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Abstract: A numerical method is proposed for estimating piecewise-constant solutions for Fredholm
integral equations of the first kind. Two functionals, namely the weighted total variation (WTV)
functional and the simplified Modica-Mortola (MM) functional, are introduced. The solution
procedure consists of two stages. In the first stage, the WTV functional is minimized to obtain
an approximate solution f∗TV. In the second stage, the simplified MM functional is minimized to
obtain the final result by using the damped Newton (DN) method with f∗TV as the initial guess. The
numerical implementation is given in detail, and numerical results of two examples are presented to
illustrate the efficiency of the proposed approach.

Keywords: Fredholm integral equation of the first kind; regularization; piecewise-constant solution;
total variation (TV) functional; Modica-Mortola (MM) functional

1. Introduction

In many physical problems, the relation between the quantity observed and the quantity to
be measured can be formulated as a Fredholm integral equation of the first kind:

∫ 1

0
k(x, t) f (t)dt = g(x), 0 ≤ x ≤ 1, (1)

where the kernel function k and the right-hand side g are known, while f is the unknown to
be determined. The Fredholm integral equation of the first kind is ill-posed; see for instance [1],
Chapter 2.

In practical applications, there is noise in the right-hand side; therefore, Equation (1) should
be revised as: ∫ 1

0
k(x, t) f (t)dt = g(x) + η(x), 0 ≤ x ≤ 1,

where η represents the error. The above equation can be written in the operator form:

K f = h, (2)

where (K f )(x) =
∫ 1

0 k(x, t) f (t)dt, 0 ≤ x ≤ 1 and h = g + η.
Numerical methods for obtaining a reasonable approximate solution to the Fredholm integral

equation of the first kind have attracted many researchers, and many research results have been
achieved; see, for instance, ([2], Chapter 12), and [3–7]. Due to the ill-posedness nature of the problem,
numerical solutions are extremely sensitive to perturbations caused by observation and rounding errors.
Therefore, regularization is required to obtain a reasonable approximate solution. Many regularization
methods have been proposed; see, for instance, [8] Chapters 2 and 8. The Tikhonov regularization
method [9], the truncated singular value decomposition (TSVD) method [10], the modified TSVD
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(MTSVD) method [11], the Chebyshev interpolation method [12], the collocation method [13,14],
the projected Tikhonov regularization method [15], and so on, are applied to obtain approximate
continuous solutions of Equation (2). The total variation (TV) regularization method [16–22], adaptive
TV methods [23–27], the piecewise-polynomial TSVD (PP-TSVD) method [28], and so on, are applied
to obtain approximate piecewise-continuous solutions.

In this paper, we focus on the case where the solution of Equation (1) is piecewise-constant and
the possible function values are known, that is:

m

∏
p=1

( f (x)− cp) = 0, x ∈ [0, 1],

where c1 < c2 < · · · < cm are given constants. This kind of problem arises in many applications,
for instance barcode reading, where m = 2, c1 = 0, c2 = 1, and image restoration, where m = 256,
cp = p− 1, p = 1, 2, . . . , 256.

This paper is organized as follows. In Section 2, two objective functionals are introduced;
one is based on a weighted TV functional to allow the TV regularization to be spatially varying,
and the other one is based on a simplified Modica-Mortola (MM) functional to make use of the a
priori knowledge of the solution. In Section 3, the implementation of numerical methods for solving
Equation (2) is presented in detail. In Section 4, numerical examples are presented to illustrate the
effectiveness of the proposed approach. Finally, concluding remarks are given in Section 5.

2. The Objective Functionals

The TV regularization method has been shown to be an effective way to estimate
piecewise-constant solutions. This method looks for a numerical solution that has small TV, which
is not inclined to a continuous or discontinuous solution. The weighted TV regularization scheme
is more efficient [23], which allows the TV regularization to be spatially varying, that is a small weight
is used if there is a possible edge and a large weight if there is no edge.

A commonly-used weighted TV functional is defined by:

TVω,β( f ) =
∫ 1

0
ω(x)

√
( f ′(x))2 + β dx, (3)

where β > 0 is a parameter and ω(x) ≥ 0 is a weighting function. An example of ω(x) is:

ω(x) =
θ

| f ′(x)|+ θ
,

where θ > 0 is a parameter; see [23]. We can see that 0 < ω(x) ≤ 1, and ω(x) decreases as | f ′(x)|
increases. That is, if | f ′(x)| is large, the corresponding weight is small. The above weighting function
is unsmooth, so we modify it as:

ω(x) =
√

β + θ√
( f ′(x))2 + β + θ

(4)

so that ω(x) is smooth and 0 < ω(x) ≤ 1.
One can use the weighted TV functional for Equation (2) to obtain a piecewise-constant solution.

In this paper, we consider solving the following minimization problem:

min
f

ΦTV( f ) =
1
2

J( f ) + αTVω,β( f ), (5)
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where:

J( f ) =
∫ 1

0
|K f − h|2dx

and α > 0 is a small regularization parameter.
To impose the constraint ∏m

p=1( f (x) − cp) = 0 to the numerical solutions, we consider the
following simplified MM functional:

ΦM( f ) =
1
2

J( f ) +
γ

2
M( f ), (6)

where γ > 0 is a regularization parameter and:

M( f ) =
∫ 1

0

m

∏
p=1

( f (x)− cp)
2dx.

Note that the MM functional, which is given by:

1
2

J( f ) +
α

2

∫ 1

0
( f ′(x))2dx +

γ

2
M( f ),

(see for instance [29]) is a useful tool for solving constant constraint problems, e.g., Bogosel and Oudet
applied the functional to analyze a spectral problem with the perimeter constraint [30].

It must be pointed out that the MM functional M( f ) is not convex and has many minimal points.
In general, we can only obtain a local minimizer for ΦM( f ). In other words, the numerical solution
obtained by minimizing ΦM( f ) depends on the initial guess. This observation motivates us to consider
estimating piecewise-constant solutions for (2) by a two-stage method: compute the minimizer f ∗TV of
ΦTV( f ) and then use f ∗TV as the initial guess to obtain a minimizer of ΦM( f ) to obtain the final result.

2.1. Discretization

To solve the minimization problems (5) and (6) numerically, we need to discretize
the relevant functionals. We use the midpoint quadrature and the central divided difference to
discretize integrals and first order derivatives, respectively. Let the interval [0, 1] be partitioned
uniformly into n subintervals [(i− 1)∆x, i∆x], i = 1, 2, . . . , n, then the quadrature points

are
(

i− 1
2

)
∆x, i = 1, 2 . . . , n, where ∆x = 1

n . Let f =
[

f
(
(i− 1

2 )∆x
)]n

i=1
, h =

[
h
(
(i− 1

2 )∆x
)]n

i=1

and K = ∆x
[
k
((

i− 1
2

)
∆x,

(
j− 1

2

)
∆x
)]n

i,j=1
. Then, the discretization form of (2) is given by:

Kf = h.

The discretization of the functionals J( f ), TVω,β( f ), and M( f ) are as follows.

(1) The discretization of J( f ) is given by:

J(f) = ‖Kf− h‖2,

where ‖ · ‖ denotes the vector two-norm.
(2) Let ei be the i-th column of the n× n identity matrix, and let:

di = ei+1 − ei, i = 1, 2, . . . , n− 1,

and:

D = [d1, d2, · · · , dn−1].
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We approximate the weighted TV functional TVω,β( f ) (cf. (3)) by:

TVω,β(f) =
n−1

∑
i=1

ωiψ(dT
i f),

where ωi = ω((i − 1/2)∆x) and ψ(x) =
√

x2 + β (we replace β(∆x)2 by β for the sake of
simplicity). Obviously, if the weighting factors are set to ωi = 1, i = 1, 2, . . . , n− 1, the weighted
TV functional is just the traditional TV functional. In this paper, we choose smooth factors by
approximating (4):

ωi =

√
β + θ√

(dT
i f)2 + β + θ

, i = 1, 2, . . . , n− 1. (7)

(3) As for M( f ), we simply approximate it by:

M(f) =
n

∑
i=1

m

∏
p=1

( fi − cp)
2.

Here, we omit the factor ∆x for the sake of simplicity.

Therefore, the discretization of ΦTV( f ) is:

ΦTV(f) =
1
2
‖Kf− h‖2 + α

n−1

∑
i=1

ωiψ(dT
i f) (8)

and the discretization of ΦM( f ) is:

ΦM(f) =
1
2
‖Kf− h‖2 +

γ

2

n

∑
i=1

m

∏
p=1

( fi − cp)
2. (9)

3. Numerical Implementation

In this section, the implementation of the damped Newton (DN) method for minimization of
the functions ΦTV(f) and ΦM(f) (cf. (8) and (9)) is given. We first derive the gradients and the Hessians
of J(f), TVω,β(f) and M(f).

Lemma 1. Let β and θ be positive constants, and define:

φ(x) =
1√

x2 + β
, ρ(x) =

1√
x2 + β + θ

. (10)

(1) The gradient and the Hessian of J(f) = ‖Kf− h‖2 are given by:

grad J(f) = 2KT(Kf− h) (11)

and:
Hess J(f) = 2KTK, (12)

respectively.
(2) Let ωi = 1, i = 1, 2, . . . , n − 1 and φ(x) be defined by (10). Let diag(φ(dT

1 f), . . . , φ(dT
n−1f))

be denoted by diag(φ(DTf)). Then, the gradient and the Hessian of TVω,β(f) are given by:

grad TVω,β(f) = L(f)f (13)
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and:
Hess TVω,β(f) = L(f) + L′(f)f, (14)

respectively, where:
L(f) = D

[
diag(φ(DTf))

]
DT (15)

and:

L′(f)f = −D
[
(diag(DTf))2

(
diag(φ(DTf))

)3
]

DT .

Here, we use the symbols L(f) and L′(f)f in the same way as they have been used in [8].
(3) Let ωi, i = 1, 2, . . . , n − 1, be given by (7), and φ(x) and ρ(x) be defined by (10).

Let diag(ρ(dT
1 f), . . . , ρ(dT

n−1f)) be denoted by diag(ρ(DTf)). Then, the gradient and the Hessian of TVω,β(f)
are given by:

grad TVω,β(f) = L(f)f (16)

and:
Hess TVω,β(f) = L(f) + L′(f)f, (17)

respectively, where:
L(f) = θ̃D

[
diag(φ(DTf))diag(ρ(DTf))2

]
DT (18)

and:

L′(f)f = −θ̃D
[
(diag(DTf))2(diag(φ(DTf)) + 2diag(ρ(DTf)))diag(ρ(DTf))2diag(φ(DTf))2]DT (19)

with θ̃ = θ(
√

β + θ).
(4) The gradient of M(f) is given by:

grad M(f) =
(

∂M
∂ f1

,
∂M
∂ f2

, . . . ,
∂M
∂ fn

)T
, (20)

where the partial derivatives ∂M
∂ fi

, i = 1, 2, . . . , n, are given by:

∂M
∂ fi

=


2

(
m

∏
p=1

( fi − cp)

)2 m

∑
p=1

1
fi − cp

, ∏m
p=1( fi − cp) 6= 0,

0, ∏m
p=1( fi − cp) = 0.

(21)

The Hessian of M(f) is a diagonal matrix given by:

Hess M(f) = diag

(
∂2M
∂ f 2

1
,

∂2M
∂ f 2

2
, · · · ,

∂2M
∂ f 2

n

)
, (22)

where:

∂2M
∂ f 2

i
=


2

(
m

∏
p=1

( fi − cp)

)2
2

(
m

∑
p=1

1
fi − cp

)2

−
m

∑
p=1

1
( fi − cp)2

 , ∏m
p=1( fi − cp) 6= 0,

2
m

∏
p=1,p 6=p0

( fi − cp)
2, fi = cp0 .

(23)

Proof. Results (1) and (2) of the lemma are well known; see [8], Section 8.2.
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(3) Let ζ(x) =
√

x2+β√
x2+β+θ

, then we have:

ζ ′(x) =
θx√

x2 + β(
√

x2 + β + θ)2
= θxφ(x)ρ(x)2,

ζ ′′(x) = θφ(x)ρ(x)2 − θx2(φ(x) + 2ρ(x))ρ(x)2φ(x)2,

where φ(x) and ρ(x) are defined by (10). Let θ̃ = θ(
√

β + θ); it can be easily checked that for any v,

d
dτ

TVω,β(f + τv)|τ=0

=
n−1

∑
i=1

θ̃ · (dT
i f) · φ(dT

i f) · ρ(dT
i f)2 · dT

i v

= θ̃ · (DTv)T · diag(φ(DTf)) · diag(ρ(DTf))2 · (DTf)

= 〈θ̃D
[
diag(φ(DTf))diag(ρ(dT

i f))2
]

DTf, v〉.

It follows that:
grad TVω,β(f) = L(f)f,

where L(f) is given by (18).
To obtain the Hessian of TVω,β, we consider TVω,β(f + τv + ξw). From the expression of ζ ′′(x),

we have that for any v, w:

∂2

∂τ∂ξ
TVω,β(f + τv + ξw)|τ,ξ=0

=
n−1

∑
i=1

θ̃ · φ(dT
i f) · ρ(dT

i f)2 · dT
i w · dT

i v

−
n−1

∑
i=1

θ̃ · (dT
i f)2 · (φ(dT

i f) + 2ρ(dT
i f)) · ρ(dT

i f)2 · φ(dT
i f)2 · dT

i w · dT
i v

= 〈(L(f) + L′(f)f)w, v〉,

where L(f) and L′(f)f are given by (18) and (19) respectively. Consequently:

Hess TVω,β(f) = L(f) + L′(f)f.

(4) It is easy to see that the partial derivatives ∂M
∂ fi

, i = 1, 2, . . . , n, are given by:

∂M
∂ fi

= 2

(
m

∏
p=1

( fi − cp)

)(
m

∑
l=1

m

∏
p=1,p 6=l

( fi − cp)

)
,

which can be rewritten in the form of (21). For the second order partial derivatives, we have:

∂2M
∂ f 2

i
=


2

(
m

∏
p=1

( fi − cp)

)2
2

(
m

∑
p=1

1
fi − cp

)2

−
m

∑
p=1

1
( fi − cp)2

 , ∏m
p=1( fi − cp) 6= 0,

2
m

∏
p=1,p 6=p0

( fi − cp)
2, fi = cp0 ,

and:
∂2M

∂ fi∂ f j
= 0, i 6= j.
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Therefore, the Hessian of M is a diagonal matrix given by:

Hess M(f) = diag

(
∂2M
∂ f 2

1
,

∂2M
∂ f 2

2
, · · · ,

∂2M
∂ f 2

1

)
,

where ∂2M/∂ f 2
i , i = 1, 2, . . . , n, are given by (23).

From Formulas (11)–(23), we can get the gradients and the Hessians of ΦTV(f) and ΦM(f).
We introduce the following DN method for minimization of Ψ(f) = ΦTV(f) or ΦM(f).

Algorithm 1: Damped Newton (DN) method for the minimization of Ψ(f).
Input an initial guess f0;
ν = 0;
Begin iterations

Compute g = grad Ψ(fν) and H = Hess Ψ(fν);
Solve Hs = −g to obtain s;
Obtain the minimum point of the one-dimensional nonnegative function Ψ(fν + τs) by using

line search to get τν = arg minτ Ψ(fν + τs);
Update the approximate solution: fν+1 = fν + τνs;
Check the termination condition: If ‖fν+1 − fν‖/‖fν+1‖ < ε, break;
ν = ν + 1;

End iterations
Output fν+1.

Remark 1.
(1) Since we carry out exact line search (Step 6) in the iterative process, the DN method converges to a local

minimal point if the Hessian of Ψ(f) is invertible. In the case that Ψ(f) is singular, modification is required. In
our numerical tests in Section 4, no modification is needed. It must be pointed out that for large-scale systems,
the most expensive part of the algorithm is solving Hs = −g to obtain s. If the matrix H has a Toeplitz structure,
then the conjugate gradient method with the fast Fourier transform (FFT) can be applied to solve the system
efficiently; see [31] for details.

(2) For the minimization of ΦTV(f), if we approximate the Hessian of ΦTV(f) by the positive definite
matrix KTK + αL(f) (assume that K1 6= 0 where 1 is the vector with all elements equal to one) and set the
step-size τν to 1, we get the Gauss–Newton method. If we obtain τν by using line search method, we get a
modified Gauss–Newton (MGN) method. In this paper, we also consider the MGN method for minimization of
ΦTV(f). Obviously, the MGN method converges to a local minimal point.

To end this section, we state the process for solving Equation (2). We first obtain the minimizer
f∗TV of ΦTV(f), and then, we obtain a minimizer f∗M of ΦM(f) by using the DN method with f∗TV as
the initial guess. The approach can be summarized as Algorithm 2.

Algorithm 2: Weighted total variation Modica-Mortola (WTVMM) method for estimating
piecewise-constant solution of Equation (2).

Obtain the minimizer f∗TV of ΦTV(f) by using the MGN method or the DN method;
Obtain a minimizer f∗M of ΦM(f) by using the DN method with f∗TV as the initial guess;
Output f∗M.
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4. Numerical Examples

In this section, we present numerical results for two examples to illustrate that our approach
is indeed capable of estimating piecewise-constant solutions to Equation (2).

Besides the numerical solution obtained by using our approach, approximate solutions obtained
by using the TV regularization method and the weighted TV regularization method with weighting
factors ωi = (

√
β + θ)/(

√
( fi+1 − fi)2 + β + θ) (cf. (7)) are presented. In the following tables and

figures, we use the symbols weighted total variation Modica-Mortola (WTVMM), TV and WTV to
denote the above three methods.

We set the number of subintervals to n = 128. All tests were carried out by using MATLAB,
and the termination parameter is set to ε = 10−5; see Step 8 of Algorithm 1. In the tables,
the column “(α, β, θ, γ)” gives relevant parameters; the column “#it” gives the number of iterations
(for the WTVMM method, i1 + i2 denotes that the WTV method and the MM method require i1 and i2
iterations, respectively). The column “error” gives the relative error defined by:

error =
‖fexact − fapp‖2

‖fexact‖2
,

where fexact and fapp are the vectors of the exact solution and the approximate solution at the quadrature
points, respectively. Here, one iteration refers to Steps 4–8 of Algorithm 1.

There are several regularization parameter choosing methods, e.g., the discrepancy principle,
the generalized discrepancy principle, the generalized cross validation, the L-curve and the normalized
cumulative periodogram; see, for instance, [32,33], ([1], Chapters 5–6), ([8], Chapter 7), ([34], Chapters 5,
6 and 9). However, we choose the parameters by experiments since there are two additional parameters
in the regularization term TVω,β(f). We consider the following rules in choosing the parameters:

(1) Since we use
√

x2 + β as an approximation of |x|, we set β to a very small positive number.
We note that if β is significantly larger than x2, then:√

x2 + β ≈
√

β +
1

2
√

β
x2.

As a result, the regularization term
√

x2 + β leads to an H1-like regularization.
(2) If θ is much larger than x2, then the weighting function ω(x) is close to one, i.e.,

ω(x) =
√

β + θ√
x2 + β + θ

≈ 1.

It follows that the weighted TV regularization is about the same as the traditional TV
regularization. Therefore, we should not choose a large value for θ.

(3) We choose the value for α by the help of the discrepancy principle and observe if the numerical
solution is near piecewise-constant. After choosing a value for α, we consider adjustment of β

and θ: if the numerical solution is over-smooth, we choose a smaller value for β or θ; on the other
hand, if the numerical solution is oscillating, we choose a larger value for β or θ.

We have tried the DN method and the MGN method for minimization of the functions
corresponding to the TV functional (ωi = 1) and the WTV functional (the weighted factors are given
by (7)) in our numerical tests. Numerical results show that the DN method is better than the MGN
method when ωi = 1, and the MGN method is better than the DN method when ωi is given by (7).
In the following, we show the numerical results carried out by the DN method for minimization
of the function corresponding to the TV functional and those carried out by the MGN method for
minimization of the function corresponding to the WTV functional.
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Example 1. The kernel of Equation (2) is given by:

k(x, t) =
1

σ
√

2π
e−

(x−t)2

2σ2 ,

where σ = 0.05. In this case, the condition number of the matrix K is 7.8654× 1018. The right-hand side g(x)
is obtained by setting the exact solution to:

fexact(t) =


c1, t ∈ [0, 0.2) ∪ [0.4, 0.6) ∪ [0.8, 1] ,
c2, t ∈ [0.6, 0.8) ,
c3, t ∈ [0.2, 0.4) ,

where c1 = 1, c2 = 2, c3 = 3. Two noisy right-hand sides, which contain 1% and 10% of white noise,
respectively, are tested.

Since the average of c1, c2 and c3 is two, we choose f0 = (2, 2, . . . , 2)T as the initial guess for the
minimization of the functions corresponding to the TV and WTV functionals, which is not too far from
the exact solution. The exact solution and the right-hand side are shown in Figure 1a,b, two noisy
right-hand sides are shown in Figure 1c,d, respectively. Numerical solutions obtained by different
methods, as well as the point-wise error for all numerical solutions are shown in Figure 2. The relevant
parameters, the numbers of iterations and the relative errors are given in Tables 1 and 2.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

(a)
0 0.2 0.4 0.6 0.8 1
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1.5
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3
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(b)
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(c)
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1

1.5

2

2.5

3

3.5

(d)

Figure 1. The exact solution, the right-hand side and noisy right-hand sides for Example 1. (a) The exact
solution; (b) the right-hand side; (c) a noisy right-hand side containing 1% of white noise; and (d) a
noisy right-hand side containing 10% of white noise.
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Table 1. Parameters used, number of iterations and relative errors for different methods for Example 1
where the right-hand side contains 1% of white noise. TV: total variation; WTV: weighted total variation;
WTVMM: weighted total variation Modica-Mortola.

(α, β, θ, γ) #it Error

TV (5.0× 10−2, 2.5× 10−5, -, -) 24 4.5× 10−2

WTV (5.0× 10−2, 2.5× 10−5, 5.0× 10−2, -) 11 8.61× 10−3

WTVMM (5.0× 10−2, 2.5× 10−5, 5.0× 10−2, 1) 11 + 4 1.98× 10−3
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Figure 2. The exact solution (dot), numerical solutions (x) and point-wise errors for the three methods
for Example 1 with noisy right-hand sides containing 1% (left) and 10% (right) of white noise.
(a) Numerical solutions of TV; (b) numerical solutions of WTV; (c) numerical solutions of WTVMM;
and (d) point-wise errors of the numerical solutions.

Table 2. Parameters used, number of iterations and relative errors for different methods for Example 1
where the noisy right-hand side contains 10% of white noise.

(α, β, θ, γ) #it Error

TV (1.0× 10−1, 5.0× 10−5, -, -) 10 9.48× 10−2

WTV (1.0× 10−1, 5.0× 10−3, 5.0× 10−2, -) 13 7.18× 10−2

WTVMM (1.0× 10−1, 5.0× 10−2, 5.0× 10−2, 1) 10+11 5.03× 10−2

We have tried a one-stage method for solving Example 1. The best numerical solution we obtained
by minimizing the function 1

2 J(f) + αTV1,β(f) +
γ
2 M(f) for Example 1 is shown in Figure 3. We observe

from all figures in Figures 2 and 3 that the numerical solution obtained via the WTVMM method
is the best.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

Figure 3. The exact solution (circle) and the numerical solution obtained by minimizing
1
2 J(f) + αTV1,β(f) + γM(f) (dot) for Example 1 where the noisy right-hand side contains 10% of

white noise.

We make the following remarks based on the above numerical results.

(1) For the WTVMM method, the main cost lies in obtaining the numerical solution f∗TV,
i.e., minimization of ΦTV(f) defined by (8).
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(2) The numerical solutions obtained by using the WTV method are better than those obtained by
the TV method. The numerical solutions obtained by using the WTVMM method can be quite
accurate, which can be clearly seen from the relative errors shown in Tables 1 and 2, the numerical
solutions shown in Figure 2c and the point-wise errors shown in Figure 2d.

(3) If the position of the break points in the solution can be identified by the previous step,
the approximate solution obtained by the WTVMM method can be very accurate. In the other
hand, since the local minimizer of ΦM obtained by the DN method is sensitive to the initial guess,
we may not be able to obtain a good numerical solution if the approximate solution obtained
in the previous step cannot identify the break points well.

To demonstrate the influence of the values of parameters on numerical solutions, we present
the relative errors of the numerical solutions of the three methods for a considerably different set of
the parameter combinations (β, θ) in Tables 3 and 4. We can see from the tables that if the values of
the parameters are not too far from the optimal ones, we can obtain satisfactory numerical solutions.
Moreover, both values of β and θ affect the quality of the numerical solutions, and a correct choice of
β seems more important (see the column corresponding to β = 2.5× 10−3 in Table 3 and the one for
β = 2.5× 10−2 in Table 4). Moreover, we can see that satisfying numerical solutions can be obtained
by using different parameter combinations.

Table 3. Relative errors for TV (1st element), WTV (2nd element) and WTVMM (3rd element) with
different β and θ for Example 1 with the right-hand side containing 1% of white noise.

θ
β 2.5 × 10−3 2.5 × 10−4 2.5 × 10−6

5.0 (1.05× 10−1, 4.82× 10−2, 4.88× 10−2) (5.74× 10−2, 4.70× 10−2, 4.89× 10−2) (4.67× 10−2, 4.88× 10−2, 4.89× 10−2)
5.0× 10−1 (1.05× 10−1, 1.73× 10−2, 1.98× 10−3) (5.74× 10−2, 1.30× 10−2, 1.98× 10−3) (4.67× 10−2, 9.51× 10−3, 1.98× 10−3)
5.0× 10−3 (1.05× 10−1, 1.05× 10−2, 1.98× 10−3) (5.74× 10−2, 3.28× 10−2, 4.94× 10−2) (4.67× 10−2, 1.42× 10−1, 1.30× 10−1)

Table 4. Relative errors for TV (1st element), WTV (2nd element) and WTVMM (3rd element) with
different β and θ for Example 1 with the right-hand side containing 10% of white noise.

θ
β 5.0 × 10−1 5.0 × 10−2 5.0 × 10−4

5.0× 10−1 (1.48× 10−1, 1.46× 10−1, 1.49× 10−1) (1.49× 10−1, 8.93× 10−2, 7.09× 10−2) (9.48× 10−2, 8.37× 10−2, 8.59× 10−2)
5.0× 10−3 (1.48× 10−1, 1.46× 10−1, 1.93× 10−1) (1.49× 10−1, 8.56× 10−2, 5.03× 10−2) (9.48× 10−2, 1.21× 10−1, 1.22× 10−1)
5.0× 10−4 (1.48× 10−1, 1.47× 10−1, 1.79× 10−1) (1.49× 10−1, 8.56× 10−2, 5.03× 10−2) (9.48× 10−2, 1.31× 10−1, 1.31× 10−1)

Example 2. (Barcode reading) The Fredholm integral equation can serve as a good approximation of the blurring
inside a barcode reader ([1], p. 135). The kernel of the equation is given by:

k(x, t) = e−
(x−t)2

σ2 .

In our numerical tests, we choose σ = 0.01. The intensity of the printed barcode and the exact right-hand
side are shown in Figure 4a,b, and two noisy right-hand sides are shown in Figure 4c,d, respectively.

Since the average of c1 and c2 is 0.5, we choose f0 = (0.5, 0.5, . . . , 0.5)T as initial guess for
minimization of the functions corresponding to the TV and WTV functionals. Numerical solutions
obtained by different methods, as well as the the point-wise error for all numerical solutions are shown
in Figure 5. The relevant parameters, the number of iterations and the relative errors are given
in Tables 5 and 6.
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Table 5. Parameters used, number of iterations and relative errors for different methods for Example 2
where the right-hand side contains 1% of white noise.

(α, β, θ, γ) #it Error

TV (5.0× 10−6, 2.5× 10−5, -, -) 14 1.13× 10−2

WTV (5.0× 10−6, 2.5× 10−5, 5.0× 10−2, -) 8 3.79× 10−3

WTVMM (5.0× 10−6, 2.5× 10−5, 5.0× 10−2, 1) 8+3 1.65× 10−6

Table 6. Parameters used, number of iterations and relative errors for different methods for Example 2
where the right-hand side contains 10% of white noise.

(α, β, θ, γ) #it Error

TV (4.0× 10−5, 1.0× 10−4, -, -) 16 1.29× 10−1

WTV (4.0× 10−5, 2.5× 10−3, 5.0× 10−2, -) 11 4.14× 10−2

WTVMM (4.0× 10−5, 2.5× 10−3, 5.0× 10−2, 1) 11+4 1.65× 10−5
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Figure 4. The exact solution, the right-hand side, and noisy right-hand sides for Example 2. (a) The exact
solution; (b) the right-hand side; (c) a noisy right-hand side containing 1% of white noise; and (d) a
noisy right-hand side containing 10% of white noise.
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Figure 5. The exact solution (dot), numerical solutions (x) and point-wise errors for the three methods
for Example 2 with noisy right-hand sides containing 1% (left) and 10% (right) of white noise.
(a) Numerical solutions of TV; (b) numerical solutions of WTV; (c) numerical solutions of WTVMM;
and (d) point-wise errors of the numerical solutions.
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Again, from Figure 5 and Tables 5 and 6, one can observe that the numerical solutions obtained by
using the WTVMM method are much better than those obtained by using the TV and WTV methods.
In fact, we can obtain an approximate barcode of very high quality by using the WTVMM method.

5. Concluding Remarks

We presented a two-stage numerical method for estimating piecewise-constant solutions
for Fredholm integral equations of the first kind. The main work of the two-stage method
is the minimization of ΦTV(f), which may require many iterations. Numerical results showed that
if the relevant parameters are chosen suitably, the proposed method can obtain satisfying numerical
solutions. We will study regularization parameter choosing methods, as well as efficient algorithms
for relevant minimization problems for weighted total variation (WTV) methods, including iterative
scheme for parameter determination.
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