then, there exists a unique x∗ in A, such that
ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0.

We investigate the Suzuki-type result of Zhang et al. [16] in the setting of non-Archimedean
modular metric space as follows:

Corollary 4. Let (A, B) be a pair of nonempty and closed subsets of a complete non-Archimedean modular
metric space Xω with ω regular, such that Aλ

0 is nonempty for all λ > 0. Let T : A→ B be a non-self mapping,
such that T(Aλ

0 ) ⊆ Bλ
0 for all λ > 0, and there exists r ∈ [0, 1), such that 1

2 ω∗λ(x, Tx) ≤ ωλ(x, y) implies:

ωλ(Tx, Ty) ≤ rωλ(x, y)

for all x, y ∈ A. Suppose that the pair (A, B) has the weak Pλ-property. Then there exists a unique point x∗ in
A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0.

Corollary 5. (Suzuki-type result of Suzuki [21]) Let (A, B) be a pair of nonempty and closed subsets of a
complete non-Archimedean modular metric space Xω with ω regular, such that Aλ

0 is nonempty for all λ > 0.
Let T : A → B be a non-self mapping, such that T(Aλ

0 ) ⊆ Bλ
0 for all λ > 0, and there exists r ∈ [0, 1), such

that 1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) implies:

ωλ(Tx, Ty) ≤ r
[

ωλ(x, Tx) + ωλ(y, Ty)
2

−ωλ(A, B)
]

(31)
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for all x, y ∈ A. Suppose that the pair (A, B) has the weak Pλ-property. Therefore, there exists a unique point
x∗ in A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0.

Corollary 6. Let (A, B) be a pair of nonempty subsets of a non-Archimedean modular metric space Xω with ω

regular, such that A is complete and Aλ
0 is nonempty for all λ > 0. Let T : A→ B be a non-self mapping, such

that T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0, and there exists r ∈ [0, 1), such that 1
2 ω∗λ(x, Tx) ≤ ωλ(x, y) implies:

ωλ(Tx, Ty) ≤ r
[

ωλ(x, Ty) + ωλ(y, Tx)
2

−ωλ(A, B)
]

(32)

for all x, y ∈ A0. Suppose that the pair (A, B) has the weak Pλ-property. Then, there exists a unique point x∗ in
A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0.

3. Best Proximity Point Results in Metric Spaces Endowed with a Graph

Consistent with Jachymski [22], let Xω be a modular metric space, and ∆ denotes the diagonal
of the Cartesian product Xω × Xω. Assume that G is a directed graph, such that the set V(G) of its
vertices coincides with Xω and the set E(G) of its edges contains all loops, i.e., E(G) ⊇ ∆. We suppose
that G has no parallel edges. We identify G with the pair (V(G), E(G)). Furthermore, we may handle
G as a weighted graph (see [23], p. 309) by assigning to every edge the distance between its vertices. If
x and y are vertices in a graph G, then a path in G from x to y of length N (N ∈ N) is a sequence {xi}N

i=0
of N + 1 vertices, such that x0 = x, xN = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , N. The foremost fixed
point result in this area was given by Jachymski [22].

Definition 9 (Reference [22]). Let (X, d) be a modular metric space endowed with a graph G.We say that a
self-mapping T : X → X is a Banach G-contraction or simply a G-contraction if T preserves the edges of G,
that is:

for all x, y ∈ X, (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G)

and T decreases the weights of the edges of G in the following way:

∃ α ∈ (0, 1) such that for all x, y ∈ X, (x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ αd(x, y).

We define the following notion for modular metric spaces.

Definition 10. Let Xω be a modular metric space endowed with a graph G. We say that a self-mapping
T: X → X is a Banach G-contraction or simply a G-contraction if T preserves the edges of G, that is:

for all x, y ∈ X, (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G)

and T decreases the weights of the edges of G in the following way:

∃ α ∈ (0, 1) such that for all x, y ∈ X, (x, y) ∈ E(G) =⇒ ωλ(Tx, Ty) ≤ αωλ(x, y).

Definition 11. Let A and B be two nonempty subsets of a non-Archimedean modular metric space Xω endowed
with a graph G and A0 6= ∅. A mapping T: A → B is said to be a Suzuki-type G − (β, θ, γ)-contractive
mapping if there exists β ∈ F and θ ∈ Θ, such that for all x, y ∈ A with 1

2 ω∗λ(x, Tx) ≤ ωλ(x, y) and
(x, y) ∈ E(G), one has:

ωλ(Tx, Ty) ≤ β
(

M(x, y)
)

M(x, y) + γ
(

N(x, y, θ)
)

N(x, y, θ) (33)
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and: 
(x, y) ∈ E(G)

ωλ(u, Tx) = ωλ(A, B)
ωλ(v, Ty) = ωλ(A, B)

=⇒ (u, v) ∈ E(G).

Theorem 4. Let A and B be two nonempty subsets of a non-Archimedean modular metric space Xω with ω

regular endowed with a graph G, such that A is complete and Aλ
0 is nonempty for all λ > 0. Assume that T is a

Suzuki-type G− (β, θ, γ)-contractive mapping satisfying the following assertions:

(i) T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0, and the pair (A, B) satisfies the weak P-property,
(ii) (x, y) ∈ E(G) and (y, z) ∈ E(G) implies (x, z) ∈ E(G),

(iii) there exist elements x0 and x1 in Aλ
0 for all λ > 0, such that:

ωλ(x1, Tx0) = ωλ(A, B) and (x0, x1) ∈ E(G).

(iv) if {xn} is a sequence in A, such that (xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0} with xn → x ∈ A as
n→ ∞, then (xn, x) ∈ E(G) for all n ∈ N.

Then, there exists an x∗ in A, such that ωλ(x∗, Tx∗) = ωλ(A, B) for all λ > 0.

Proof. Define α : X× X → [0,+∞) with:

α(x, y) =

{
1, if (x, y) ∈ E(G)

0, otherwise.

At first, we show that T is a triangular α-proximal admissible mapping. For this goal, assume:
α(x, y) ≥ 1
ωλ(u, Tx) = ωλ(A, B)
ωλ(v, Ty) = ωλ(A, B).

Therefore, we have: 
(x, y) ∈ E(G)

ωλ(u, Tx) = ωλ(A, B)
ωλ(v, Ty) = ωλ(A, B).

Since T is a Suzuki-type G − (β, θ, γ)-contractive mapping, we get (u, v) ∈ E(G), that is
α(u, v) ≥ 1. Furthermore, let α(x, z) ≥ 1 and α(z, y) ≥ 1, then (x, z) ∈ E(G) and (z, y) ∈ E(G).
Consequently, from (iii), we deduce that (x, y) ∈ E(G), that is, α(x, y) ≥ 1. Thus, T is a triangular
α-proximal admissible mapping with T(A0) ⊆ B0. Now, assume that, 1

2 ω∗λ(x, Tx) ≤ ωλ(x, y)
and α(x, y) ≥ 1. Then, 1

2 ω∗λ(x, Tx) ≤ ωλ(x, y) and (x, y) ∈ E(G). As T is a Suzuki-type
G− (β, θ, γ)-contraction, then we get:

ωλ(Tx, Ty) ≤ β
(

M(x, y)
)

M(x, y) + γ
(

N(x, y, θ)
)

N(x, y, θ),

and so, T is a Suzuki-type (α, β, θ, γ)-contractive mapping. From (iii), there exist x0, x1 ∈ A0, such
that ωλ(x1, Tx0) = ωλ(A, B) and (x0, x1) ∈ E(G), that is ωλ(x1, Tx0) = ωλ(A, B) and α(x0, x1) ≥ 1.
Hence, all of the conditions of Theorem 3 are satisfied, and so, T has a best proximity point.

4. Best Proximity Point Results in Partially-Ordered Metric Spaces

The existence of best proximity points in partially-ordered metric spaces has been investigated in
recent years by many authors (see, [24] and the references therein). In this section, we introduce a new
notion of Suzuki-type ordered (β, θ, γ)-contractive mapping and investigate the existence of the best
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proximity points for such mappings in partially-ordered non-Archimedean modular metric spaces by
using the weak Pλ-property.

Definition 12. Let Xω be a partially-ordered modular metric space. We say that a non-self-mapping T: A→ B
is proximally ordered-preserving if and only if, for all x1, x2, u1, u2 ∈ A:

x1 � x2

ωλ(u1, Tx1) = ωλ(A, B)
ωλ(u2, Tx2) = ωλ(A, B)

=⇒ u1 � u2.

Definition 13. Let A and B be two nonempty closed subsets of a partially-ordered modular metric space Xω

and A0 6= ∅. A mapping T: A→ B is said to be a Suzuki-type ordered (β, θ, γ)-contractive mapping if there
exists β ∈ F and θ ∈ Θ, such that for all x, y ∈ A with 1

2 ω∗λ(x, Tx) ≤ ωλ(x, y) and x � y, we have:

ωλ(Tx, Ty) ≤ β
(

M(x, y)
)

M(x, y) + γ
(

N(x, y, θ)
)

N(x, y, θ).

Theorem 5. Let A and B be two nonempty closed subsets of a partially-ordered non-Archimedean modular
metric space with ω regular, such that A is complete, Aλ

0 is nonempty for all λ > 0 and the pair (A, B) has the
weak Pλ-property. Assume that T: A→ B satisfies the following conditions:

(i) T is proximally ordered-preserving, such that T(Aλ
0 ) ⊆ Bλ

0 for all λ > 0,
(ii) there exist elements x0, x1 ∈ A0, such that:

ωλ(x1, Tx0) = ωλ(A, B) and x0 � x1,

(iii) T is a Suzuki-type ordered (β, θ, γ)-contractive mapping,
(iv) if {xn} is an increasing sequence in A converging to x ∈ A, then xn � x for all n ∈ N.

Then, T has a best proximity point.
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