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Abstract: In this paper, we introduced a new generalization method to solve fractional
convection–diffusion equations based on the well-known variational iteration method (VIM)
improved by an auxiliary parameter. The suggested method was highly effective in controlling
the convergence region of the approximate solution. By solving some fractional convection–diffusion
equations with a propounded method and comparing it with standard VIM, it was concluded
that complete reliability, efficiency, and accuracy of this method are guaranteed. Additionally, we
studied and investigated the convergence of the proposed method, namely the VIM with an auxiliary
parameter. We also offered the optimal choice of the auxiliary parameter in the proposed method.
It was noticed that the approach could be applied to other models of physics.

Keywords: auxiliary parameter; fractional convection–diffusion equation; variational iteration
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1. Introduction

Over the past few years, fractional calculus has emerged in physical phenomena.
Fractional derivatives prepared an effective tool for the elucidation of memory and patrimonial
confidants of disparate materials and processes [1,2]. Fractional differential equations (FDEs)
have attracted the attention of many researchers owing to their varied applications in science and
engineering such as acoustics, control, viscoelasticity, edge detection, and signal processing [3–5].
Recently, fractional diffusion equations have been considered using the Adomian decomposition
method and series expansion method by authors of [6,7]. Fractional Maxwell fluid within a fractional
Caputo–Fabrizio derivative operator using an analytical method was considered in [8]. Numerous
excellent books and papers have explained the state-of-the-art extant in the literature to testify to
the maturity of fractal order theory. There are prepared solution methods for differential equations
of optional real order, and applications of the demonstrated methods in several fields which give a
systematic presentation of the applications, methods, and ideas on fractional calculus. These works
have played an significant role in the expansion of the theory of fractional order [2,9–11].

The main feature of using fractional calculus in most usages is its nonlocal attribute. It is well
known that the integer order differential operators and the integer order integral operators are local,
while the fractional order differential operators and the fractional order integral operators are nonlocal.
This means that the next situation of a system depends upon not only its current situation, but also its
historical situation [12,13]. Problems in fractional partial differential equations (PDEs) are not only
important, but also quite challenging, involving hard mathematical solution methods in most cases.
Riemann-Liouville and Caputo routines are two more methods used in fractional calculus. The order
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of evaluation is the distinction between the two definitions [14]. Since no exact solution exists for
FDE, most efforts have supplied numerical and analytical methods to solve these equations. Indeed,
many powerful methods have been recently developed, such as the Adomian decomposition method,
homotopy analysis method, homotopy perturbation method, collocation method, finite difference
method and Tau method [15–30].

In 1998 the variational iteration method (VIM) proffered by He [31] was recognized as a reliable
and effective algorithm to solve various ordinary differential equations, delayed differential equations,
boundary differential equations, partial differential equations, and nonlinear problems arising in
engineering [32–36].

To improve the convergence speed and enlarge the interval of convergence for VIM series
solutions, a number of modifications were propounded [37–39]. There are many modifications of VIM,
exclusively appropriate for fractional differential equations. For example, Odibat and Momani [40]
used the VIM for fractional differential equations in fluid mechanics. Wu [41] solved the time-fractional
heat equation by using the Laplace transform in the determination of the Lagrange multiplier in VIM.
Hristov [42] applied the VIM with a new multiplier to a fractional Bernoulli equation, during transient
conduction with a nonlinear heat flux at the boundary. Other modified VIMs are the variational
iteration-Pade method, variational iteration-Adomian method, VIM with an auxiliary parameter and
optimal VIM [43–47], where the concept of optimal variational iteration method is proposed for the
first time in [47].

This paper discussed an application of the VIM with an auxiliary parameter to solve fractional
convection–diffusion equations in large domains to make comparisons with that procured by the
VIM. In the proposed method, by using βi’s functions (that we will explain later), we determine the
appropriate value for the auxiliary parameter value. Indeed, some theorems have been proven on
this topic. The proposed approach minimizes the norm of the βi’s function in eachstep of VIM, which
contains an unknown auxiliary parameter. It should be noted that some methods have been used
to determine auxiliary parameters such as the h-curve and minimize the residual of the total error,
see [45,48] for more details. The fractional differential equations to be solved form:

∂αu
∂tα

= uxx − cux + N(u) + g(x, t), a ≤ x ≤ b, t ≥ 0, 0 < α ≤ 1, (1)

subject to the boundary conditions:

u(a, t) = g0(t), u(b, t) = g1(t), (2)

and the initial condition:
u(x, 0) = h(x), (3)

where N(u) that has been selected as a potential energy, is a nonlinear operator, c is a constant
parameter and a constant α describes the fractional derivative. This type of equations are obtained
from the usual convection–diffusion equation; the difference is that the first-order time derivative
term has become a fractional derivative of order α > 0. The convection–diffusion equation is widely
used in science and engineering, as mathematical models are used to simulate computing. In [49],
Momani developed a decomposition method for fractional convection–diffusion equation so that the
VIM was applied to solve fractional convection–diffusion equations by Merden [50]. Furthermore,
Abbasbandy et al. [51] proposed fractional-order Legendre functions to solve the time-fractional
convection diffusion equation.

2. Fractional calculus

Here, we give some definitions of fractional calculus and their properties.
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Definition 1. A real function f (x), x > 0, is said to be in space Cµ, µ ∈ R, if a real number p > µ, exists, such
that f (t) = tp f1(t), where f1(t) ∈ C(0, ∞), and it is said to be in the space Cn

µ, if and only if fn ∈ Cµ, n ∈ N.

Definition 2. The Riemann–Liouville fractional integral operator of order α > 0, of a function f ∈ Cµ, µ > 0,
is defined as:

Iα =
1

Γ(α)
∫ t

0(t− s)α−1 f (s)ds, α > 0,

I0 = f (x).
(4)

Definition 3. The fractional derivative of f (t) in the Caputo sense is defined as:

Dα f (t) = Im−αDm f (t) =
1

Γ(m− α)

∫ t

0
(t− s)m−α−1 f m(s)ds, (5)

for m− 1 < α ≤ m, m ∈ N, t > 0 and f ∈ Cm
−1.

Furthermore, two fundamental properties of Caputo’s fractional derivative are presented.

Lemma 1. [52] If m− 1 < α ≤ m, m ∈ N, and f ∈ Cm
µ , µ > −1, then:

Dα Iα f (t) = f (t),

and:

IαDα f (t) = f (t) +
m−1

∑
k=0

f (k)(0+)
tk

k!
, t > 0. (6)

Here we consider the Caputo fractional derivative because by this definition we can use traditional
initial and boundary conditions which are included in the formulation of the problem. Also, by this
definition we can see that the singularity is removed [53]. It should be noted that some other methods
for fractional calculus are introduced in [54,55] such as He’s fractional derivative and Xiao-Jun Yang’s
definition. Here, the fractional convection–diffusion Equation (1) is considered, where the unknown
function u is vanishing for t < 0, i.e., it is a causal function of time [49].

3. Variational Iteration Method with an Auxiliary Parameter

In this section, we describe the VIM with an auxiliary parameter. Consider the following
nonlinear equation:

Hu = Lu + Nu + Ru + g(x, t) = 0, (7)

where L shows the highest order derivative that is supposed to be easily invertible, R demonstrated a
linear differential operator of order less than L, Nu illustrates the nonlinear terms, and g represents the
source inhomogeneous term. Ji-Huan He proposed the VIM in which a correction functional for (7),
can be written as:

un+1 (x, t) = un (x, t) +
∫ t

0
λ (τ)Hun (x, τ) dτ. (8)

In the mentioned equation λ is a Lagrange multiplier which is obtained by optimally via
variational theory, un is the nth approximate solution, and ũn interprets a restricted variation, i.e.,
∂ũn = 0. For n ≥ 0, the approximations un+1(x, t) of the solution u(x, t) will be readily procured
upon using the determined Lagrangian multiplier and any chosen function u0(x, t), providing that
Lu0(x, t) = 0. The correction functional (8) will give several approximations such as:

u(x, t) = lim
n→∞

un(x, t). (9)



Mathematics 2017, 5, 26 4 of 15

The following variational iteration algorithm for (7) is summarized as follows:{
u0(x, t) is an arbitrary f unction,
un+1 (x, t) = un (x, t) +

∫ t
0 λ (τ)Hun (x, τ) dτ, n ≥ 0.

(10)

The proposed method can offer as follows:
u0(x, t) is an arbitrary f unction,
u1 (x, t; h) = u0 (x, t) + h

∫ t
0 λ (τ)Hun (x, τ) dτ,

un+1 (x, t; h) = un (x, t; h) + h
∫ t

0 λ (τ)Hun (x, τ; h) dτ, n ≥ 1,
(11)

where in an unknown auxiliary parameter is entered into the variational iteration Formula (10).
The sequential approximate solutions un+1 (x, t; h) , n ≥ 1 contain the auxiliary parameter h.
The auxiliary parameter functions in such a way that ensures the veracity of the method and that
approximation un+1 (x, t; h) , n ≥ 1 converges to the exact solution. Of course, the parameter h of how
to ensure convergence depends on selecting the appropriate value of h that will be explained at the
end of the next section.

4. Convergence Analysis

In this section, at first we present the alternative approach of the VIM with an auxiliary parameter
and after that the convergence of this method will be examined. This approach can be performed in a
trustworthy and effective way and also can handle the fractional differential Equation (7). When the
VIM with an auxiliary parameter is applied to solve the fractionel convection–diffusion equations,

the linear operator L is defined as L =
∂α

∂tα
, and the Lagrange multiplier λ is identified optimally via

variational theory as:

λ(t, τ) =
−1

Γ(α)
(t− τ)α−1. (12)

Now, we define the operator A and the ingredients vn, sn, n ≥ 0, as follows:

Au(x, t; h) = h
∫ t

0
λ (t, τ) Hu(x, τ; h)dτ, (13)

{
v0(x, t) = u0(x, t),
s0(x, t) = v0(x, t),

{
v1(x, t; h) = As0(x, t),
s1(x, t; h) = s0(x, t) + v1(x, t; h),

and in general for n ≥ 1 : {
vn+1(x, t; h) = Asn(x, t; h),
sn+1(x, t; h) = sn(x, t; h) + vn+1(x, t; h).

(14)

As a result, we have:

u(x, t; h) = lim
n→∞

sn(x, t; h) = v0(x, t) +
∞

∑
n=1

vn(x, t; h). (15)

The initial approximation u0(x, t) can be freely selected, while Lu0(x, t) = 0, and it
satisfies the initial conditions of the problem. For the approximation purpose, we approximate
the solution u(x, t; h) = v0(x, t) + ∑∞

n=1 vn(x, t; h), by the Nth-order truncated series
uN(x, t; h) = v0(x, t) + ∑N

n=1 vn(x, t; h).
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The approximate solution uN(x, t; h), contains the auxiliary parameter h. It is the auxiliary
parameter that ensures that the convergence can be satisfied by means of the minimize of norm 2 of
the β function. The sufficient conditions for convergence of the method and the error estimate will be
presented below. The main results are proposed in the following theorems [56]:

Theorem 1. [57,58] Let A, defined in (13), be an operator from a Hilbert space H to H. If ∃h̃ 6= 0, 0 < γ < 1,
such that:

‖ As0(x, t) ‖ ≤ γ ‖ s0(x, t) ‖,
‖ As1(x, t, h̃) ‖≤ γ ‖ As0(x, t) ‖,
‖ Asn(x, t, h̃) ‖≤ γ ‖ Asn−1(x, t, h̃) ‖, n = 2, 3, 4, · · · .

Then the series solution defined in (15):

u(x, t) = lim
n→∞

sn(x, t, h̃) = v0(x, t) +
∞

∑
n=1

vn(x, t, h̃),

converges.

Lemma 2. Let L, defined in (7), be as L =
∂α

∂tα
, and λ is identified optimally via variational theory in (12). If k,

is a function from a Hilbert space H to H, then:

L
{∫ t

0
λ (t, τ) k(x, τ)dτ

}
= −k(x, t).

Proof. Suppose that L, defined in (7), is as, L =
∂α

∂tα
, and λ is as (12). Thus:

L
{∫ t

0 λ (τ) k(x, τ)dτ
}
=

∂α

∂tα

∫ t
0
−1

Γ(α) (t− τ)α−1k(x, τ)dτ

= −Dα Iαk(x, t) = −k(x, t). �

Theorem 2. [57,58] Let L, defined in (7), be as follows as, L =
∂α

∂tα
. According to Lemma 2, if we have

u(x, t) = v0(x, t) + ∑∞
n=1 vn(x, t, h̃), then u(x, t), is an exact solution of the nonlinear problem (7).

Theorem 3. [57,58] Suppose that the series solution u(x, t) = v0(x, t) + ∑∞
n=1 vn(x, t, h̃),

defined in (15), is convergent to exact solution of the nonlinear problem (7). If the truncated series
uN(x, t) = v0(x, t) + ∑N

n=1 vn(x, t, h̃), is used as an approximate solution, then the maximum error is
estimated as:

‖ u(x, t)− uN(x, t) ‖ ≤ 1
1− γ

γN+1 ‖ v0 ‖ .

If we want to summarize what was said above, we can define:

βi =


‖ vi+1 ‖
‖ vi ‖

, ‖ vi ‖6= 0,

0, ‖ vi ‖= 0, i = 0, 1, 2, · · · .
(16)
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Now, if 0 < βi < 1 for i = 0, 1, 2, · · · , then the series solution v0(x, t) + ∑∞
n=1 vn(x, t, h̃), of

problem (7) converges to an exact solution, u(x, t). Moreover, as stated in Theorem 3, the maximum
absolute truncation error is estimated to be:

‖ u(x, t)− uN(x, t) ‖ ≤ 1
1− β

βN+1 ‖ v0 ‖,

where β = max {βi, i = 0, 1, 2, · · · } .
Note that the first finite terms do not affect the convergence of series solution. In fact, if the first

finite βi’s, i = 0, 1, 2, · · · , l, are not less than one and βi < 1, for i > l, then of course the series solution
v0(x, t) + ∑∞

n=1 vn(x, t, h̃), of problem (7), converges to an exact solution [59].
Now, we choose a proper value of h as follows. Given that if 0 < βi < 1 for i = 0, 1, 2, · · · , then the

series solution v0(x, t) + ∑∞
n=1 vn(x, t, h̃), of problem (7) converges to an exact solution, and given that

the first finite sentences of series solution do not have any effect on the convergence of series solution,
we can use the βi(h) for i = l, l + 1, l + 2, · · · , N, and h will be determined in such a way that as the
βi’s, i = l, l + 1, l + 2, · · · , N, are less than 1. When this h is selected, convergence of the series solution
v0(x, t) + ∑∞

n=1 vn(x, t; h), is guaranteed. In fact, the proposed method ensures convergence of the
VIM with an auxiliary parameter, making the use of this method in large intervals possible with high
precision. It should be noted that each of the vi+1 = ui+1 − ui that ui has obtained (11).

5. Numerical Examples

In this section, we have chosen three examples of fractional convection–diffusion equations
to demonstrate the procedure of the resulting solutions of the VIM with an auxiliary parameter.
According to the numerical results of the suggested method, the standard VIM is not suitable for a
large interval. In fact, the comparison solutions of the VIM with an auxiliary parameter by standard
VIM shows that large intervals have no effect on the accuracy of solutions of the proposed method.

Example 1. Consider the following fractional convection–diffusion equation [51]:{
∂αu
∂tα = uxx − ux + uuxx − u2 + u, 0 ≤ x ≤ 5, 0 < α ≤ 1, t > 0,
u (x, 0) = ex, 0 ≤ x ≤ 5,

where the exact solution for any 0 < α ≤ 1 is u(x, t) = exEα(tα), where Eα(tα) is the Mittag–Leffler function
which is defined by:

Eα(tα) =
∞

∑
j=0

tjα

Γ(jα + 1)
.

Take (x, t) ∈ [0, 5]× [0, 5]. According to the recursive Formula (11), we will have:

un+1 (x, t; h) = un (x, t; h) +
h

Γ(α)

∫ t

0
(s− t)α−1 ∂αun(x, s; h)

∂sα

−
(∂2un(x, s; h)

∂x2 − ∂un(x, s; h)
∂x

+ un(x, s; h)
∂2un(x, s; h)

∂x2

− u2
n(x, s; h) + un(x, s; h)

)
ds, n > 1. (17)

Beginning with u0 (x, t) = u (x, 0) = ex, the solution procedure is stopped at uN (x, t; h). It is
noteworthy that by letting h = 1 in (17) we have the solutions of standard VIM. For detecting a
appropriate value of h , we define the following function:

βi(h) =
‖ vi+1(x, t; h) ‖
‖ vi(x, t; h) ‖ , i = 0, 1, 2, · · · , N − 1.



Mathematics 2017, 5, 26 7 of 15

where, as mentioned:
vi+1(x, t; h) = ui+1(x, t; h)− ui(x, t; h),

and:

‖ vi ‖2=
∫ 5

0

∫ 5

0
|vi (x, t, h)|2 dt dx.

We apply a numerical integration to approximate ‖vi‖. For obtaining an optimal value of h,
we minimized βi(h) by using Maple software (Waterloo Maple, Waterloo, ON, Canada). Figure 1
shows the two-dimensional variation of a seventh-order approximate solution with respect to x = 5
and t for different values of α. Figures 2–4 describe absolute error for the 16th-order approximation by
the present method for u(x, t) when α = 0.5, α = 0.7 and α = 0.9. Tables 1–3 present the comparison
between the absolute errors for 16th-order approximation by the present method and standard VIM
for α = 0.5, α = 0.7 and α = 0.9. The numerical results in Tables 1–3 show that the present method is
effective in large domains, while the standard VIM is ineffective. Table 4 shows that in the proposed
approach, the values of βi are close to zero compared to the standard VIM. Therefore, the present
method has higher convergence speed than the exact solution to meet the standard VIM. Table 5
presents the maximum absolute error with some values of N and different values of α. According to
this table, increases in N decrease the arisen error of the approximation solution.

Table 1. Comparison of absolute errors for 16th-order approximation by present method with h = 1.52
and standard variational iteration method (VIM), when α = 0.5 in Example 1.

x t Absolute Error in Present Method Absolute Error in Standard VIM

0.5 0.5 9.11400038× 10−9 4.96228719× 10−8

1 1 1.85168171× 10−8 3.37495055× 10−5

1.5 1.5 2.27051288× 10−7 1.95306852× 10−3

2 2 1.69962112× 10−6 4.11950932× 10−2

2.5 2.5 1.42124827× 10−5 5.00065595× 10−1

3 3 1.38097923× 10−4 4.28333678
3.5 3.5 7.84059521× 10−4 2.88686016× 101

4 4 7.59300717× 10−3 1.63406486× 102

4.5 4.5 1.41995277× 10−1 8.10272035× 102

5 5 9.58777951× 10−1 3.62298682× 103

Table 2. Comparison of absolute errors for 16th-order approximation by present method with h = 1.264
and standard VIM, when α = 0.7 in Example 1.

x t Absolute Error in Present Method Absolute Error in Standard VIM

0.5 0.5 4.95409230× 10−12 1.29233020× 10−12

1 1 5.59595414× 10−11 8.76782307× 10−9

1.5 1.5 2.24094838× 10−10 1.92639405× 10−6

2 2 7.09840257× 10−9 1.03905171× 10−4

2.5 2.5 9.731197058× 10−8 2.59679815× 10−3

3 3 1.25875888× 10−6 3.99123925× 10−2

3.5 3.5 9.14645410× 10−6 4.38817926× 10−1

4 4 1.55942217× 10−4 3.77731650
4.5 4.5 4.19271051× 10−3 2.69853576× 101

5 5 2.90673009× 10−2 1.66507778× 102
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Table 3. Comparison of absolute errors for 16th-order approximation by present method with
h = 1.1422 and standard VIM, when α = 0.9 in Example 1.

x t Absolute Error in Present Method Absolute Error in Standard VIM

0.5 0.5 1.22481580× 10−15 1.43160605× 10−17

1 1 2.79076098× 10−14 9.91059488× 10−13

1.5 1.5 4.75437591× 10−13 8.40463524× 10−10

2 2 1.26114766× 10−11 1.17575772× 10−7

2.5 2.5 3.67329204× 10−10 612969618× 10−6

3 3 6.73360877× 10−9 1.71224095× 10−4

3.5 3.5 5.02357091× 10−8 3.11047950× 10−3

4 4 2.42663290× 10−6 4.12534882× 10−2

4.5 4.5 7.71987958× 10−5 4.30407963× 10−1

5 5 6.69562925× 10−4 3.71733199

Table 4. Values of βi defended in (16) for present method and standard VIM with N = 7 in Example 1.

Present Standard Present Standard Present Standard Present Standard
Method VIM Method VIM Method VIM Method VIM

βi
α = 0.5

α = 0.5 α = 0.7
α = 0.7 α = 0.9

α = 0.9 α = 1
α = 1h = 2.391 h = 1.745 h = 1.453 h = 1.372

β0 3.30 ×102 1.01 ×101 2.13 ×102 2.30 ×101 2.15 ×102 4.87 ×101 2.43 ×102 6.90 ×101

β1 4.00 ×101 6.81 3.34 ×101 1.02 ×101 2.90 ×101 1.30 ×101 2.74 ×101 1.38 ×101

β2 1.22 ×101 4.48 8.12 4.89 5.33 4.36 4.25 3.86
β3 3.50 3.10 1.99 2.66 1.07 1.84 7.45 ×10−1 1.44
β4 7.95 ×10−1 2.25 4.19 ×10−1 1.60 1.91 ×10−1 9.18 ×10−1 1.13 ×10−1 6.48 ×10−1

β5 8.71 ×10−2 1.71 4.92 ×10−2 1.04 1.90 ×10−2 5.09 ×10−1 8.29 ×10−3 3.32 ×10−1

β6 5.92 ×10−3 1.33 6.47 ×10−4 7.18 ×10−1 1.27 ×10−4 3.06 ×10−1 8.44 ×10−5 1.86 ×10−1

Table 5. The maximum absolute error with some N and various values of α by present method for
Example 1.

N α = 0.5 α = 0.7 α = 0.9 α = 1

14 6.43 3.85 ×10−1 1.77 ×10−2 1.99 ×10−3

16 9.58 ×10−1 2.90 ×10−2 6.69 ×10−4 9.18 ×10−5

18 9.80 ×10−2 1.84 ×10−3 2.01 ×10−5 1.75 ×10−6

20 9.47 ×10−3 9.52 ×10−5 4.67 ×10−7 2.49 ×10−8

Figure 1. Plots of seventh-order approximation solutions by present method at x = 5 for different
values of α in Example 1.
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Figure 2. Absolute error for the 16th-order approximation by present method for u(x, t) when α = 0.5
and h = 1.52, in Example 1.

Figure 3. Absolute error for the 16th-order approximation by present method for u(x, t) when α = 0.7
and h = 1.264, in Example 1.
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Figure 4. Absolute error for the 16th-order approximation by present method for u(x, t) when α = 0.9
and h = 1.1422, in Example 1.

Example 2. Consider the following fractional partial differential equation [60]:{
∂αu
∂tα = −uxx − xux + 2tα + 2x2 + 2, 0 ≤ x ≤ 10, 0 < α ≤ 1, t > 0,
u (x, 0) = x2, 0 ≤ x ≤ 10,

where (x, t) ∈ [0, 10]× [0, 10], and the exact solution is u(x, t) = x2 + 2
Γ(α + 1)

Γ(2α + 1)
t2α.

Using the iteration scheme (11), we successively have:

u0 (x, t) = u (x, 0) = x2,

u1 (x, t) = x2 +
2

αΓ(α)
ht2α,

and in general:

un+1 (x, t; h) = un (x, t; h) +
h

Γ(α)

∫ t

0
(s− t)α−1 ∂αun(x, s; h)

∂sα

− (−∂2un(x, s; h)
∂x2 − x

∂un(x, s; h)
∂x

+ 2tα + 2x2 + 2)ds, n > 1. (18)

For obtaining an optimal value of auxiliary parameter h we define:

βi(h) =
‖ vi+1(x, t; h) ‖
‖ vi(x, t; h) ‖ , i = 0, 1, 2, · · · , N − 1. (19)
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The value of h is obtained by minimizing βi(h) where:

‖ vi ‖2=
∫ 10

0

∫ 10

0
|vi (x, t, h)|2 dt dx.

Figures 5–7 show the plots of u3(10, t) by standard VIM and VIM with an auxiliary parameter
with different values of 0 < α ≤ 1, indicating the effectiveness of the present method in large domains
and ineffectiveness of standard VIM.

Figure 5. Plots of third-order approximation solutions by present method and standard VIM at x = 10
for α = 0.5 in Example 2.

Figure 6. Plots of third-order approximation solutions by present method and standard VIM at x = 10
for α = 0.7 in Example 2.
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Figure 7. Plots of third-order approximation solutions by present method and standard VIM at x = 10
for α = 0.9 in Example 2.

Example 3. Consider the following inhomogeneous fractional convection–diffusion equation [51]:{
∂αu
∂tα = uxx − ux + uux − 2xu + 2x− 2 + Γ(α + 1), 0 < α ≤ 1, x ≥ 0, t ≥ 0,
u (x, 0) = x2, x ≥ 0,

where (x, t) ∈ [0, 20]× [0, 20], and the exact solution is u(x, t) = x2 + tα.

According to the the recursive scheme (11), we successively have:

u0 (x, t) = u (x, 0) = x2,
u1 (x, t) = x2 + htα,

and in general:

un+1 (x, t; h) = un (x, t; h) +
h

Γ(α)
∫ t

0 (s− t)α−1 ∂αun(x, s; h)
∂sα

−

(
∂2un(x, s; h)

∂x2 − ∂un(x, s; h)
∂x

+ un(x, s; h)
∂un(x, s; h)

∂x
−

2xun(x, s; h) + 2x− 2 + Γ(α + 1))ds, n > 1.

(20)

We stop the solution procedure at uN (x, t). Here too, such as before, in order to find a suitable
value of h, we define the following functions:

βi(h) =
‖ vi+1(x, t; h) ‖
‖ vi(x, t; h) ‖ , i = 0, 1, 2, · · · , N − 1,

and:

‖ vi ‖2=
∫ 20

0

∫ 20

0
|vi (x, t, h)|2 dt dx.

Performing the method which is demonstrated in the above give the approximation solutions for
α = 0.5, α = 0.7, and α = 0.9 with N = 3:

u(x, t) = x2 + t0.5, α = 0.5, h = 1.000
u(x, t) = x2 + t0.7, α = 0.7, h = 1.000
u(x, t) = x2 + t0.9, α = 0.9, h = 1.000
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The present method for this problem attains the exact solution for any 0 < α ≤ 1, only by using
three terms of VIM with an auxiliary parameter with h = 1.000.

6. Conclusions

The VIM was successfully used to solve many application problems in which difficulties may
arise in dealing with obtaining suitable accuracy in large domains. To overcome these difficulties, the
modified VIM was proposed using VIM with an auxiliary parameter and applied to solve fractional
convection–diffusion equations in this paper. Graphical figures and numerical results were presented
to determine the higher accuracy and simplicity of the proposed method. In fact, our method is easy
to implement, and capable of approximating solutions more accurately in longer intervals compared
to the original VIM. Moreover, it should be mentioned that the propounded method can be easily
generalized for more fractional problems in large domains.
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