

Article

Coincidence Points of a Sequence of Multivalued Mappings in Metric Space with a Graph

Muhammad Nouman Aslam Khan^{1,2,†}, Akbar Azam^{2,†} and Nayyar Mehmood^{3,*,†}

- ¹ School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan; mnouman@scme.nust.edu.pk
- ² Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 44000, Pakistan; akbarazam@yahoo.com
- ³ Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad 44000, Pakistan
- * Correspondence: nayyar.mehmood@iiu.edu.pk; Tel.: +92-51-9019-948
- + These authors contributed equally to this work.

Academic Editor: Lokenath Debnath Received: 24 March 2017; Accepted: 22 May 2017; Published: 26 May 2017

Abstract: In this article the coincidence points of a self map and a sequence of multivalued maps are found in the settings of complete metric space endowed with a graph. A novel result of Asrifa and Vetrivel is generalized and as an application we obtain an existence theorem for a special type of fractional integral equation. Moreover, we establish a result on the convergence of successive approximation of a system of Bernstein operators on a Banach space.

Keywords: graphic contraction; coincidence points; sequence of multivalued maps; Bernstein operators

1. Introduction and Preliminaries

For the metric space (X, d), using the notions of Nadler [1] and Hu [2], denote CB(X), C(X)and 2^X by the collection of nonempty closed and bounded, compact and all nonempty subsets of *X* respectively. Consider $A, B \in CB(X)$ the distance between sets *A* and *B* is defined by $d(A, B) = \inf_{x \in A, y \in B} d(x, y)$, which does not allow to enjoy the properties of metric on CB(X) therefore a well known idea of Hausdorff–Pompeiu distance *H* on CB(X) induced by *d* is used to define a metric on CB(X) as follows:

$$H(A,B) = \inf\{\epsilon > 0 : A \subseteq N(\epsilon,B), B \subseteq N(\epsilon,A)\},\$$

where:

$$N(\epsilon, A) = \{x \in X : d(x, a) < \epsilon, \text{ for some } a \in A\}.$$

In 1969, Nadler [1] proved fixed point results for multivalued mappings in complete metric spaces, using the Hausdorff distance *H*, which was the generalization of Banach contraction principle in the settings of set-valued mappings. Covitz and Nadler [3] extended the idea of multivalued mappings in the generalized metric spaces. Reich [4] in 1972 published a fixed point result for the multivalued maps on the compact subsets of a complete metric space and posed the question, "can *C* (*X*) be replaced by *CB* (*X*)?". In 1989, Mizoguchi and Takahashi answered this question in Theorem 5 of [5] and they also provide some Caristi type theorems for multivalued operators. Whereas Hu [2] in 1980 extended the multivalued fixed point results from complete metric space to complete ε -chainable metric space. Azam and Arshad [6] have extended the Theorem 6 of [1] by finding the fixed points of a sequence of locally contractive multivalued maps in ε -chainable metric space. Further Feng and Liu [7] used

the concept of lower semi-continuity and a generalized contractive condition to extend the result of Nadler [1] and Caristi type theorems as defined in [5]. For more references the readers are referred to the work of Ciric [8], Klim and Wardowski [9,10], Nicolae [11].

Jachymski [12] in 2007 unified and extended the work of Nieto [13] and Ran and Reuring [14] by defining a new class of contractions (G-contraction) on metric space (X, d) endowed with a graph. The connectivity of the graph brings more attractions regarding a necessary and sufficient condition for any G-contractive operator to be a Picard operator.

In the present article, fascinated by [6] the existence of coincidence points of a sequence of multivalued maps with a self map are taken into account with a generalized form of G-contraction. This provides a new way to generalize many existing results in the literature (see [1,6] and the references therein).

Let us recall some definitions from graph theory with the perspective of using them in our ideas and results. For a metric space (X, d) let \triangle be the diagonal of the Cartesian product $X \times X$. Consider a directed graph *G* such that X = V(G), where V(G) is the set of vertices of *G*. The set E(G) of edges of *G* contains all the loops. If *G* has no parallel edge then we can identify *G* with the pair (V(G), E(G)). Further, the graph *G* can be dealt with as a weighted graph if each edge is assigned by the distance between its edges.

Consider a directed graph *G*, then G^{-1} denote the graph obtained from *G* by reversing the direction of edges and if we ignore the direction of edges in graph *G* we get an undirected graph \tilde{G} . The pair (V', E') is said to be a subgraph of *G* if $V' \subseteq V(G)$ and $E' \subseteq E(G)$ and for any edge $(a, b) \in E'$ for all $a, b \in V'$.

Recall some fundamental definitions regarding the connectivity of graphs, which can be found in [15].

Definition 1. A path in G from the vertex p to q of length K, is a sequence $\{p_i\}$ of K + 1 vertices such that $p_0 = p,...,p_K = q$ and $(p_{i-1}, p_i) \in E(G)$ for j = 1, 2, ..., K.

Definition 2. A graph G is called connected if there is a path between any two vertices. Graph G is weakly connected if \tilde{G} is connected.

Definition 3. For *a*, *b* and *c* in V(G), $[a]_G$ denote the equivalence class of the relation ~ defined on V(G) by *the rule:*

 $b \sim c$ if there is a path in G from b to c.

For $v \in V(G)$ and $K \in \mathbb{N} \cup \{0\}$ by $[v]_G^K$ we denote the set

 $[v]_G^K := \{ u \in V(G) : there is a path of length K from v to u \}.$

Following is the definition of G-contraction by Jachymski [12].

Definition 4. [12] Let (X, d) be a metric space endowed with a graph *G*. We say that a mapping $T : X \to X$ is a *G*-contraction if *T* preserves edges of *G i.e.*,

$$\forall_{x,y\in X}(x,y)\in E(G)\Rightarrow (Tx,Ty)\in E(G),$$

and there exists some $\alpha \in [0, 1)$ such that:

$$\forall_{x,y \in X} (x,y) \in E(G) \Rightarrow d(Tx,Ty) \le \alpha d(x,y).$$

Mizoguchi and Takahashi [5] had defined a *MT*-function as follows:

Definition 5. [16] A function φ : $[0, +\infty) \rightarrow [0, 1)$ is said to be a MT-function if it satisfies Mizoguchi and Takahashi's condition (i.e., $\limsup_{r \rightarrow t^+} \varphi(r) < 1$ for all $t \in [0, +\infty)$). Clearly, if φ : $[0, +\infty) \rightarrow [0, 1)$ is a nondecreasing function or a nonincreasing function, then it is a MT-function.

Now we state some results from the basic theory of multivalued mappings.

Lemma 1. [17] Let (X,d) be a metric space and $A, B \in CB(X)$, with $H(A,B) < \epsilon$, then for each $a \in A$, there exists an element $b \in B$ such that:

$$d(a,b) < \epsilon$$
.

Lemma 2. [18] Let (X, d) be a metric space and $A, B \in CB(X)$, then for each $a \in A$:

$$d(a,B) \le H(A,B).$$

Lemma 3. [19] Let $\{A_n\}$ be a sequence in CB(X) and there exists $A \in CB(X)$ such that $\lim_{n \to \infty} H(A_n, A) \to 0$. If $x_n \in A_n$ (n = 1, 2, 3, ...) and there exists $x \in X$ such that $\lim_{n \to \infty} d(x_n, x) \to 0$ then $x \in A$.

2. Main Results

Definition 6. [20] A multivalued mapping $F : X \to CB(X)$ is said to be Mizoguchi-Takahashi G-contraction if for all x, y in $X, x \neq y$ with $(x, y) \in E(G)$:

- (*i*) $H(F(x), F(y)) \le \varphi(d(x, y)) d(x, y);$
- (ii) If $u \in F(x)$ and $v \in F(y)$ are such that $d(u, v) \le d(x, y)$, then $(u, v) \in E(G)$.

Motivated by the Definition 2.1 of [20], in a more general settings, we define the sequence of multivalued G_f -contraction as follows:

Definition 7. Let $f : X \to X$ be a edge preserving surjection. A sequence of multivalued mappings $\{T_q\}_{q=1}^{\infty}$ from X into CB(X) is said to be sequence of multivalued G_f -contraction if $(fu, fv) \in E(G)$, implies:

$$H(T_q(u), T_r(v)) \le \mu(d(fu, fv))d(fu, fv), \text{ for all } q, r \in \mathbb{N}.$$
(1)

For $x \in T_q(u)$ and $y \in T_r(v)$ satisfying $d(fx, fy) \leq d(fu, fv)$ implies $(fx, fy) \in E(G)$, where μ : $[0, \infty) \rightarrow [0, 1)$ is a MT-function.

The next theorem provides the way to find the coincidence of a self map and a sequence of multivalued maps.

Theorem 1. Let (X,d) a complete metric space, $\{T_q\}_{q=1}^{\infty}$ a sequence of multivalued G_f -contraction from X into CB(X) and $f: X \to X$ a surjection. If there exist $m \in \mathbb{N}$ and $v_0 \in X$, such that:

- (i) $T_1(v_0) \cap [fv_0]_G^m \neq \phi;$
- (ii) For any sequence $\{v_n\}$ in X, if $v_n \to v$ and $v_n \in T_n(v_{n-1}) \cap [v_{n-1}]_G^m$ for all $n \in \mathbb{N}$, then there exists a subsequence $\{v_{n_k}\}$ such that $(v_{n_k}, v) \in E(G)$ for all $k \in \mathbb{N}$.

Then f and sequence of mappings $\{T_q\}_{q=1}^{\infty}$ have a coincidence point, i.e., there exists $v^* \in X$ such that $fv^* \in \bigcap_{q \in \mathbb{N}} T_q(v^*)$.

Proof. Choose any $v_1 \in X$ such that $fv_1 \in T_1(v_0) \cap [fv_0]_G^m$ then there exists a path from fv_0 to fv_1 , i.e., $fv_0 = fu_0^{(1)}, \dots fu_m^{(1)} = fv_1 \in T_1(v_0)$, and $(fu_i^{(1)}, fu_{i+1}^{(1)}) \in E(G)$ for all $i = 0, 1, 2, \dots, m-1$. \Box

Without any loss of generality, assume that $fu_k^{(1)} \neq fu_j^{(1)}$ for each $k, j \in \{0, 1, 2, ..., m\}$ with $k \neq j$. Since $(fu_0^{(1)}, fu_1^{(1)}) \in E(G)$, so:

$$\begin{split} H(T_1(u_0^{(1)}), T_2(u_1^{(1)})) &\leq & \mu(d(fu_0^{(1)}, fu_1^{(1)}))d(fu_0^{(1)}, fu_1^{(1)}) \\ &< & \sqrt{\mu(d(fu_0^{(1)}, fu_1^{(1)}))}d(fu_0^{(1)}, fu_1^{(1)}) \\ &< & d(fu_0^{(1)}, fu_1^{(1)}) \end{split}$$

Rename fv_1 as $fu_0^{(2)}$. As $fu_0^{(2)} \in T_1(u_0^{(1)})$, and using Lemma 1 one can find some $fu_1^{(2)} \in T_2(u_1^{(1)})$ such that:

$$d(fu_0^{(2)}, fu_1^{(2)}) < d(fu_0^{(1)}, fu_1^{(1)}).$$

Since $(fu_1^{(1)}, fu_2^{(1)}) \in E(G)$, so:

$$\begin{aligned} H(T_2(u_1^{(1)}), T_2(u_2^{(1)})) &\leq & \mu(d(fu_1^{(1)}, fu_2^{(1)}))d(fu_1^{(1)}, fu_2^{(1)}) \\ &< & d(fu_1^{(1)}, fu_2^{(1)}). \end{aligned}$$

Similarly since $fu_1^{(2)} \in T_2(u_1^{(1)})$, again using Lemma 1 one can find some $fu_2^{(2)} \in T_2(u_2^{(1)})$ such that:

$$d(fu_1^{(2)}, fu_2^{(2)}) < d(fu_1^{(1)}, fu_2^{(1)})$$

Thus we obtain $\{fu_0^{(2)}, fu_1^{(2)}, fu_2^{(2)}, \dots, fu_m^{(2)}\}$ of m + 1 vertices of X such that $fu_0^{(2)} \in T_1(u_0^{(1)})$ and $fu_s^{(2)} \in T_2(u_s^{(1)})$ for $s = 1, 2, \dots, m$, with:

$$d(fu_s^{(2)}, fu_{s+1}^{(2)}) < d(fu_s^{(1)}, fu_{s+1}^{(1)})$$

for $s = 0, 1, 2, \dots, m-1$. As $(fu_s^{(1)}, fu_{s+1}^{(1)}) \in E(G)$ for all $s = 0, 1, 2, \dots, m-1$, thus $(fu_s^{(2)}, fu_{s+1}^{(2)}) \in E(G)$ for all $s = 0, 1, 2, \dots, m-1$.

Let $fu_m^{(2)} = fv_2$. Thus the set of points $fv_1 = fu_0^{(2)}, fu_1^{(2)}, fu_2^{(2)}, \dots, fu_m^{(2)} = fv_2 \in T_2(v_1)$ is a path from fv_1 to fv_2 . Rename fv_2 as $fu_0^{(3)}$. Then by the same procedure we obtain a path:

$$fv_2 = fu_0^{(3)}, fu_1^{(3)}, fu_2^{(3)}, \cdots, fu_m^{(3)} = fv_3 \in T_3(v_2)$$

from fv_2 to fv_3 . Inductively, obtained:

$$fv_h = fu_0^{(h+1)}, fu_1^{(h+1)}, fu_2^{(h+1)}, \cdots, fu_m^{(h+1)} = fv_{h+1} \in T_{h+1}(v_h)$$

with:

$$d(fu_t^{(h+1)}, fu_{t+1}^{(h+1)}) < d(fu_t^{(h)}, fu_{t+1}^{(h)}),$$
(2)

hence $(fu_t^{(h+1)}, fu_{t+1}^{(h+1)}) \in E(G)$ for $t = 0, 1, 2, \dots, m-1$. Consequently, construct a sequence $\{fv_h\}_{h=1}^{\infty}$ of points of *X* with:

$$fv_{1} = fu_{m}^{(1)} = fu_{0}^{(2)} \in T_{1}(v_{0}),$$

$$fv_{2} = fu_{m}^{(2)} = fu_{0}^{(3)} \in T_{2}(v_{1}),$$

$$fv_{3} = fu_{m}^{(3)} = fu_{0}^{(4)} \in T_{3}(v_{2}),$$

$$\vdots$$

$$fv_{h+1} = fu_{m}^{(h+1)} = fu_{0}^{(h+2)} \in T_{h+1}(v_{h}),$$

for all $h \in \mathbb{N}$.

For each $t \in \{0, 1, 2, ..., m - 1\}$, and from (2), clearly $\{d(fu_t^{(h)}, fu_{t+1}^{(h)})\}_{h=1}^{\infty}$ is a decreasing sequence of non-negative real numbers and so there exists $a_t \ge 0$ such that:

$$\lim_{h\to\infty} d(fu_t^{(h)}, fu_{t+1}^{(h)}) = a_t.$$

By assumption, $\limsup_{t\to a_t^+} \mu(t) < 1$, so there exists $k_t \in \mathbb{N}$ such that $\mu(d(fu_t^{(h)}, fu_{t+1}^{(h)})) < \omega(a_t)$ for all $h \ge k_t$ where $\limsup_{t\to a_t^+} \mu(t) < \omega(a_t) < 1$.

Now put:

$$\Theta_{t} = \max\left\{\max_{r=1,...,k_{t}}\sqrt{\mu(d(fu_{t}^{(r)},fu_{t+1}^{(r)}))},\sqrt{\omega(a_{t})}\right\}$$

Then, for every $h > k_t$, consider:

$$\begin{aligned} d(fu_t^{(h+1)}, fu_{t+1}^{(h+1)}) &< & \sqrt{\mu(d(fu_t^{(h)}, fu_{t+1}^{(h)}))} d(fu_t^{(h)}, fu_{t+1}^{(h)}) \\ &< & \sqrt{\omega(a_t)} d(fu_t^{(h)}, fu_{t+1}^{(h)}) \\ &\leq & \Theta_t d(fu_t^{(h)}, fu_{t+1}^{(h)}) \\ &\leq & (\Theta_t)^2 d(fu_t^{(h-1)}, fu_{t+1}^{(h-1)}) \\ &\leq & \dots \\ &\leq & (\Theta_t)^h d(fu_t^{(1)}, fu_{t+1}^{(1)}). \end{aligned}$$

Putting $q = \max\{k_t : t = 0, 1, 2, ..., m - 1\}$, gives:

$$d(fv_h, fv_{h+1}) = d(fu_0^{(h+1)}, fu_m^{(h+1)})$$

$$\leq \sum_{t=0}^{m-1} d(fu_t^{(h+1)}, fu_{t+1}^{(h+1)})$$

$$< \sum_{t=0}^{m-1} (\Theta_t)^h d(fu_t^{(1)}, fu_{t+1}^{(1)}), \text{ for all } h > q.$$

Now for p > h > q, consider:

$$\begin{aligned} d(fv_{h}, fv_{p}) &\leq d(fv_{h}, fv_{h+1}) + d(fv_{h+1}, fv_{h+2}) + \dots + d(fv_{p-1}, fv_{p}) \\ &< \sum_{t=0}^{m-1} (\Theta_{t})^{h} d(fu_{t}^{(1)}, fu_{t+1}^{(1)}) + \dots + \sum_{t=0}^{m-1} (\Theta_{t})^{p-1} d(fu_{t}^{(1)}, fu_{t+1}^{(1)}). \end{aligned}$$

$$(3)$$

Since $\Theta_t < 1$ for all $t \in \{0, 1, 2, ..., m - 1\}$, it follows that $\{fv_h = fu_m^{(h)}\}$ is a Cauchy sequence. Using completeness of X, find $v^* \in X$ such that $fv_h \to fv^*$. Now using the fact that $fv_n \in T(v_{n-1}) \cap [fv_{n-1}]_G^m$ for all $n \in \mathbb{N}$, find a subsequence $\{fv_{n_k}\}$ of $\{fv_h\}$ such that $(fv_{n_k}, fv^*) \in E(G)$ for all $k \in \mathbb{N}$. Now for any $q \in \mathbb{N}$:

$$\begin{aligned} d\left(fv^*, T_q(v^*)\right) &\leq d\left(fv^*, fv_{h+1}\right) + d\left(fv_{h+1}, T_q(v^*)\right) \\ &\leq d\left(fv^*, fv_{h+1}\right) + H\left(T_{h+1}(v_h), T_q(v^*)\right) \\ &\leq d\left(fv^*, fv_{h+1}\right) + \mu\left(d\left(fv_h, fv^*\right)\right) d\left(fv_h, fv^*\right). \end{aligned}$$

Letting $h \to \infty$ in the above inequality, gives $d(fv^*, T_q(v^*)) \to 0$, which implies $fv^* \in T_q(v^*)$ for all $q \in \mathbb{N}$. Hence, $fv^* \in \bigcap_{q \in \mathbb{N}} T_q(v^*)$ as required.

Example 1. Let $X = \{0\} \cup \{\frac{1}{q^n} : n \in \mathbb{N} \cup \{0\}\}$ for $q \in \mathbb{N}$. Consider the graph G such that V(G) = X and for all x and y in X:

$$E(G) = \{(x,y) : x \neq y\}$$

For $q \in \mathbb{N}$ *, let* $T_q : X \to CB(X)$ *be defined by:*

$$T_q(x) = \begin{cases} \left\{ 0, \frac{1}{q} + 1, 1 \right\} & \text{if } x = 0, \\ \left\{ \frac{1}{q^{n+1}} + 1, 1 \right\} & \text{if } x = \frac{1}{q^n}, n \in \mathbb{N}, \\ \left\{ \frac{1}{q} + 1 \right\} & \text{if } x = 1. \end{cases}$$

If we assume $f : X \to X$ as an identity map then sequence of multivalued mappings $\{T_q\}_{q=1}^{\infty}$ from X into CB(X) is a sequence of multivalued G_f -contraction.

It satisfies the conditions of Theorem 1 and $1 \in X$ is the fixed point of sequence of multivalued maps T_q for $q \in \mathbb{N}$.

The next theorem provides a way to find the coincidence point of a hybrid pair.

Theorem 2. Let (X,d) be a complete metric space, $T : X \to CB(X)$ and $f : X \to X$ a surjection. If $u, v \in X$ (with $u \neq v$) such that $(fu, fv) \in E(G)$, implies:

$$H(T(u), T(v)) \le \mu(d(fu, fv))d(fu, fv),\tag{4}$$

where $\mu : [0, \infty) \to [0, 1)$ is a MT-function, if there exist $m \in \mathbb{N}$ and $v_0 \in X$, such that:

- (i) $T(v_0) \cap [fv_0]^m_G \neq \phi;$
- (ii) For any sequence $\{v_n\}$ in X, if $v_n \to v$ and $v_n \in T(v_{n-1}) \cap [v_{n-1}]_G^m$ for all $n \in \mathbb{N}$ and j = 1, 2, ..., then there exists a subsequence $\{v_{n_k}\}$ such that $(v_{n_k}, v) \in E(G)$ for all $k \in \mathbb{N}$.

Then *f* and *T* have a coincidence point, i.e., there exists $v^* \in X$ such that $fv^* \in T(v^*)$.

Proof. Take $T_q := T$ for all $q \in \mathbb{N}$ in Theorem 1 and proof is following the same procedure. \Box

Corollary 1. Let (X, d) be a complete metric space, $\{T_q\}_{q=1}^{\infty}$ a sequence of the self mappings on X and $f : X \to X$ a surjection. If $u, v \in X$ (with $u \neq v$) such that $(fu, fv) \in E(G)$, implies:

$$d(T_q(u), T_r(v)) \le \mu(d(fu, fv))d(fu, fv),$$
(5)

for all $q, r \in \mathbb{N}$, where $\mu : [0, \infty) \to [0, 1)$ is a MT function, if there exist $m \in \mathbb{N}$ and $v_0 \in X$, such that:

(i) $T_1(v_0) \cap [fv_0]^m_G \neq \phi;$

(ii) For any sequence $\{v_n\}$ in X, if $v_n \to v$ and $v_n = T_n(v_{n-1}) \cap [v_{n-1}]_G^m$ for all $n \in \mathbb{N}$,

then there exists a subsequence $\{v_{n_k}\}$ such that $(v_{n_k}, v) \in E(G)$ for all $k \in \mathbb{N}$.

Then *f* and sequence of mappings $\{T_q\}_{q=1}^{\infty}$ have a coincidence point, i.e., there exists $v^* \in X$ such that $fv^* = \bigcap_{q \in \mathbb{N}} T_q(v^*)$.

Corollary 2. Let (X, d) be a complete metric space, $T : X \to CB(X)$ and if $u, v \in X$ (with $u \neq v$) such that $(u, v) \in E(G)$, implies:

$$H(T(u), T(v)) \le \mu(d(u, v))d(u, v), \tag{6}$$

where μ : $[0,\infty) \to [0,1)$ is a MT-function, if there exist $m \in \mathbb{N}$ and $v_0 \in X$, such that:

(i) $T(v_0) \cap [v_0]_G^m \neq \phi$;

(ii) For any sequence $\{v_n\}$ in X, if $v_n \to v$ and $v_n \in T(v_{n-1}) \cap [v_{n-1}]_G^m$ for all $n \in \mathbb{N}$ and j = 1, 2, ..., then there exists a subsequence $\{v_{n_k}\}$ such that $(v_{n_k}, v) \in E(G)$ for all $k \in \mathbb{N}$.

Then T has a fixed point, i.e., $v^* = T(v^*)$.

The following are the consequence of the Theorem 1 and Theorem 2 for the case of self mappings.

Corollary 3. Let (X,d) be a complete metric space, $T : X \to X$ and $f : X \to X$ a surjection. If $u, v \in X$ (with $u \neq v$) such that $(fu, fv) \in E(G)$, implies:

$$d(T(u), T(v)) \le \mu(d(fu, fv))d(fu, fv),\tag{7}$$

where $\mu : [0, \infty) \to [0, 1)$ is a MT function, if there exist $m \in \mathbb{N}$ and $v_0 \in X$, such that:

- (i) $T(v_0) \cap [fv_0]^m_G \neq \phi;$
- (ii) For any sequence $\{v_n\}$ in X, if $v_n \to v$ and $v_n = T(v_{n-1}) \cap [v_{n-1}]_G^m$ for all $n \in \mathbb{N}$ and j = 1, 2, ..., then there exists a subsequence $\{v_{n_k}\}$ such that $(v_{n_k}, v) \in E(G)$ for all $k \in \mathbb{N}$.

Then f and T have a coincidence point, i.e., there exists $v^* \in X$ such that $fv^* = T(v^*)$.

Corollary 4. Let (X,d) be a complete metric space, $T : X \to X$ and if $u, v \in X$ (with $u \neq v$) such that $(u,v) \in E(G)$, implies:

$$d(T(u), T(v)) \le \mu(d(u, v))d(u, v),\tag{8}$$

where $\mu : [0, \infty) \to [0, 1)$ is a MT-function, if there exist $m \in \mathbb{N}$ and $v_0 \in X$, such that:

- (i) $T(v_0) \cap [v_0]_G^m \neq \phi;$
- (ii) For any sequence $\{v_n\}$ in X, if $v_n \to v$ and $v_n = T(v_{n-1}) \cap [v_{n-1}]_G^m$ for all $n \in \mathbb{N}$ and j = 1, 2, ..., then there exists a subsequence $\{v_{n_k}\}$ such that $(v_{n_k}, v) \in E(G)$ for all $k \in \mathbb{N}$.

Then T has a fixed point, i.e., $v^* = T(v^*)$.

The next remark highlights the applications of all the above results in settings of complete metric spaces, complete metric spaces endowed with partial order and ε -chainable complete metric spaces.

Remark 1. Consider the following cases:

R1. Let (X, d) be a complete metric space, consider the graph G_0 with:

$$E(G_0) = X \times X.$$

R2. Let (X,d) be a complete metric space with partial order \leq on X, consider the graphs G_1 and G_2 with:

$$E(G_1) = \{(x,y) \in X \times X : x \leq y\},\$$

and:

$$E(G_2) = \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}$$

R3. Let $\varepsilon > 0$ and (X, d) be a complete ε -chainable metric space, consider the graph:

$$G_3 := \{ (x, y) \in X \times X : 0 < d(x, y) < \varepsilon, \text{ for } \varepsilon > 0 \}.$$

We remark that all above results are valid under the above construction of remarks (R1), (R2) and (R3).

Further, in an application of Theorem 1 we generalize the Theorem 6 of [20]. It establishes the convergence of successive approximations of operators on a Banach space, which consequently yields

the Kelisky-Rivlin theorem on iterates of Bernstein operators on the space C(I), where I is the closed unit interval.

Theorem 3. Let X be a Banach space and X_0 be a closed subspace of X. Let T, $f : X \to X$ be maps such that f is surjection and:

$$||Tx - Ty|| \le \varphi \left(||fx - fy|| \right) ||fx - fy|| \text{ whenever } fx - fy \in X_0, x \ne y.$$
(9)

If $(I-f)(X) \subseteq X_0$ and $(f-T)(X) \subseteq X_0$, then for all $x \in X$, $\{T^nx\}$ converges to Coin $\{T, f\}$, where Coin $\{T, f\} = \{x \in X : Tx = fx\}$.

Proof. Consider the graph G = (V(G), E(G)) where V(G) = X and $E(G) = \{(x, y) \in X \times X : x - y \in X_0\}$. Clearly, $\Delta \subseteq E(G)$, $\tilde{G} = G$ and G has no parallel edges. Consider $(x, y) \in E(G)$, then $fx - fy = (y - fy) - (x - fx) + (x - y) \in X_0$, since $(I - f)(X) \subseteq X_0$. Hence and by given contractive condition (9), we see that $\forall (x, y) \in E(G)$ with $x \neq y$, (6) holds. Also $Tx - Ty = (fy - Ty) - (fx - Tx) + (fx - fy) \in X_0$, since $(f - T)(X) \subseteq X_0$.

The use of $(f - T)(X) \subseteq X_0$, implies that $(fx, Tx) \in E(G)$ for x in X. Therefore condition (i) of Corollary 4 holds with $x = v_0 = x_0$ and N = 1. Thus we are able to generate a sequence such that $Tx_{n-1} = fx_n$ for all $n \in \mathbb{N}$. Assume that $Tx_n \to v^* \in X$ but since f is surjection so there exists some v in X such that $v^* = fv$. Here also $Tx_n \in [Tx_{n-1}]_G^1$ for all $n \in \mathbb{N}$, which implies that $(Tx_n, Tx_{n-1}) \in E(G)$ for all $n \in \mathbb{N}$. Now using the outline of the proof of Theorem 4.1 of [12], $(Tx_n, fv) \in E(G)$ for all $n \in \mathbb{N}$. Now assume:

$$\|fv - Tv\| \leq \|fv - fx_{n+1}\| + \|fx_{n+1} - Tv\| = \|fv - fx_{n+1}\| + \|Tx_n - Tv\|.$$

$$(10)$$

Since $(Tx_n, fv) \in E(G)$ for all $n \in \mathbb{N}$, thus from (9) and (10) we have:

$$||fv - Tv|| \le ||fv - fx_{n+1}|| + \varphi (||fx_n - fv||) ||fx_n - fv||$$

As $n \to \infty$, we get fv = Tv. Thus v is the coincidence point of f and T, by using Corollary 4. For the uniqueness of the coincidence point we let two coincidence points u, v of f and T, then:

$$\|Tu - Tv\| \leq \varphi (\|fu - fv\|) \|fu - fv\|$$

(1 - \varphi (\|fu - fv\|)) ||Tu - Tv|| \le 0.

This implies that Tu = Tv. \Box

In the next result, we discussed the generalization of fractional differential equation described in [21]. For the closed interval I = [0,1], assume function $g \in C(I,\mathbb{R})$ and $f : I \times \mathbb{R} \to \mathbb{R}$ is a continuous function. The fractional differential equation is given as follows:

$$D^{\alpha}x(t) + f(t,g(x(t))) = 0 \quad (0 \le t \le 1, \, \alpha > 1)$$
(11)

,

with boundary conditions x(0) = x(1) = 0. It is to be noted that associated Green's function with the problem (11) is:

$$G(t,s) = \begin{cases} (t(1-s))^{\alpha-1} - (t-s)^{\alpha-1} & 0 \le s \le t \le 1, \\ \frac{(t(1-s))^{\alpha-1}}{\Gamma(\alpha)} & 0 \le t \le s \le 1. \end{cases}$$

where Γ (.) represents the Gamma function.

Theorem 4. Consider the surjective function $g \in C(I, \mathbb{R})$ and $f : I \times \mathbb{R} \to \mathbb{R}$ satisfies:

(i) $|(f(s,g(x(s))) - f(s,g(y(s))))| \le |g(x(s)) - g(y(s))|$ for all $s \in I$;

(ii)
$$\sup_{t\in I}\int_{0}^{1}G(t,s)\,ds\leq k<1.$$

Then, problem (11) *has a unique solution.*

Proof. Assume space $X = C(I, \mathbb{R})$, and we have $d(x, y) = \max_{t \in [0,1]} |x(t) - y(t)|$ for x and y in X. It is well known that $x \in X$ is a solution of (11) if and only if it is a solution of the integral equation:

$$x(t) = \int_{0}^{1} G(t,s) f(s,(gx)(s)) ds \text{ for all } t \in I.$$

Define the operator $F : X \to X$ by:

$$Fx(t) = \int_{0}^{1} G(t,s) f(s,(gx)(s)) ds \text{ for all } t \in I,$$

and $S : X \to X$ by:

$$Sx = gx$$
, with $(Sx)(t) = (gx)(t)$ for $t \in I$.

Thus, for finding a solution of (11), it is sufficient to show that *F* has a coincidence point with *g*. Now let $x, y \in C(I)$ for all $s \in I$. Here we have:

$$\begin{aligned} |Fx(t) - Fy(t)| &= \left| \int_{0}^{1} G(t,s) \left(f(s, (gx)(s)) - f(s, (gy)(s)) \right) ds \right| \\ &\leq \left| \int_{0}^{1} G(t,s) \left| (f(s, (gx)(s)) - f(s, (gy)(s)) \right| ds \right| \\ &\leq \left| \int_{0}^{1} G(t,s) \left| (gx)(s) - (gy)(s) \right| ds \right| \\ &\leq \left| \int_{0}^{1} G(t,s) \left| (Sx)(s) - (Sy)(s) \right| ds \right| \\ &\leq \left| \int_{0}^{1} G(t,s) d(Sx, Sy) ds \right| \\ &\leq \left| d(Sx, Sy) \sup_{t \in I} \int_{0}^{1} G(t,s) ds \right| \\ &\leq kd(Sx, Sy). \end{aligned}$$

This implies that for each $x, y \in X$, we have:

$$d(Fx,Fy) \leq kd(Sx,Sy).$$

Now the use of Corollary 3 with graph $G = G_0$, we have $x^* \in X$ such that $Fx^* = Sx^*$ with $(Sx^*)(t) = (gx^*)(t)$ for $t \in I$. Thus x^* is the required coincidence point of F and g. \Box

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approve the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Nadler, B. Multivalued contraction mappings. Pacific J. Math. 1969, 30, 475–488.
- 2. Hu, T. Fixed point theorems for multivalued mappings. Can. Math. Bull. 1980, 23, 193–197.
- 3. Covitz, H.; Nadler, SB, Jr. Multi-valued contraction mappings in generalized metric spaces. *Israel J. Math.* **1970**, *8*, 5–11.
- 4. Reich, S. Fixed points of contractive functions. Boll. Unione Mat. Ital. 1972, 5, 26-42.
- 5. Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces. *J. Math. Anal. Appl.* **1989**, *141*, 177–188.
- Azam, A.; Arshad, M. Fixed points of a sequence of locally contractive multivalued maps. *Comp. Math. Appl.* 2009, 57, 96–100.
- 7. Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. *J. Math. Anal. Appl.* **2006**, *317*, 103–112.
- 8. Ciric, L.B. Multi-valued nonlinear contraction mappings. *Nonlinear Anal.* 2009, 71, 2716–2723.
- 9. Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. *J. Math. Anal. Appl.* **2007**, *334*, 132–139.
- 10. Klim, D.; Wardowski, D. Fixed points of dynamic processes of set-valued F-contractions and application to functional equations. *Fixed Point Theory Appl.* **2015**, *1*, 22.
- 11. Nicolae, A. Fixed point theorems for multi-valued mappings of Feng-Liu type. *Fixed Point Theory* **2011**, *12*, 145–154.
- 12. Jachymski, J. The contraction principle for mappings on a metric space with a graph. *Proc. Amer. Math. Soc.* **2008**, *136*, 1359–1373.
- 13. Nieto, J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. *Order* **2005**, *3*, 223–239.
- 14. Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. *Proc. Am. Math. Soc.* **2004**, 1435–1443.
- 15. Johnsonbaugh, R. Discrete Mathematics; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1997.
- 16. Du, W.S. On coincidence point and fixed point theorems for nonlinear multivalued maps. *Topol. Appl.* **2012**, *159*, 49–56.
- 17. Hu, T.; Rosen, H. Locally contractive and expansive mappings. Boll. Unione Mat. Ital. 1990, 7, 227–233.
- 18. Bailey, B.F. Some theorems on contractive mappings. J. Lond. Math. Soc. 1966, 41, 101–106.
- 19. Assad, N.A.; Kirk, W.A. Fixed point theorems for set valued mappings of contractive type. *Pacific J. Math.* **1972**, *43*, 533–562.
- 20. Asrifa, S.; Vetrivel, V. Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications. *J. Math. Anal. Appl.* **2014**, *417*, 336–344.
- 21. Baleanu, D.; Shahram, R.; Hakimeh, M. Some existence results on nonlinear fractional differential equations. *Philos. Trans. A Math. Phys. Eng. Sci.* **2013**, *371*, 20120144.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).