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Abstract: Lie symmetries and their Lie group transformations for a class of Timoshenko systems are
presented. The class considered is the class of nonlinear Timoshenko systems of partial differential
equations (PDEs). An optimal system of one-dimensional sub-algebras of the corresponding Lie algebra
is derived. All possible invariant variables of the optimal system are obtained. The corresponding
reduced systems of ordinary differential equations (ODEs) are also provided. All possible non-similar
invariant conditions prescribed on invariant surfaces under symmetry transformations are given.
As an application, explicit solutions of the system are given where the beam is hinged at one end and
free at the other end.
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1. Introduction

The problem of transverse vibration of beams is of importance in many engineering problems.
Some of the early studies were based on the Euler–Bernoulli model, which takes into account the
bending moment and the lateral displacement. Later models were based on adding shear or rotary
inertia effect. In [1,2], Timoshenko proposed taking into consideration the shear, as well as the
rotation effects, which proved to be suitable for non-slender beams and high frequency vibrations.
Dimplekumar et al. [3] discuss the mathematical modeling for the mechanics of a solid using the
distribution theory of Schwartz to the beam bending differential equations; the governing differential
equations of a Timoshenko beam with jump discontinuities in slope, deflection, flexural stiffness
and shear stiffness were obtained in this paper in the space of generalized functions. Mustafa and
Messaoudi [4] and Fatiha [5] studied stability of the following Timoshenko system with the nonlinear
frictional damping term in one equation:

ρ1 ϕtt − k(ϕx + ψ)x = 0,
ρ2ψtt − EIψxx + k(ϕx + ψ) + χ(ψt) = 0,

(1)

where the functions ϕ, ψ depend on (t, x) ∈ (0, ∞)× (0, L) and model the vertical displacement of
a beam and the rotation angle of a filament, respectively. The shear angle is ψ− ϕx, and L denotes
the length of the beam. The physical parameters appearing in the system are ρ1, the mass density
per unit length, ρ2, the polar moment of inertia of a cross-section, E, Young’s modulus of elasticity,
I, the moment of inertia of the cross-section, and k, the shear modulus. In this paper the beam is
assumed to be uniform, that is the physical parameters ρ1, ρ2, EI and k are all positive constants, and χ

is an arbitrary nonlinear function of the damping term ψt.
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We have solved this system by determining its symmetries and performing a Lie theoretic analysis
as detailed below.

The classification of group invariant solutions of differential equations by means of the optimal
systems is one of the main applications of Lie group analysis to differential equations. The main
idea behind the method is discussed in detail in Ovsiannikov [6], Ibragimov [7], Olver [8] and
Hydon [9]. We can always construct a family of group invariant solutions corresponding to a subgroup
of a symmetry group admitted by a given differential equation. Since there is an infinite number of
such subgroups, it is not possible to list all of the group invariant solutions. An effective and systematic
way of classifying these group invariant solutions is to obtain optimal systems of subalgebras of the
Lie symmetry algebra. This leads to non-similar invariant solutions under symmetry transformations.

Recall that one calls a list {ṽα}α∈A a one-dimensional optimal system, if it satisfies the conditions:
(1) completeness, i.e., any one-dimensional subalgebra is equivalent to some ṽα; (2) inequivalence,
i.e., ṽα and ṽβ are inequivalent for distinct α and β. In this paper, we have used all of the basic invariants
to determine the conjugacy classes of one-dimensional subalgebras and at the same time shown that
these representatives are comprehensive and mutually inequivalent. This is done by using the formula
given in Section 3 of [10]. This formula is more or less a direct consequence of definitions. For the
convenience of the reader, a detailed explanation is given in Section 2. The idea of using invariant
functions to determine conjugacy classes is also discussed in [11,12].

Here is a brief outline of the paper. In Section 2, a formula for computing invariants in the adjoint
representation is given. In Section 3, Lie symmetries and their Lie group transformations for the
Timoshenko system are presented. In Section 4, an optimal system of one-dimensional subalgebras of
the corresponding Lie algebra is derived. In Section 5, all possible invariant variables of the optimal
system are presented; moreover, the corresponding reduced systems of ordinary differential equations
(ODEs) are also given. As an illustration, some invariant solutions are given explicitly by solving the
reduced systems of ODEs. Furthermore, all possible non-similar invariant conditions prescribed on
invariant surfaces under symmetry transformations are given. A hinged-free beam has been considered
in Example 1, with a constant torque control at the hinged end and a linear force control at the free end.

2. Invariants in the Adjoint Representations

The following formula is stated without a proof in [10]. Let X1, ..., XN be a basis of the Lie algebra
L and ω1, ..., ωN be the corresponding dual basis of L∗. Let X be an element of L and Y = ∑N

i=1 xiXi
be a general element of L. Then, XL, the fundamental vector field corresponding to X in the adjoint
representation, is given by:

XL(Y) = ∑
1≤i,j≤N

xiωj([X, Xi])
∂

∂xj
.

To see this, recall that a vector field V on an open set Ω of RN assigns to each point p of Ω a vector
V(p) = (V1(p), ..., VN(p)). Therefore, if e1, ..., eN is a basis of RN and ω1, ..., ωN is the dual basis, then:

V(p) =
N

∑
i=1

ωi(V(p))ei.

The vector field V gives rise to the differential operator of taking the directional derivative of any
function f in the direction of V(p). We identify V with the operator ∑N

j=1 ωj(V(p)) ∂
∂xj
|p .

Specializing to the adjoint representation, the fundamental vector field XL is given by:

XL(Y) =
∂

∂t
|t=0 et adX(Y) = [X, Y].

Therefore, if Y = ∑N
i=1 xiXi then:
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XL(Y) = ∑
1≤i,j≤N

xiwj([X, Xi])Xj = ∑
1≤i,j≤N

xiwj([X, Xi])
∂

∂xj
.

Application to Computations of Invariants

Let f be a function on L, which is invariant in the adjoint representation of L. This means
that f (exp ad tX)(Y) = f (Y) for all X in the Lie algebra L and all reals t. Therefore, if we write
f (x1X1 + ... + xnXn) = f (x1, ..., xn), then ∑1≤i,j≤N xiωj([X, Xi])

∂
∂xj

f = 0. Letting X run through the

basis {X1, ..., XN}, we get the system:

∑1≤i,j≤N xiωj([Xk, Xi])
∂ f
∂xj

= 0, k = 1, ..., N. (2)

System (2) needs to be solved only for a set of generators of the Lie algebra L. The solution of this
linear system of partial differential equations (PDEs) gives the invariants in the adjoint representations.

For a solvable Lie algebra L, it is best to work with the central series for the commutator L′ of L,
which is a nilpotent subalgebra. Therefore, one can find a chain of subalgebras, each an ideal in its
successor and each of codimension one. Using this chain, one is essentially dealing with invariants
of a single vector field, namely if we have found the basic invariants for a subalgebras S, which is an
ideal of codimension one in S̃, then S̃�S operates on invariants of S, and this gives the invariants of S̃.
Having obtained the invariants of L′, one can again reach L by a series of ideals, each of codimension
one, to determine the basic invariants of L. Such a series also gives a factorization of the group
G = 〈exp(Ad X) : X ∈ L〉 in terms of one-dimensional subgroups.

The advantage of working with invariant functions is that if f is an invariant of L in the adjoint
representation, then the adjoint group operates on the level sets, as well as sub-level sets of f , and one
can systematically use invariants to work on level and sub-level sets of low dimensions to determine
all of the conjugacy classes of one-dimensional subalgebras. This procedure will be used in Section 4
to determine one-dimensional optimal systems of the nonlinear damped Timoshenko system. This in
turn will be used in Section 5 to determine optimal reduction.

3. Lie’s Infinitesimal Method

Lie symmetry method [13,14], described extensively in the literature, is invoked in the sequel to
apply Lie symmetry analysis for Timoshenko System (1).

Using the invariance condition of the system of PDEs (1):

X[2] (ρ1 ϕtt − k(ϕx + ψ)x) |(1) = 0,
X[2] (ρ2ψtt − EIψxx + k(ϕx + ψ) + χ(ψt)) |(1) = 0,

(3)

where X[2] is the second prolongation of the vector field differential operator:

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η1 ∂

∂ϕ
+ η2 ∂

∂ψ
.

Comparing coefficients of the various derivatives of the dependent variables ϕ and ψ yields
an over-determined linear PDE system. Carrying out the Janet basis of this over-determined system
in the degree reverse lexicographical ordering as ψ > ϕ > x > t and η2 > η1 > ξ2 > ξ1 by
using the command “JanetBasis” involved in the Maple package “Janet” [15] leads to the following
determining equations:

[η1
ψ, ξ2

ψ, ξ1
ψ, η2

ϕ, η1
ϕ − η2

ψ, ξ2
ϕ, ξ1

ϕ, ξ2
x, ξ1

x, ξ2
t , ξ1

t , η2
ψ,ψ, η2

ψ,x, η2
ψ,t, η1

ψ,t, η2
ϕ,x, η2

ϕ,t, η1
ϕ,t

kη1
x + kη2 + (ψtχ

′ − kψ− χ) η2
ψ + η2

t χ′ − EIη2
x,x + ρ2η2

t,t, η1
x,x −

ρ1
k η1

t,t + η2
x].

(4)
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The command “Denominators” involved in the Maple package “Janet” returns the functions
by which the Janet basis algorithm had to divide. These functions may give rise to new cases.
The command “Denominators” tells us that Janet basis of the determining Equations (4) is produced
when k 6= ρ1EI

ρ2
. However, Janet basis of the determining equations for this case is equivalent to (4).

The solution to the determining Equation (4) is:

ξ1 = c1, ξ2 = c2, η1 = c0 ϕ + f (t, x), η2 = c0 ψ + g(t, x) (5)

where f (t, x) and g(t, x) satisfy the following system:

ρ1 ftt − k fxx − kgx = 0,
k fx + kg + gtχ

′(ψt) + ρ2gtt − EIgxx = c0 (χ(ψt)− ψtχ
′(ψt)) .

(6)

Differentiating the second equation of System (6) with respect to ψt gives:

(gt + c0 ψt) χ′′(ψt) = 0. (7)

Since we are concerned with nonlinear damping term, χ′′(ψt) 6= 0, which implies g = g(x) and
c0 = 0. Solving System (6) yields:

f (t, x) = c3 + c4t− c5x− 1
2 c6x2 +

(
− 1

6 x3 + EI
k x
)

c7 +
(
− 1

24 x4 + EI
2k x2 + EI

2ρ1
t2
)

c8,

g(x) = c5 + c6x + 1
2 c7x2 + 1

6 c8x3.
(8)

Thus, the Lie point symmetry generators admitted by System (1) are given by:

X1 = ∂
∂t , X5 = −x ∂

∂ϕ + ∂
∂ψ ,

X2 = ∂
∂x , X6 = − 1

2 x2 ∂
∂ϕ + x ∂

∂ψ ,
X3 = ∂

∂ϕ , X7 = (− 1
6 x3 + EI

k x) ∂
∂ϕ + 1

2 x2 ∂
∂ψ ,

X4 = t ∂
∂ϕ , X8 = (− 1

24 x4 + EI
2k x2 + EI

2ρ1
t2) ∂

∂ϕ + 1
6 x3 ∂

∂ψ .

(9)

In order to obtain the group transformations, which are generated by the resulting infinitesimal
symmetry generators (9), we need to solve the following initial value problem:

dt̃(ε)
dε = ξ1 (t̃(ε), x̃(ε), ϕ̃(ε), ψ̃(ε)) , t̃(0) = t, dϕ̃(ε)

dε = η1 (t̃(ε), x̃(ε), ϕ̃(ε), ψ̃(ε)) , ϕ̃(0) = ϕ,
dx̃(ε)

dε = ξ2 (t̃(ε), x̃(ε), ϕ̃(ε), ψ̃(ε)) , x̃(0) = x, dψ̃(ε)
dε = η2 (t̃(ε), x̃(ε), ϕ̃(ε), ψ̃(ε)) , ψ̃(0) = ψ.

(10)

The one parameter group Gi(ε) = eεXi generated by Xi for i = 1, ..., 8 is as follows:

G1(ε) : (t, x, ϕ, ψ) 7→ (t + ε, x, ϕ, ψ), G5(ε) : (t, x, ϕ, ψ) 7→ (t, x, ϕ− ε x, ψ + ε),
G2(ε) : (t, x, ϕ, ψ) 7→ (t, x + ε, ϕ, ψ), G6(ε) : (t, x, ϕ, ψ) 7→ (t, x, ϕ− 1

2 ε x2, ψ + ε x),
G3(ε) : (t, x, ϕ, ψ) 7→ (t, x, ϕ + ε, ψ), G7(ε) : (t, x, ϕ, ψ) 7→ (t, x, ϕ− 1

6 εx3 + EI
k εx, ψ + 1

2 εx2),
G4(ε) : (t, x, ϕ, ψ) 7→ (t, x, ϕ + ε t, ψ), G8(ε) : (t, x, ϕ, ψ) 7→ (t, x, ϕ− 1

24 εx4 + EI
2k εx2 + EI

2ρ1
εt2, ψ + 1

6 εx3).

(11)

Theorem 1. If ϕ = f (t, x) and ψ = g(t, x) is a solution of Timoshenko System (1), then so is:

ϕ = f (t + ε1, x + ε2) + ε3 + ε4 (t + ε1)− ε5 (x + ε2)− ε6

(
ε2x +

1
2

ε2
2 +

1
2

x2
)
− ε7

(
1
2

x ε2
2

−
(

EI
k
− 1

2
x2
)

ε2 +
1
6

x3 − EI
k

x +
1
6

ε3
2

)
− ε8

(
1
6

x ε3
2 −

EI
2k

x2 + ε2
2

(
1
4

x2 − EI
2k

)
+

1
24

x4 − ε2

(
EI
k

x− 1
6

x3
)
− EI

ρ1
ε1t +

1
24

ε4
2 −

EI
2ρ1

ε2
1 −

EI
2ρ1

t2
)

,

ψ = g (t + ε1, x + ε2) + ε5 + ε6 (x + ε2) +
1
2

ε7 (x + ε2)
2 +

1
6

ε8 (x + ε2)
3 ,

(12)
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where {εi}8
i=1 are arbitrary real numbers.

Proof. The eight-parameter group:

G(ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8) = G8(ε8) ◦ G7(ε7) ◦ G6(ε6) ◦ G5(ε5) ◦ G4(ε4) ◦ G3(ε3) ◦ G2(ε2) ◦ G1(ε1)

generated by Xi for i = 1, ..., 8, can be given by the composition of the transformations (11) as follows:

G : (t, x, ϕ, ψ) 7−→
(

t + ε1, x + ε2, φ + ε3 + ε4 (t + ε1)− ε5 (x + ε2)− ε6

(
ε2x +

1
2

ε2
2 +

1
2

x2
)

−ε7

(
1
2

xε2
2 −

(
EI
k
− 1

2
x2
)

ε2 +
1
6

x3 − EI
k

x +
1
6

ε3
2

)
− ε8

(
1
6

xε3
2 −

EI
2k

x2

+

(
1
4

x2 − EI
2k

)
ε2

2 +
1
24

x4 −
(

EI
k

x− 1
6

x3
)

ε2 −
EI
ρ1

ε1t +
1
24

ε4
2 −

EI
2ρ1

ε2
1

− EI
2ρ1

t2
)

, ψ + ε5 + ε6 (x + ε2) +
1
2

ε7 (x + ε2)
2 +

1
6

ε8 (x + ε2)
3
)

.

(13)

4. Optimal System of One-Dimensional Sub-Algebras of the Nonlinear Damped
Timoshenko System

In this section, we give the one-dimensional optimal system for the algebra with basis (9). In order
to find the optimal system, one needs to classify the one-dimensional sub-algebras under the action of
the adjoint representation. We follow the algorithm explained by Ibragimov [7] and Olver [8].

The non-zero commutators of the Lie algebra L8 with basis (9) are given by:

[X1, X4] = X3, [X1, X8] =
EI
ρ1

X4 , [X2, X5] = −X3,
[X2, X6] = X5, [X2, X7] = X6 +

EI
k X3, [X2, X8] = X7.

(14)

Recall that the adjoint representation is given by:

Ad(exp(εXi).Xj) = Xj − ε[Xi, Xj] +
ε2

2! [Xi, [Xi, Xj]]− ε3

3! [Xi, [Xi, Xj]] + ... .

The Lie algebra L8 is solvable, and the adjoint table is given in Table 1 below:

Table 1. The adjoint table.

Ad(eε) X1 X2 X3 X4 X5 X6 X7 X8

X1 X1 X2 X3 X4 − εX3 X5 X6 X7 Y1
X2 X1 X2 X3 X4 X5 + εX3 Y2 Y3 Y4
X3 X1 X2 X3 X4 X5 X6 X7 X8
X4 X1 + εX3 X2 X3 X4 X5 X6 X7 X8
X5 X1 X2 − εX3 X3 X4 X5 X6 X7 X8
X6 X1 X2 + εX5 X3 X4 X5 X6 X7 X8
X7 X1 X2 + ε(X6 +

EI
k X3) X3 X4 X5 X6 X7 X8

X8 X1 +
EI
k εX4 X2 + εX7 X3 X4 X5 X6 X7 X8

Y1 = X8 − EI
ρ1

εX4 +
EI

2ρ1
ε2X3, Y2 = X6 − εX5 − 1

2 ε2X3,

Y3 = X7 − ε(X6 +
EI
k X3) +

ε2
2 X5 +

ε3
6 X3, Y4 = X8 − εX7 +

ε2
2 (X6 +

EI
k X3)− ε3

6 X5 − ε4
24 X3.

The adjoint group is generated by 〈exp(adX) : X ∈ L〉. Using the solvability of L, this group
consists of the elements:

A = Ad(eε1X1).Ad(eε2X2).Ad(eε3X3).Ad(eε4X4).Ad(eε5X5).Ad(eε6X6).Ad(eε7X7).Ad(eε8X8).
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Therefore, A is given by:

A =



1 0 ε4
EI
ρ1

ε8 0 0 0 0
0 1 EI

k ε7 − ε5 0 ε6 ε7 ε8 0
0 0 1 0 0 0 0 0
0 0 −ε1 1 0 0 0 0
0 0 ε2 0 1 0 0 0
0 0 − 1

2 ε2
2 0 −ε2 1 0 0

0 0 − 1
6k ε2(6EI − kε2

2) 0 1
2 ε2

2 −ε2 1 0
0 0 EI

2ρ1
ε2

1 +
1

24k ε2
2(12EI − kε2

2) −
EI
ρ1

ε1 − 1
6 ε3

2
1
2 ε2

2 −ε2 1


. (15)

Theorem 2. An optimal system of one-dimensional sub-algebras of L8 with basis (9) is provided by the
following generators:

X1 = X1 + αX2 + βX8, α, β 6= 0, X9 = αX3 + βX5 + γX6 + X8, α, β, γ ∈ R,
X2 = X1 + αX2 + βX4, α 6= 0, β ∈ R, X10 = X4 + αX5 + βX7, α ∈ R, β 6= 0,
X3 = X1 + αX5 + βX6 + γX8, α, β ∈ R, γ 6= 0, X11 = X4 + αX6, α 6= 0,
X4 = X1 + αX5 + βX7, α ∈ R, β 6= 0, X12 = X4 + αX5, α ∈ R,
X5 = X1 + αX6, α 6= 0, X13 = αX3 + βX5 + X7, α, β ∈ R,
X6 = X1 + αX5, α ∈ R, X14 = αX3 + X6, α ∈ R,
X7 = X2 + αX8, α 6= 0, X15 = X5,
X8 = X2 + αX4, α ∈ R, X16 = X3.

(16)

Proof. Let X and X̃ be two elements in the Lie algebra L8 with basis (9) given by X = ∑8
i=1 aiXi and

X̃ = ∑8
i=1 ãiXi. For simplicity, we will write X and X̃ as row vectors of the coefficients on the form

X = ( a1 a2 . . . a8 ) and X̃ = ( ã1 ã2 . . . ã8 ). Then, in order that X and X̃ are in the same conjugacy
class, we must have X̃ = XA, where A is given by (15). Therefore, the theorem is proven by solving
the system:

ã1 = a1,
ã2 = a2,
ã3 = a1 ε4 +

EI
k a2ε7 − a2 ε5 + a3 − a4 ε1 + a5 ε2 − 1

2 a6 ε2
2 +

1
6 a7 ε3

2 −
EI
k a7 ε2 − 1

24 a8 ε4
2 +

1
2

EI
ρ1

a8 ε2
1 +

1
2

EI
k a8 ε2

2,
ã4 = EI

ρ1
a1ε8 − EI

ρ1
a8ε1 + a4,

ã5 = a2 ε6 + a5 − a6 ε2 +
1
2 a7 ε2

2 −
1
6 a8 ε3

2,
ã6 = a2 ε7 + a6 − a7 ε2 +

1
2 a8 ε2

2,
ã7 = a2ε8 − a8ε2 + a7,
ã8 = a8,

(17)

for {εi}8
i=1 in terms of {ai}8

i=1 in order to get the simplest values of {ãi}8
i=1.

The results are presented for different cases in a tree diagram, where each of its vertices is
an invariant function, and its leaves are given completely. Moreover, one can verify that all of
the parameters α, β and γ appearing in each case are invariants. Therefore, the inequivalence and
completeness conditions are satisfied.

All joint invariants are obtained by solving the following system of PDEs, which is given by using
Formula (2): 

a4
∂Φ
∂a3

+ EI
ρ1

a8
∂Φ
∂a4

= 0,

a5
∂Φ
∂a3
− EI

k a7
∂Φ
∂a3
− a6

∂Φ
∂a5
− a7

∂Φ
∂a6
− a8

∂Φ
∂a7

= 0,

a1
∂Φ
∂a3

= 0,

a2
∂Φ
∂a3

= 0,

a2
∂Φ
∂a5

= 0,

a2
∂Φ
∂a6

+ EI
k a2

∂Φ
∂a3

= 0,

a2
∂Φ
∂a7

+ EI
ρ1

a1
∂Φ
∂a4

= 0.

(18)

By solving this system, we obtain Φ(a1, a2, a3, a4, a5, a6, a7, a8) = F(a1, a2, a8), where Fis
an arbitrary function of a1, a2, a8. Hence, the basic invariants of Timoshenko System (1) are a1, a2
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and a8; this means that the first three vertices of the tree will be these invariants in any order. In our
case, we will consider the order a1, a2, a8.

a1

a1 = 0

a2 = 0

a8 = 0

a4 = 0

a7 = 0

a6 = 0

a5 = 0

Case 16

a5 6= 0

Case 15

a6 6= 0

Case 14

a7 6= 0

Case 13

a4 6= 0

a7 = 0

a6 = 0

Case 12

a6 6= 0

Case 11

a7 6= 0

Case 10

a8 6= 0

Case 9

a2 6= 0

a8 = 0

Case 8

a8 6= 0

Case 7

a1 6= 0

a2 = 0

a8 = 0

a7 = 0

a6 = 0

Case 6

a6 6= 0

Case 5

a7 6= 0

Case 4

a8 6= 0

Case 3

a2 6= 0

a8 = 0

Case 2

a8 6= 0

Case 1

The full details for each leaf are given as follows:

Case 1 a1 6= 0, a2 6= 0, a8 6= 0 : Let ε2 = ε3 = ε5 = 0, ε1 = ρ1a2a4−EIa7
EIa2a8

, ε4 = ρ1
EI

a2
4

a8
+ EI

k a6 − a3 − EI
2ρ1

a2
7

a2
2a8

,

ε6 = − a5
a2

, ε7 = − a6
a2

and ε8 = − a7
a2

to have ã3 = ã4 = ã5 = ã6 = ã7 = 0: the conjugacy class is
〈X1 + αX2 + βX8〉, with α, β 6= 0.
Case 2 a1 6= 0, a2 6= 0, a8 = 0 : Let ε1 = ε2 = ε3 = ε5 = 0, ε4 = EI

k a6 − a3, ε6 = − a5
a2

, ε7 = − a6
a2

,
ε8 = − a7

a2
to have ã3 = ã5 = ã6 = ã7 = 0. The conjugacy class is 〈X1 + αX2 + βX4〉, with α 6= 0, β ∈ R.

Case 3 a1 6= 0, a2 = 0, a8 6= 0 : Let ε1 = 0, ε2 = a7
a8

, ε4 = EI
2k

a2
7

a8
− a3 − a5a7

a8
+

a6a2
7

2a2
8
− a4

7
8a3

8
and ε8 = − ρ1

EI a4

to make ã3 = ã4 = ã7 = 0: the conjugacy class is 〈X1 + αX5 + βX6 + γX8〉, α, β ∈ R, γ 6= 0.

When a1 6= 0, a2 = 0, a8 = 0, we need to solve system (18) again to see what are the invariants as
well the next vertices of the tree.

Solving system (18) taking into account that a2 = a8 = 0 gives Φ(a1, a2, a3, a4, a5, a6, a7, a8) =

F(a1, a7,−2a5a7 + a2
6), so we can consider a7 to be the next vertex of the tree.

Case 4 a1 6= 0, a2 = 0, a8 = 0, a7 6= 0 : Let ε1 = 0, ε2 = a6
a7

, ε4 = EI
k a6 − a3 − a5a6

a7
+

a2
6

3a2
7

and

ε8 = − ρ1
EI a4 to make ã3 = ã4 = ã6 = ã8 = 0: the conjugacy class is of the form 〈X1 + αX5 + βX7〉,

α ∈ R, β 6= 0.

Again, for the case a1 6= 0, a2 = 0, a8 = 0, a7 = 0, we resolve system (18) to have
Φ(a1, a2, a3, a4, a5, a6, a7, a8) = F(a1, a6), so next vertex can be a6:

Case 5 a1 6= 0, a2 = 0, a8 = 0, a7 = 0, a6 6= 0 : Let ε1 = 0, ε2 = a5
a6

, ε4 = −a3 −
a2

5
2a6

and
ε8 = − ρ1

EI a4 to make ã3 = ã4 = ã5 = 0: the corresponding conjugacy class is 〈X1 + αX6〉, where α 6= 0.
Case 6 a1 6= 0, a2 = 0, a8 = 0, a7 = 0, a6 = 0 : Let ε1 = ε2 = 0, ε4 = −a3 and ε8 = − ρ1

EI a4 to make
ã3 = ã4 = 0: the conjugacy class is 〈X1 + αX5〉, α ∈ R.

Case 7 a1 = 0, a2 6= 0, a8 6= 0 : Let ε1 = ρ1
EI

a4
a8

, ε2 = 0, ε5 = a3 − EI
k a6 − ρ1

2EI
a2

4
a8

, ε6 = −a5, ε7 = −a6 and
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ε8 = −a7 to make ã3 = ã4 = ã5 = ã6 = ã7 = 0: the conjugacy class is 〈X2 + αX8〉, α 6= 0.
Case 8 a1 = 0, a2 6= 0, a8 = 0: Let ε2 = 0, ε5 = a3 − ε1a4 − EI

k a6, ε6 = −a5, ε7 = −a6 and ε8 = −a7 to
make ã3 = ã5 = ã6 = ã6 = ã7 = 0: the conjugacy class is 〈X2 + αX4〉, α ∈ R.
Case 9 a1 = 0, a2 = 0, a8 6= 0: Let ε1 = ρ1

EI a4 and ε2 = a7, to get ã4 = ã7 = 0: the conjugacy class is of
the form 〈αX3 + βX5 + γX6 + X8〉, α, β, γ ∈ R.

By substituting a1 = a2 = a8 = 0 in system (18) and solving it, we get
Φ(a1, a2, a3, a4, a5, a6, a7, a8) = F(a4, a7,−2a5a7 + a2

6). So the next two vertices can be a4 and a7

in any order. We consider the order a4, a7.

Case 10 a1 = 0, a2 = 0, a8 = 0, a4 6= 0, a7 6= 0 : Let ε1 = − EI
k a6 + a3 + a5a6

a7
− a3

6
3a2

7
and

ε2 = a6
a7

to make ã3 = ã6 = 0: the conjugacy class is 〈X4 + αX5 + βX7〉, α ∈ R, β 6= 0.

In case a1 = a2 = a8 = a7 = 0, solving system (18) yields Φ(a1, a2, a3, a4, a5, a6, a7, a8) = F(a4, a6)

which implies, after considering a4 and a7 as vertices, that one can consider the invariant a6 as a
new vertex.

Case 11 a1 = 0, a2 = 0, a8 = 0, a4 6= 0, a7 = 0, a6 6= 0 : Let ε1 =
a2

5
2a6

+ a3 and ε2 = a5
a6

to
make ã3 = ã5 = 0: the conjugacy class is 〈X4 + αX6〉, with α 6= 0.
Case 12 a1 = 0, a2 = 0, a8 = 0, a4 6= 0, a7 = 0, a6 = 0 : Let ε1 = a3, ε2 = 0 to make ã3 = 0: then the
conjugacy class is 〈X4 + αX5〉, α ∈ R.
Case 13 a1 = 0, a2 = 0, a8 = 0, a4 = 0, a7 6= 0 : Let ε2 = a6 to have ã6 = 0: the conjugacy class is
〈αX3 + βX5 + X7〉, α, β ∈ R.
Case 14 a1 = 0, a2 = 0, a8 = 0, a4 = 0, a7 = 0, a6 6= 0 : Let ε2 = a5 to have ã5 = 0: the conjugacy class
is 〈αX3 + X6〉, α ∈ R.

When a6 = 0 with a1 = a2 = a8 = a4 = a7 = 0, solving the PDEs system (18) gives
Φ(a1, a2, a3, a4, a5, a6, a7, a8) = F(a5). So the next invariant vertex is a5.

Case 15 a1 = 0, a2 = 0, a8 = 0, a4 = 0, a7 = 0, a6 = 0, a5 6= 0 : Let ε2 = −a3 to have
ã3 = 0: the conjugacy class is 〈X5〉.
Case 16 a1 = 0, a2 = 0, a8 = 0, a4 = 0, a7 = 0, a6 = 0, a5 = 0 : the conjugacy class is 〈X3〉.

5. Optimal Reductions and Invariant Solutions

It is known that the invariant solutions for PDEs can be determined by two procedures, namely
the invariant form method and the direct substitution method [14]. The idea of looking for group
invariant solutions generalizes quite naturally to PDEs with any number of independent and dependent
variables. A one parameter group that acts nontrivially on one or more independent variables can be
used to reduce the number of independent variables by one.

In this section, we focus on the invariant form method, which requires that at least one of the
infinitesimals ξ1 and ξ2 is not equal to zero [9,14]. Basically, the reason is that a vector field of the
type X = η1

∂
∂ϕ + η2

∂
∂ψ cannot leave the submanifold of codimension two defined by the equations

ϕ = f (t, x) and ψ = g(t, x) invariant, otherwise the dimension of the solution space would go down.
This means the transversality condition in the sense of [16] will not be satisfied. For this reason,
only the generators X1, ..., X8 from system (16) are considered in this section.
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We solve the invariance surface conditions explicitly by solving the corresponding characteristic
equation given by:

dt
ξ1(t, x, ϕ, ψ)

=
dx

ξ2(t, x, ϕ, ψ)
=

dϕ

η1(t, x, ϕ, ψ)
=

dψ

η2(t, x, ϕ, ψ)
, (19)

to get the corresponding invariants, which are used to reduce the number of independent variables by
one. The procedure is explained in detail in the following example. Moreover, all possible invariant
variables of the optimal system (16) and their corresponding reductions are given in Table 2.

Table 2. Reductions using one-dimensional optimal System (16).

Generators in (16) Invariant Variables The Reduced System

X1 = X1 + αX2 + βX8, A (k− α2ρ1) Z′′ + k W ′ + αβ ρ1EI
k ζ + 1

6

(
β k
α − α β ρ1

)
ζ3 = 0,

α, β 6= 0. (ρ2α2 − EI) W ′′ + k Z′ + k W + χ (−α W ′)− β EI
2α ζ2 +

β k
24α ζ4 = 0.

X2 = X1 + αX2 + βX4, B (k− α2ρ1) Z′′ + k W ′ − βρ1 = 0,
α 6= 0, β ∈ R. (ρ2α2 − EI)W ′′ − kZ′ + k W + χ (−α W ′) = 0.

X3 = X1 + αX5 + βX6 + γX8, C Z′′ + W ′ = 0,
α, β ∈ R, γ 6= 0. EI W ′′ − k Z′ − k W − χ

( γ
6 ζ3 + β ζ + α

)
= 0.

X4 = X1 + αX5 + βX7, D Z′′ + W ′ = 0,
α ∈ R, β 6= 0. EI W ′′ − k Z′ − k W − χ

(
α +

β
2 ζ2

)
= 0.

X5 = X1 + αX6, E Z′′ + W ′ = 0,
α 6= 0. EI W ′′ − k Z′ − k W − χ (α ζ) = 0.

X6 = X1 + αX5, F Z′′ + W ′ = 0,
α ∈ R. EI W ′′ − k Z′ − k W − χ (α) = 0.

X7 = X2 + αX8, G ρ1 Z′′ = 0,
α 6= 0. ρ2 W ′′ + χ (W ′) + k W + α E I k

2 ρ1
ζ2 = 0.

X8 = X2 + αX4, H ρ1 Z′′ = 0,
α ∈ R. ρ2 W ′′ + χ (W ′) + k W + αk ζ = 0.

As another application for the optimal system based on the definition of the invariant boundary
value problem given in [14,17], we classify the non-similar invariant conditions prescribed on invariant
surfaces under symmetry transformations for Timoshenko system (1) as given in Table 3. This is
achieved by finding invariant conditions as arbitrary functions of the invariants up to the first order
and invariant surfaces as arbitrary functions of the invariants of order zero, which depend on the
independent variables for each generator in the optimal system (16).

Table 3. Invariant conditions prescribed on invariant surfaces and theirs reductions.

Xi Invariant
Condition

Invariant
Surface Reduced Invariant Condition

Reduced
Invariant
Surface

X1 Â ω(x− α t) B
(

ζ, Z, W, βEI
2k ζ2 − β

24 ζ4 − αZ′, Z′, −αW ′, W ′
)

ω(ζ)

X2 B̂ ω(x− α t) B (ζ, Z, W, αZ′, Z′, αW ′, W ′) ω(ζ)

X3 Ĉ ω(x) B
(

ζ, Z, W, −αζ −
(

β
2 + γEI

2k

)
ζ2 − γ

24 ζ4, Z′, α + β ζ + γ
6 ζ3, W ′

)
ω(ζ)

X4 D̂ ω(x) B
(

ζ, Z, W,
(

EI
k β− α

)
ζ − β

6 ζ3, Z′, α +
β
2 ζ2, W ′

)
ω(ζ)

X5 Ê ω(x) B
(
ζ, Z, W, − α

2 ζ2, Z′, α ζ, W ′
)

ω(ζ)
X6 F̂ ω(x) B(ζ, Z, W, −α ζ, Z′, α, W ′) ω(ζ)

X7 Ĝ ω (t) B
(

ζ, Z, W, Z′, αEI
2ρ1

ζ2, W ′, 0
)

ω(ζ)

X8 Ĥ ω (t) B (ζ, Z, W, Z′, α ζ, W ′, 0) ω(ζ)
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Example 1. Reduction and invariant solution using X6:
Consider the generator X6 = X1 + α X5 = ∂

∂t − αx ∂
∂ϕ + α ∂

∂ψ where α ∈ R, from the optimal system (16).
Solving the corresponding characteristic equations of the first prolongation:

dt
1

=
dx
0

=
dϕ

−αx
=

dψ

α
=

dϕt

0
=

dϕx

−α
=

dψt

0
=

dψx

0
,

gives the following invariants up to the first order:

I1 = x, I2 = ϕ + αtx, I3 = ψ− αt, I4 = ϕt, I5 = ϕx + αt, I6 = ψt, I7 = ψx. (20)

Since the order of the Timoshenko system (1) is two, then the invariant conditions have to be functions of
the first order invariants of the form:

BΓ( I1, I2, I3, I4, I5, I6, I7 ) = 0, Γ = 1, ..., 4. (21)

The invariant conditions (21) are prescribed on the invariant surfaces:

ωγ(I1) = 0, γ = 1, 2, (22)

which are invariants of order zero that depend on the independent variables.
For α 6= 0, if we restrict the invariant conditions (21) to be linear, then it will take the form:

BΓ = AΓ,1(x) + AΓ,2(x) (ϕ + αtx) + AΓ,3(x) (ψ− αt) + AΓ,4(x) ϕt + AΓ,5(x) (ϕx + αt)
+AΓ,6(x) ψt + AΓ,7(x) ψx = 0,

(23)

where AΓ,i(x) are arbitrary functions for Γ = 1, ..., 4 and i = 1, ..., 7.
Moreover, the invariants of order zero I1, I2 and I3 give the invariant variables:

ϕ(t, x) = Z(ζ)− α tx, ψ(t, x) = W(ζ) + αt, ζ = x. (24)

The reduction of Timoshenko System (1) with the boundary conditions (23) prescribed on the surfaces
x = 0 and x = L using the invariant variables (24) is the system of ODEs of the form:

Z′′ + W ′ = 0,
EI W ′′ − k Z′ − k W − χ (α) = 0,

(25)

with general boundary conditions of the form:

AΓ,1(ζ) + AΓ,2(ζ) Z + AΓ,3(ζ) W − αAΓ,4(ζ) ζ + AΓ,5(ζ) Z′ + αAΓ,6(ζ) + AΓ,7(ζ) W ′ = 0 (26)

prescribed on the surfaces ζ = 0 and ζ = L.
For instance, we consider a beam that models small motions of a hinged arm, which is hinged at the

origin and free at its other end. This case was considered in [18] with two control functions. The control
functions are the force f (t) applied at the free end and a torque τ(t) applied at the hinged end. The associated
boundary conditions:

ϕ(t, 0) = 0, ψx(t, 0) = τ(t), ϕx(t, L)− ψ(t, L) = f (t), ψx(t, L) = 0, (27)

can be obtained from Equation (23) for the non-zero values A1,2 = 1 at x = 0; A2,1 = −r, A2,7 = 1 at x = 0;
A3,1 = −q, A3,3 = −1, A3,5 = 1 at x = L; A4,7 = 1 at x = L with force f (t) = q − 2 αt and torque
τ(t) = r.
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Using the invariant variables (24), the boundary conditions (27) are reduced to:

Z(0) = 0, W ′(0) = r, Z′(L)−W(L) = q, W ′(L) = 0. (28)

The solution of the boundary value problem (25) and (28) is given by:

Z (ζ) = r
6L ζ3 − r

2 ζ2 +
(

Lr
2 −

r EI
2Lk −

χ(α)
2k + q

2

)
ζ,

W (ζ) = − r
2L ζ2 + rζ − χ(α)

2k −
1
2

(
q + r

(
EI
Lk + L

))
.

(29)

Substituting back in the invariant variables (24), the system (1) with the boundary conditions (27) has the
following solution:

ϕ (t, x) = r
6L x3 − r

2 x2 +
(
−α t− χ(α)

2k −
rEI
2Lk + q

2 + rL
2

)
x,

ψ (t, x) = α t− r
2L x2 + r x− χ(α)

2k −
1
2

(
q + r

(
EI
Lk + L

))
.

(30)

A : ϕ(t, x) = Z(ζ)− β
24 tx4 + βEI

2k tx2 + α β
12 t2x3 − α βEI

2k t2x + β EI
6ρ1

t3 − α2β
12 x2t3 + α2βEI

6k t3

+ α3β
24 xt4 − α4

120 t5, ψ(t, x) = W(ζ) + β
24 α x4, ζ = x− αt.

B : ϕ(t, x) = Z(ζ) + β
2 t2, ψ(t, x) = W(ζ), ζ(t, x) = x− αt.

C : ϕ(t, x) = Z(ζ)− α tx− β
2 tx2 − γ

24 tx4 + γEI
2k tx2 + γ EI

6ρ1
t3 , ψ(t, x) = W(ζ) + αt

+β t x + γ
6 t x3, ζ = x.

D : ϕ(t, x) = Z(ζ) +
(

βEI
k − α

)
tx− β

6 t x3, ψ(t, x) = W(ζ) + α t + β
2 t x2, ζ = x.

E : ϕ(t, x) = Z(ζ)− α
2 x2t, ψ(t, x) = W(ζ) + α xt, ζ = x.

F : ϕ(t, x) = Z(ζ)− α tx, ψ(t, x) = W(ζ) + αt, ζ = x.
G : ϕ(t, x) = Z(ζ) + α E I

2 ρ1
t2x + α E I

6 k x3, ψ(t, x) = W(ζ) + 1
24 α x4 − α

120 x5, ζ = t.
H : ϕ(t, x) = Z(ζ) + α tx, ψ(t, x) = W(ζ), ζ = t.

(31)

Â : B
(

x− α t, ϕ + α4β
120 t5 − α3β

24 t4x− α2βEI
6k t3 + α2β

12 t3x2 − β EI
6ρ1

t3 − αβ
12 t2x3 + αβEI

2k t2x + β
24 tx4 − βEI

2k tx2

, ψ− β
24α x4, ϕt − βEI

2ρ1
t2, ϕx − β α3

24 t4 + β α2

6 t3x + αβEI
2k t2 − αβ

4 t2x2 + β
6 tx3 − βEI

k tx, ψt, ψx − β
6α x3

)
.

B̂ : B
(

x− α t, ϕ− β
2 t2, ψ, ϕt − βt, ϕx, ψt, ψx

)
.

Ĉ : B
(

x, ϕ + αtx + β
2 tx2 + γ

24 tx4 − γEI
2k tx2 − γEI

6ρ1
t3, ψ− αt− βtx− γ

6 tx3, ϕt − γEI
2ρ1

t2, ϕx + αt + βtx + γ
6 tx3

− γ EI
k tx, ψt, ψx − βt− γ

2 tx2
)

.

D̂ : B
(

x, ϕ + αtx + β
6 tx3 − βEI

k tx, ψ− α t− β
2 tx2, ϕt, ϕx + α t + β

2 tx2 − βEI
k t, ψt, ψx − βtx

)
.

Ê : B
(
x, ϕ + α

2 tx2, ψ− αtx, ϕt, ϕx + αtx, ψt, ψx − α t
)

.
F̂ : B (x, ϕ + αtx, ψ− αt, ϕt, ϕx + αt, ψt, ψx) .

Ĝ : B
(

t, ϕ + α
120 x5 − αEI

6k x3 − αEI
2ρ1

t2x, ψ− α
24 x4, ϕt − αEI

ρ1
tx, ϕx +

α
24 x4 − αEI

2k x2, ψt, ψx − α
6 x3

)
.

Ĥ : B (t, ϕ− αtx, ψ, ϕt − αx, ϕx, ψt, ψx) .

(32)

6. Discussion and Concluding Remarks

The Lie group study of a nonlinear Timoshenko system of PDEs with the frictional damping term
in rotational angle is performed. Lie symmetry generators and their Lie group transformations for the
Timoshenko system are presented. A systematic approach and a formula for computing invariants
in the adjoint representation is illustrated. Furthermore, the one-dimensional optimal system is
derived for the corresponding Lie algebra. All possible invariant variables and their corresponding
reductions for each vector field in the optimal system are found. The reductions to system of ordinary
differential equations (ODEs) are given in Table 2. They are described by optimal reductions where
all non-similar invariant solutions under symmetry transformations can be given from the solution
of the reduced system of ODEs. The hinged-free beam with two control functions, constant torque
applied at the hinged end and linear force applied at the free end, has been considered as an example.
Finally, all possible non-similar invariant conditions prescribed on invariant surfaces under symmetry
transformations are given in Table 3.
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