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Abstract: In this article the coincidence points of a self map and a sequence of multivalued maps
are found in the settings of complete metric space endowed with a graph. A novel result of Asrifa
and Vetrivel is generalized and as an application we obtain an existence theorem for a special type
of fractional integral equation. Moreover, we establish a result on the convergence of successive
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1. Introduction and Preliminaries

For the metric space (X, d), using the notions of Nadler [1] and Hu [2], denote CB(X), C (X)

and 2X by the collection of nonempty closed and bounded, compact and all nonempty subsets
of X respectively. Consider A, B ∈ CB(X) the distance between sets A and B is defined by
d(A, B) = inf

x∈A, y∈B
d(x, y), which does not allow to enjoy the properties of metric on CB (X) therefore a

well known idea of Hausdorff–Pompeiu distance H on CB(X) induced by d is used to define a metric
on CB (X) as follows:

H(A, B) = inf{ε > 0 : A ⊆ N(ε, B), B ⊆ N(ε, A)},

where:
N(ε, A) = {x ∈ X : d(x, a) < ε, for some a ∈ A}.

In 1969, Nadler [1] proved fixed point results for multivalued mappings in complete metric spaces,
using the Hausdorff distance H, which was the generalization of Banach contraction principle in the
settings of set-valued mappings. Covitz and Nadler [3] extended the idea of multivalued mappings in
the generalized metric spaces. Reich [4] in 1972 published a fixed point result for the multivalued maps
on the compact subsets of a complete metric space and posed the question, “can C (X) be replaced
by CB (X)?”. In 1989, Mizoguchi and Takahashi answered this question in Theorem 5 of [5] and they
also provide some Caristi type theorems for multivalued operators. Whereas Hu [2] in 1980 extended
the multivalued fixed point results from complete metric space to complete ε-chainable metric space.
Azam and Arshad [6] have extended the Theorem 6 of [1] by finding the fixed points of a sequence
of locally contractive multivalued maps in ε-chainable metric space. Further Feng and Liu [7] used
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the concept of lower semi-continuity and a generalized contractive condition to extend the result of
Nadler [1] and Caristi type theorems as defined in [5]. For more references the readers are referred to
the work of Ciric [8], Klim and Wardowski [9,10] , Nicolae [11].

Jachymski [12] in 2007 unified and extended the work of Nieto [13] and Ran and Reuring [14] by
defining a new class of contractions (G-contraction ) on metric space (X, d) endowed with a graph.
The connectivity of the graph brings more attractions regarding a necessary and sufficient condition
for any G-contractive operator to be a Picard operator.

In the present article, fascinated by [6] the existence of coincidence points of a sequence of
multivalued maps with a self map are taken into account with a generalized form of G-contraction.
This provides a new way to generalize many existing results in the literature (see [1,6] and the
references therein).

Let us recall some definitions from graph theory with the perspective of using them in our ideas
and results. For a metric space (X, d) let4 be the diagonal of the Cartesian product X× X. Consider a
directed graph G such that X = V(G), where V(G) is the set of vertices of G. The set E(G) of edges of
G contains all the loops. If G has no parallel edge then we can identify G with the pair (V(G), E(G)) .
Further, the graph G can be dealt with as a weighted graph if each edge is assigned by the distance
between its edges.

Consider a directed graph G, then G−1 denote the graph obtained from G by reversing the
direction of edges and if we ignore the direction of edges in graph G we get an undirected graph
G̃. The pair (V′, E′) is said to be a subgraph of G if V′ ⊆ V (G) and E′ ⊆ E (G) and for any edge
(a, b) ∈ E′ for all a, b ∈ V′.

Recall some fundamental definitions regarding the connectivity of graphs, which can be found
in [15].

Definition 1. A path in G from the vertex p to q of length K, is a sequence {pi} of K + 1 vertices such that
p0 = p,...,pK = q and (pj−1, pj) ∈ E(G) for j = 1, 2, ..., K.

Definition 2. A graph G is called connected if there is a path between any two vertices. Graph G is weakly
connected if G̃ is connected.

Definition 3. For a, b and c in V (G) , [a]G denote the equivalence class of the relation ∼ defined on V (G) by
the rule:

b ∼ c if there is a path in G from b to c.

For v ∈ V(G) and K ∈ N∪ {0} by [v]KG we denote the set

[v]KG := {u ∈ V(G) : there is a path of length K from v to u }.

Following is the definition of G-contraction by Jachymski [12].

Definition 4. [12] Let (X, d) be a metric space endowed with a graph G. We say that a mapping T : X → X is
a G-contraction if T preserves edges of G i.e.,

∀
x,y∈X

(x, y) ∈ E(G)⇒ (Tx, Ty) ∈ E(G),

and there exists some α ∈ [0, 1) such that:

∀
x,y∈X

(x, y) ∈ E(G)⇒ d(Tx, Ty) ≤ αd(x, y).

Mizoguchi and Takahashi [5] had defined a MT−function as follows:
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Definition 5. [16] A function ϕ: [0,+∞) → [0, 1) is said to be a MT−function if it satisfies Mizoguchi
and Takahashi’s condition (i.e., lim sup

r→t+
ϕ(r) < 1 for all t ∈ [0,+∞)). Clearly, if ϕ: [0,+∞) → [0, 1) is a

nondecreasing function or a nonincreasing function, then it is a MT−function.

Now we state some results from the basic theory of multivalued mappings.

Lemma 1. [17] Let (X, d) be a metric space and A, B ∈ CB(X), with H(A, B) < ε, then for each a ∈ A,
there exists an element b ∈ B such that:

d(a, b) < ε.

Lemma 2. [18] Let (X, d) be a metric space and A, B ∈ CB(X), then for each a ∈ A:

d(a, B) ≤ H(A, B).

Lemma 3. [19] Let {An} be a sequence in CB(X) and there exists A ∈ CB(X) such that lim
n→∞

H(An, A)→ 0.

If xn ∈ An (n = 1, 2, 3, ...) and there exists x ∈ X such that lim
n→∞

d(xn, x)→ 0 then x ∈ A.

2. Main Results

Definition 6. [20] A multivalued mapping F : X→ CB (X) is said to be Mizoguchi-Takahashi G-contraction
if for all x, y in X, x 6= y with (x, y) ∈ E (G) :

(i) H (F (x) , F (y)) ≤ ϕ (d (x, y)) d (x, y) ;
(ii) If u ∈ F (x) and v ∈ F (y) are such that d (u, v) ≤ d (x, y), then (u, v) ∈ E (G) .

Motivated by the Definition 2.1 of [20], in a more general settings, we define the sequence of
multivalued G f -contraction as follows:

Definition 7. Let f : X→ X be a edge preserving surjection . A sequence of multivalued mappings {Tq}∞
q=1

from X into CB(X) is said to be sequence of multivalued G f -contraction if ( f u, f v) ∈ E(G), implies:

H(Tq(u), Tr(v)) ≤ µ(d( f u, f v))d( f u, f v), for all q, r ∈ N. (1)

For x ∈ Tq(u) and y ∈ Tr(v) satisfying d( f x, f y) ≤ d( f u, f v) implies ( f x, f y) ∈ E(G), where µ:
[0, ∞)→ [0, 1) is a MT-function.

The next theorem provides the way to find the coincidence of a self map and a sequence of
multivalued maps.

Theorem 1. Let (X, d) a complete metric space,{Tq}∞
q=1 a sequence of multivalued G f -contraction from X into

CB(X) and f : X→ X a surjection. If there exist m ∈ N and v0 ∈ X, such that:

(i) T1(v0)∩ [ f v0]
m
G 6= φ;

(ii) For any sequence {vn} in X, if vn → v and vn ∈ Tn(vn−1)∩ [vn−1]
m
G for all n ∈ N, then there exists a

subsequence
{

vnk

}
such that

(
vnk , v

)
∈ E(G) for all k ∈ N.

Then f and sequence of mappings {Tq}∞
q=1 have a coincidence point, i.e., there exists v∗ ∈ X such that

f v∗ ∈ ⋂
q∈N

Tq(v∗).

Proof. Choose any v1 ∈ X such that f v1 ∈ T1(v0)∩ [ f v0]
m
G then there exists a path from f v0 to f v1, i.e.,

f v0 = f u(1)
0 , ... f u(1)

m = f v1 ∈ T1(v0), and
(

f u(1)
i , f u(1)

i+1

)
∈ E(G) for all i = 0, 1, 2, ..., m− 1.
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Without any loss of generality, assume that f u(1)
k 6= f u(1)

j for each k, j ∈ {0, 1, 2, ..., m} with k 6= j.

Since ( f u(1)
0 , f u(1)

1 ) ∈ E(G), so:

H(T1(u
(1)
0 ), T2(u

(1)
1 )) ≤ µ(d( f u(1)

0 , f u(1)
1 ))d( f u(1)

0 , f u(1)
1 )

<

√
µ(d( f u(1)

0 , f u(1)
1 ))d( f u(1)

0 , f u(1)
1 )

< d( f u(1)
0 , f u(1)

1 )

Rename f v1 as f u(2)
0 . As f u(2)

0 ∈ T1(u
(1)
0 ), and using Lemma 1 one can find some f u(2)

1 ∈ T2(u
(1)
1 )

such that:
d( f u(2)

0 , f u(2)
1 ) < d( f u(1)

0 , f u(1)
1 ).

Since ( f u(1)
1 , f u(1)

2 ) ∈ E(G), so:

H(T2(u
(1)
1 ), T2(u

(1)
2 )) ≤ µ(d( f u(1)

1 , f u(1)
2 ))d( f u(1)

1 , f u(1)
2 )

< d( f u(1)
1 , f u(1)

2 ).

Similarly since f u(2)
1 ∈ T2(u

(1)
1 ), again using Lemma 1 one can find some f u(2)

2 ∈ T2(u
(1)
2 ) such that:

d( f u(2)
1 , f u(2)

2 ) < d( f u(1)
1 , f u(1)

2 ).

Thus we obtain { f u(2)
0 , f u(2)

1 , f u(2)
2 , · · · , f u(2)

m } of m+ 1 vertices of X such that f u(2)
0 ∈ T1(u

(1)
0 ) and

f u(2)
s ∈ T2(u

(1)
s ) for s = 1, 2, . . . ., m, with:

d( f u(2)
s , f u(2)

s+1) < d( f u(1)
s , f u(1)

s+1),

for s = 0, 1, 2, . . . ., m− 1. As ( f u(1)
s , f u(1)

s+1) ∈ E(G) for all s = 0, 1, 2, . . . ., m− 1, thus ( f u(2)
s , f u(2)

s+1) ∈
E(G) for all s = 0, 1, 2, . . . ., m− 1.

Let f u(2)
m = f v2. Thus the set of points f v1 = f u(2)

0 , f u(2)
1 , f u(2)

2 , · · · , f u(2)
m = f v2 ∈ T2(v1) is a path

from f v1 to f v2. Rename f v2 as f u(3)
0 . Then by the same procedure we obtain a path:

f v2 = f u(3)
0 , f u(3)

1 , f u(3)
2 , · · · , f u(3)

m = f v3 ∈ T3(v2)

from f v2 to f v3. Inductively, obtained:

f vh = f u(h+1)
0 , f u(h+1)

1 , f u(h+1)
2 , · · · , f u(h+1)

m = f vh+1 ∈ Th+1(vh)

with:
d( f u(h+1)

t , f u(h+1)
t+1 ) < d( f u(h)

t , f u(h)
t+1), (2)

hence ( f u(h+1)
t , f u(h+1)

t+1 ) ∈ E(G) for t = 0, 1, 2, . . . ., m− 1.
Consequently, construct a sequence { f vh}∞

h=1 of points of X with:

f v1 = f u(1)
m = f u(2)

0 ∈ T1(v0),

f v2 = f u(2)
m = f u(3)

0 ∈ T2(v1),

f v3 = f u(3)
m = f u(4)

0 ∈ T3(v2),
...

f vh+1 = f u(h+1)
m = f u(h+2)

0 ∈ Th+1(vh),
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for all h ∈ N.
For each t ∈ {0, 1, 2, ..., m− 1}, and from (2), clearly {d( f u(h)

t , f u(h)
t+1)}∞

h=1 is a decreasing sequence
of non-negative real numbers and so there exists at ≥ 0 such that:

lim
h→∞

d( f u(h)
t , f u(h)

t+1) = at.

By assumption, lim supt→a+t
µ(t) < 1, so there exists kt ∈ N such that µ(d( f u(h)

t , f u(h)
t+1)) < ω(at)

for all h ≥ kt where lim supt→a+t
µ(t) < ω(at) < 1.

Now put:

Θt = max
{

max
r=1,...,kt

√
µ(d( f u(r)

t , f u(r)
t+1)),

√
ω(at)

}
.

Then, for every h > kt, consider:

d( f u(h+1)
t , f u(h+1)

t+1 ) <

√
µ(d( f u(h)

t , f u(h)
t+1))d( f u(h)

t , f u(h)
t+1)

<
√

ω(at)d( f u(h)
t , f u(h)

t+1)

≤ Θtd( f u(h)
t , f u(h)

t+1)

≤ (Θt)
2d( f u(h−1)

t , f u(h−1)
t+1 )

≤ ...

≤ (Θt)
hd( f u(1)

t , f u(1)
t+1).

Putting q = max{kt : t = 0, 1, 2, ..., m− 1}, gives:

d( f vh, f vh+1) = d( f u(h+1)
0 , f u(h+1)

m )

≤
m−1

∑
t=0

d( f u(h+1)
t , f u(h+1)

t+1 )

<
m−1

∑
t=0

(Θt)
hd( f u(1)

t , f u(1)
t+1), for all h > q.

Now for p > h > q, consider:

d( f vh, f vp) ≤ d( f vh, f vh+1) + d( f vh+1, f vh+2) + · · ·+ d( f vp−1, f vp)

<
m−1

∑
t=0

(Θt)
h d( f u(1)

t , f u(1)
t+1) + · · ·+

m−1

∑
t=0

(Θt)
p−1 d( f u(1)

t , f u(1)
t+1).

(3)

Since Θt < 1 for all t ∈ {0, 1, 2, ..., m− 1}, it follows that { f vh = f u(h)
m } is a Cauchy sequence.

Using completeness of X, find v∗ ∈ X such that f vh → f v∗. Now using the fact that f vn ∈ T (vn−1)∩
[ f vn−1]

m
G for all n ∈ N, find a subsequence

{
f vnk

}
of { f vh} such that

(
f vnk , f v∗

)
∈ E(G) for all k ∈ N.

Now for any q ∈ N :

d
(

f v∗, Tq(v∗)
)
≤ d ( f v∗, f vh+1) + d

(
f vh+1, Tq(v∗)

)
≤ d ( f v∗, f vh+1) + H

(
Th+1(vh), Tq(v∗)

)
≤ d ( f v∗, f vh+1) + µ (d ( f vh, f v∗)) d ( f vh, f v∗) .

Letting h→ ∞ in the above inequality, gives d
(

f v∗, Tq(v∗)
)
→ 0, which implies f v∗ ∈ Tq(v∗) for

all q ∈ N. Hence, f v∗ ∈ ⋂
q∈N

Tq(v∗) as required.
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Example 1. Let X = {0} ∪
{

1
qn : n ∈ N∪ {0}

}
for q ∈ N. Consider the graph G such that V (G) = X and

for all x and y in X :
E (G) = {(x, y) : x 6= y} .

For q ∈ N, let Tq : X→ CB(X) be defined by:

Tq (x) =


{

0, 1
q + 1, 1

}
i f x = 0,{

1
qn+1 + 1, 1

}
i f x = 1

qn , n ∈ N,{
1
q + 1

}
i f x = 1.

If we assume f : X → X as an identity map then sequence of multivalued mappings {Tq}∞
q=1 from X into

CB(X) is a sequence of multivalued G f -contraction.

It satisfies the conditions of Theorem 1 and 1 ∈ X is the fixed point of sequence of multivalued
maps Tq for q ∈ N.

The next theorem provides a way to find the coincidence point of a hybrid pair.

Theorem 2. Let (X, d) be a complete metric space, T : X → CB(X) and f : X → X a surjection. If
u, v ∈ X (with u 6= v) such that ( f u, f v) ∈ E(G), implies:

H(T(u), T(v)) ≤ µ(d( f u, f v))d( f u, f v), (4)

where µ : [0, ∞)→ [0, 1) is a MT-function, if there exist m ∈ N and v0 ∈ X, such that:

(i) T(v0)∩ [ f v0]
m
G 6= φ;

(ii) For any sequence {vn} in X, if vn → v and vn ∈ T(vn−1)∩ [vn−1]
m
G for all n ∈ N and j = 1, 2, ..., then

there exists a subsequence
{

vnk

}
such that

(
vnk , v

)
∈ E(G) for all k ∈ N.

Then f and T have a coincidence point, i.e., there exists v∗ ∈ X such that f v∗ ∈ T(v∗).

Proof. Take Tq := T for all q ∈ N in Theorem 1 and proof is following the same procedure.

Corollary 1. Let (X, d) be a complete metric space,{Tq}∞
q=1 a sequence of the self mappings on X and f : X→ X

a surjection. If u, v ∈ X (with u 6= v) such that ( f u, f v) ∈ E(G), implies:

d(Tq(u), Tr(v)) ≤ µ(d( f u, f v))d( f u, f v), (5)

for all q, r ∈ N, where µ : [0, ∞)→ [0, 1) is a MT function, if there exist m ∈ N and v0 ∈ X, such that:

(i) T1(v0)∩ [ f v0]
m
G 6= φ;

(ii) For any sequence {vn} in X, if vn → v and vn = Tn(vn−1)∩ [vn−1]
m
G for all n ∈ N,

then there exists a subsequence
{

vnk

}
such that

(
vnk , v

)
∈ E(G) for all k ∈ N.

Then f and sequence of mappings {Tq}∞
q=1 have a coincidence point, i.e., there exists v∗ ∈ X such

that f v∗ =
⋂

q∈N
Tq(v∗).

Corollary 2. Let (X, d) be a complete metric space, T : X → CB(X) and if u, v ∈ X (with u 6= v) such that
(u, v) ∈ E(G), implies:

H(T(u), T(v)) ≤ µ(d(u, v))d(u, v), (6)

where µ: [0, ∞)→ [0, 1) is a MT-function, if there exist m ∈ N and v0 ∈ X, such that:

(i) T(v0)∩ [v0]
m
G 6= φ;
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(ii) For any sequence {vn} in X, if vn → v and vn ∈ T(vn−1)∩ [vn−1]
m
G for all n ∈ N and j = 1, 2, ..., then

there exists a subsequence
{

vnk

}
such that

(
vnk , v

)
∈ E(G) for all k ∈ N.

Then T has a fixed point, i.e., v∗ = T(v∗).

The following are the consequence of the Theorem 1 and Theorem 2 for the case of self mappings.

Corollary 3. Let (X, d) be a complete metric space, T : X → X and f : X → X a surjection.
If u, v ∈ X (with u 6= v) such that ( f u, f v) ∈ E(G), implies:

d(T(u), T(v)) ≤ µ(d( f u, f v))d( f u, f v), (7)

where µ : [0, ∞)→ [0, 1) is a MT function, if there exist m ∈ N and v0 ∈ X, such that:

(i) T(v0)∩ [ f v0]
m
G 6= φ;

(ii) For any sequence {vn} in X, if vn → v and vn = T(vn−1)∩ [vn−1]
m
G for all n ∈ N and j = 1, 2, ..., then

there exists a subsequence
{

vnk

}
such that

(
vnk , v

)
∈ E(G) for all k ∈ N.

Then f and T have a coincidence point, i.e., there exists v∗ ∈ X such that f v∗ = T(v∗).

Corollary 4. Let (X, d) be a complete metric space, T : X → X and if u, v ∈ X (with u 6= v) such that
(u, v) ∈ E(G), implies:

d(T(u), T(v)) ≤ µ(d(u, v))d(u, v), (8)

where µ : [0, ∞)→ [0, 1) is a MT-function, if there exist m ∈ N and v0 ∈ X, such that:

(i) T(v0)∩ [v0]
m
G 6= φ;

(ii) For any sequence {vn} in X, if vn → v and vn = T(vn−1)∩ [vn−1]
m
G for all n ∈ N and j = 1, 2, ..., then

there exists a subsequence
{

vnk

}
such that

(
vnk , v

)
∈ E(G) for all k ∈ N.

Then T has a fixed point, i.e., v∗ = T(v∗).

The next remark highlights the applications of all the above results in settings of complete metric
spaces, complete metric spaces endowed with partial order and ε-chainable complete metric spaces.

Remark 1. Consider the following cases:

R1. Let (X, d) be a complete metric space, consider the graph G0 with:

E (G0) = X× X.

R2. Let (X, d) be a complete metric space with partial order � on X, consider the graphs G1 and G2 with:

E (G1) = {(x, y) ∈ X× X : x � y} ,

and:
E (G2) = {(x, y) ∈ X× X : x � y or y � x} .

R3. Let ε > 0 and (X, d) be a complete ε-chainable metric space, consider the graph:

G3 := {(x, y) ∈ X× X : 0 < d (x, y) < ε, for ε > 0} .

We remark that all above results are valid under the above construction of remarks (R1) , (R2) and (R3) .

Further, in an application of Theorem 1 we generalize the Theorem 6 of [20]. It establishes the
convergence of successive approximations of operators on a Banach space, which consequently yields
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the Kelisky-Rivlin theorem on iterates of Bernstein operators on the space C (I), where I is the closed
unit interval.

Theorem 3. Let X be a Banach space and X0 be a closed subspace of X. Let T, f : X→ X be maps such that f
is surjection and:

‖Tx− Ty‖ ≤ ϕ (‖ f x− f y‖) ‖ f x− f y‖ whenever f x− f y ∈ X0, x 6= y. (9)

If (I − f ) (X) ⊆ X0 and ( f − T) (X) ⊆ X0, then for all x ∈ X, {Tnx} converges to Coin {T, f} ,
where Coin {T, f} = {x ∈ X : Tx = f x} .

Proof. Consider the graph G = (V (G) , E (G)) where V (G) = X and E(G) =

{(x, y) ∈ X× X : x− y ∈ X0} . Clearly, 4 ⊆ E(G), G̃ = G and G has no parallel edges. Consider
(x, y) ∈ E (G) , then f x − f y = (y− f y) − (x− f x) + (x − y) ∈ X0, since (I − f ) (X) ⊆ X0.
Hence and by given contractive condition (9), we see that ∀ (x, y) ∈ E (G) with x 6= y, (6) holds.
Also Tx− Ty = ( f y− Ty)− ( f x− Tx) + ( f x− f y) ∈ X0, since ( f − T) (X) ⊆ X0.

The use of ( f − T) (X) ⊆ X0, implies that ( f x, Tx) ∈ E (G) for x in X. Therefore condition (i) of
Corollary 4 holds with x = v0 = x0 and N = 1. Thus we are able to generate a sequence such that
Txn−1 = f xn for all n ∈ N. Assume that Txn → v∗ ∈ X but since f is surjection so there exists some v in
X such that v∗ = f v. Here also Txn ∈ [Txn−1]

1
G for all n ∈ N, which implies that (Txn, Txn−1) ∈ E (G)

for all n ∈ N. Now using the outline of the proof of Theorem 4.1 of [12], (Txn, f v) ∈ E (G) for all n ∈ N.
Now assume:

‖ f v− Tv‖ ≤ ‖ f v− f xn+1‖+ ‖ f xn+1 − Tv‖
= ‖ f v− f xn+1‖+ ‖Txn − Tv‖ .

(10)

Since(Txn, f v) ∈ E (G) for all n ∈ N, thus from (9) and (10) we have:

‖ f v− Tv‖ ≤ ‖ f v− f xn+1‖+ ϕ (‖ f xn − f v‖) ‖ f xn − f v‖ .

As n → ∞, we get f v = Tv. Thus v is the coincidence point of f and T, by using Corollary 4.
For the uniqueness of the coincidence point we let two coincidence points u, v of f and T, then:

‖Tu− Tv‖ ≤ ϕ (‖ f u− f v‖) ‖ f u− f v‖
(1− ϕ (‖ f u− f v‖)) ‖Tu− Tv‖ ≤ 0.

This implies that Tu = Tv.

In the next result, we discussed the generalization of fractional differential equation described
in [21]. For the closed interval I = [0, 1] , assume function g ∈ C (I,R) and f : I × R → R is a
continuous function. The fractional differential equation is given as follows:

Dαx (t) + f (t, g (x (t))) = 0 (0 ≤ t ≤ 1, α > 1) (11)

with boundary conditions x (0) = x (1) = 0. It is to be noted that associated Green’s function with the
problem (11) is:

G (t, s) =

{
(t (1− s))α−1 − (t− s)α−1 0 ≤ s ≤ t ≤ 1,
(t(1−s))α−1

Γ(α) 0 ≤ t ≤ s ≤ 1.
,

where Γ (.) represents the Gamma function.

Theorem 4. Consider the surjective function g ∈ C (I,R) and f : I ×R→ R satisfies:

(i) |( f (s, g (x (s)))− f (s, g (y (s))))| ≤ |g (x (s))− g (y (s))| for all s ∈ I;
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(ii) supt∈I

1∫
0

G (t, s) ds ≤ k < 1.

Then, problem (11) has a unique solution.

Proof. Assume space X = C (I,R) , and we have d (x, y) = max
t∈[0,1]

|x (t)− y (t)| for x and y in X. It is

well known that x ∈ X is a solution of (11) if and only if it is a solution of the integral equation:

x (t) =
1∫
0

G (t, s) f (s, (gx) (s)) ds for all t ∈ I.

Define the operator F : X→ X by:

Fx (t) =
1∫
0

G (t, s) f (s, (gx) (s)) ds for all t ∈ I,

and S : X→ X by:
Sx = gx, with (Sx) (t) = (gx) (t) for t ∈ I.

Thus, for finding a solution of (11), it is sufficient to show that F has a coincidence point with g.
Now let x, y ∈ C (I) for all s ∈ I. Here we have:

|Fx (t)− Fy (t)| =

∣∣∣∣∣∣
1∫
0

G (t, s) ( f (s, (gx) (s))− f (s, (gy) (s))) ds

∣∣∣∣∣∣
≤

1∫
0

G (t, s) |( f (s, (gx) (s))− f (s, (gy) (s)))| ds

≤
1∫
0

G (t, s) |(gx) (s)− (gy) (s)| ds

≤
1∫
0

G (t, s) |(Sx) (s)− (Sy) (s)| ds

≤
1∫
0

G (t, s) d (Sx, Sy) ds

≤ d (Sx, Sy) sup
t∈I

1∫
0

G (t, s) ds

≤ kd (Sx, Sy) .

This implies that for each x, y ∈ X, we have:

d (Fx, Fy) ≤ kd (Sx, Sy) .

Now the use of Corollary 3 with graph G = G0, we have x∗ ∈ X such that Fx∗ = Sx∗ with
(Sx∗) (t) = (gx∗) (t) for t ∈ I. Thus x∗ is the required coincidence point of F and g.
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