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Abstract:



The contribution of this article is quadruple. It (1) unifies various schemes of premodels/models including situations such as presheaves/sheaves, sheaves/flabby sheaves, prespectra/[image: there is no content]-spectra, simplicial topological spaces/(complete) Segal spaces, pre-localised rings/localised rings, functors in categories/strong stacks and, to some extent, functors from a limit sketch to a model category versus the homotopical models for the limit sketch; (2) provides a general construction from the premodels to the models; (3) proposes technics that allow one to assess the nature of the universal properties associated with this construction; (4) shows that the obtained localisation admits a particular presentation, which organises the structural and relational information into bundles of data. This presentation is obtained via a process called an elimination of quotients and its aim is to facilitate the handling of the relational information appearing in the construction of higher dimensional objects such as weak [image: there is no content]-categories, weak [image: there is no content]-groupoids and higher moduli stacks.
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1. Introduction


1.1. Motivation 1


There is an abundant literature on how to construct an algebraic object from one of its presentations [1,2,3,4,5]—this process will be referred to as a localisation. It is also well-known that the category of algebraic objects will satisfy strict universal properties if the objects themselves can be distinguished from their presentations by strict properties and, similarly, the category will usually satisfy weak universal properties if the objects can be distinguished from their presentations by weak properties, but little is known about how to derive strict universal properties for the category when the algebraic objects are only characterised by weak properties. One of the goals of the present paper is to address this lack.



If we think of an algebraic object as a model for a limit sketch [1], then algebraic objects can usually be distinguished from their presentations by lifting properties. Specifically, in the case of a limit sketch D, the presentations are given by the functors [image: there is no content] while the models are given by those presentations [image: there is no content] that preserve the chosen limits of D; as shown in [3], this type of property can be expressed in terms of a lifting property in the functor category [image: there is no content]. On the other hand, the localisation of a presentation X into a model [image: there is no content] is endowed with a reflection property, which equips X with a map [image: there is no content] such that for every arrow [image: there is no content] where M is a model, there exists an arrow [image: there is no content] making the following diagram commute.





 [image: Mathematics 05 00037 i001]











If the lifting properties characterising the models are strict, then one is able to show that the reflection is strict, that is to say that the arrow [image: there is no content] is unique for any given [image: there is no content]. For instance, in [3], one starts by characterising the models via strict lifting properties and the strictness of these is naturally carried over to the reflection property. This is the same idea in [4] where the author is able to construct a (strict) reflection from the strict lifting properties inherently associated with well-pointed endofunctors.



On the other hand, if the lifting properties are weak, then one is usually only able to show that the reflection is weak, in which case the arrow [image: there is no content] is only proven to exist. For instance, in [6], the small object argument (recall that this argument comes from Homotopy Theory, which mostly, if not only, deals with weak lifting properties; see [7,8]) is used to construct weak reflections for subcategories of injective objects.Similarly, in Garner’s framework [9,10], the small object argument is generalised to construct weak homomorphisms of ∞-categories à la Batanin [11] while the possibility to construct ∞-categories is assumed: the reason being that ∞-categories are objects that can be characterised by strict lifting properties [12] (Corollary 1.19) while weak homomorphisms between these do not require such a strictness.



However, to the best of my knowledge, there has not been any published work explaining how to obtain strict reflection properties from weak lifting constructions such as the small object argument. In fact, it is not even clear how to obtain strict universal properties from weak characterisations in general. For instance, in [13], essential weak factorisation systems were introduced to study injective and projective hulls, which are meant to capture canonical envelops of injective and projective objects, with the goal of strengthening the lifting properties associated with the usual associated replacements (see intro. ibid.), but it is not said if these hulls can satisfy strict universal properties; in fact [14] gives a hint that this is unlikely and states that only an almost reflection property can be shown. The paper even emphasises the need of methods to pass from a weak setting to a strict one in its last section [14] (Section 4), in which it is asked if it is possible to know when strict universal properties, such as naturality and functoriality, can be shown to be satisfied by a given weak reflection.



In an area of Mathematics in which the weakening of definitions and theories (e.g., ∞-topos theory, univalent homotopy type theory, devired algebraic geometry, etc.) have now taken more and more importance, but whose language—Category Theory—also takes advantage of strict universal properties, it is, indeed, of interest to know if there are theorems that allow one to determine whether a set of weak lifting properties defining a type of algebraic object can provide the associated category with a strict universal property—at least stricter than the expected one.



The present paper is an effort to provide a set of technics and theorems showing that such a scheme is possible. Precisely, one of the main contributions of this paper is to propose a language (or context) in which it is possible to say if a category of algebraic objects that are characterised by weak lifting properties can be shown to possess a strict universal property (see Section 1.3). We will even show that the proposed argument is a generalisation of Quillen’s small object argument (see Corollary 2) and will thus answer one of our earlier questions. The theorems given herein are meant to be generalised in future work (in which the boundary between strictness and weakness will become blurrier), the purpose being to pave the way for the construction of models taking their values in higher categorical structures.




1.2. Motivation 2


The second matter that motivates the present paper is the so-called elimination of quotients mentioned in the title, which basically comes down to conclude that the way we encode an object is as important as its inherent properties. For instance, it is this same type of ideas that motivated

	▹

	
the introduction of the elimination of imaginaries, in Shelah’s Model Theory [15,16], in which quotients are eliminated in the form of definable quotient maps by using the various sorts available from the ambient (multi-sorted) theory;




	▹

	
the development of the concept of covering space, in Algebraic Topology [17], that provides ways to blow up the quotients acting on a space and to bring out its homotopical properties by studying the automorphisms acting on the resulting quotient maps;




	▹

	
the definition of stack, in Algebraic Geometry [18], due to the existence of non-trivial automorphisms that may occur because of the different ways a moduli space can be represented.









To really understand how the coding of objects, and, even that of sets, matters from the point of view of their algebraic structures, let us consider an example. Take a set X and consider the coproduct [image: there is no content] encoded by the following logical specification:


(i,x)|x∈Xandi∈{0,1}











If one takes R to be the binary relation on [image: there is no content] that identifies [image: there is no content] with [image: there is no content] for every [image: there is no content], then the quotient [image: there is no content] is obviously isomorphic to X. However, in much the same way as it is fundamental to not confuse an isomorphism with an identity, it is, here, important to understand that [image: there is no content] is not same as X. From the point of view of the present paper, the difference between X and [image: there is no content] lies in the implicit algebraic structure with which [image: there is no content] is equipped. This object can indeed be seen as a surjection [image: there is no content] equipped with two sections [image: there is no content] whose cospan structure defines a universal cocone, and this structure is noticeable even thought [image: there is no content] is isomorphic to a mere set. In other words, the quotient [image: there is no content] can be seen as living way beyond the category of sets, for the simple reason that isomorphisms are not the same as identities.



All this shows that the way we construct algebraic objects matters quite substantially, mainly because the algebraic properties coming along with their representations can turn out to be either very useful or extremely cumbersome (e.g., X versus [image: there is no content]).



The goal of our so-called ‘elimination of quotients’ will be to eliminate the cumbersome quotients that may occur in the representation of algebraic objects and organise, in the form of quotient maps, the useful ones. Here, I feel important to mention that such a re-organisation is possible because our objects are characterised by weak lifting properties, which allow more freedom than strict ones.



If we look at how Kelly [4] (Theorem 10.2) constructs algebraic objects, and to be more specific, models for some limit sketch [image: there is no content], where K denotes the set of limit cones associated with D, we see that he isolates each cone [image: there is no content] and constructs, for each of these and every presentation [image: there is no content], a well-pointed endofunctor [image: there is no content] where the object [image: there is no content] completes the presentation X with operations required by the sub-theory [image: there is no content] of [image: there is no content]. To complete X with respect to the operations required by the whole theory [image: there is no content], he pushes out the wide span made of the arrows [image: there is no content], for all [image: there is no content], to obtain a well-pointed endofunctor [image: there is no content]. In particular, each cone [image: there is no content] is equipped with a factorisation as follows:
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Finally, the reflector [image: there is no content] associated with the theory [image: there is no content] is computed through a transfinite composition of the following form:


[image: there is no content]











Isolating each cone c in K and proceeding to a pushout of the well-pointed endofunctors [image: there is no content] is a necessity if one wants to use the very neat and compact formalism of well-pointed endofunctors. However, this pushout procedure, as elegant as it may be, adds more cumbersome quotients than useful ones. Precisely, the wide pushout of the objects [image: there is no content] looks more like the type [image: there is no content] because it mostly identifies all the copies of X living in each [image: there is no content] through the maps [image: there is no content].



As we can imagine, these cumbersome quotients become much more abundant when enriching our algebraic objects to other categories than [image: there is no content] and it would not be imaginable to be willing to do combinatorics with representations that repeat and contract the same information over and over. Not only do the results proposed in the present article avoid these cumbersome quotients, but they also bring out the hidden algebraic structure of the useful ones, where, here, the term ‘algebraic structure’ is used in the sense previously discussed for the quotient [image: there is no content].



In fact, our results go in the direction of Lawvere’s work [5], in which the concept of congruence is used to construct a reflector from the category of presentations to that of models by showing how the quotients act on the free algebra functor applied on the presentations [5] (Theorem 5.1). It is worth noting that the concept of congruence has given rise to a very rich theory regarding the characterisation of congruence lattices for varieties of algebras [19,20]. Our results can therefore be seen as a refined extension of Lawvere’s work. This refinement is presented in the form of a formal language that could be seen as suitable for a generalisation of Congruence Lattice Theory to more general objects than those proposed by Lawvere.




1.3. Results for Motivation 1


In the same fashion as there are categories of models for a theory [1], or categories of fibrants objects [21] or even systems of fibrant objects [22], it is, here, proposed the definition of system of premodels (see Definition 3), which gathers in the same structure a category of presentations together with maps along which the models are defined via weak lifting properties. An interesting feature of this structure is that it encompasses many examples that are meant to be captured operibus citatis; particular examples can also be found in [23,24,25,26]. There is also a novelty in the fact that the maps along which the weak lifting properties are defined are not maps in the category of values or that of presentations, but in a category whose level of definition allows one to verify whether the subcategory of the resulting models possesses a strict reflection property. For instance, this allows us to retrieve and explain the strict reflection property associated with the models for a limit sketch.



If we restrict ourselves to algebraic objects defined by limit-preserving functors, say valued in a category in which choices of colimits are obvious, a system of premodels is given by:

	(1)

	
a limit sketch [image: there is no content];




	(2)

	
a category [image: there is no content] with enough limits and pushouts, if not all;




	(3)

	
a subcategory [image: there is no content];




	(4)

	
for every cone [image: there is no content], a set [image: there is no content] of commutative squares in [image: there is no content], say as follows:


 [image: Mathematics 05 00037 i003]

















Before giving the definition of a model for this structure, we need to recall that a cone c in K is a natural transformation [image: there is no content] where [image: there is no content] is an object in D, [image: there is no content] is a small category, [image: there is no content] is the obvious constant functor [image: there is no content] picking out the object [image: there is no content] in D and [image: there is no content] is some functor [image: there is no content]. Now, a model for the previous structure is a functor [image: there is no content] in [image: there is no content] such that for every [image: there is no content], the canonical arrow:


P(ou(c))→limP∘in(c),








for which we shall prefer the more compact notation P[c]:=limP∘in(c), is orthogonal in the arrow category [image: there is no content] to every commutative square in [image: there is no content] (as shown below):
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In the case of limits sketches, we retrieve the usual definition of model by taking, for every cone [image: there is no content], the following pair of commutative squares in [image: there is no content]; the leftmost one encodes the surjectiveness of the map [image: there is no content] while the other one encodes its injectiveness:
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One of the very advantages of this language is to allow the specification of more general arrows than bijections such as weak equivalences (see characterisation in [27] (Lemma 7.5.1)). This explains why this language is expected to be generalised to higher categorical structures in the future.



Now, our main result, given in Theorems 8 and 9, can be simplified in terms of Theorem 1, in which items (i) and (ii) are in fact redundant. The statement makes use of the arrow [image: there is no content], which denotes, for every commutative square contained in [image: there is no content] and every [image: there is no content], the universal arrow induced by the pair of arows [image: there is no content] and [image: there is no content] under the pushout (denoted by [image: there is no content]) of the arrows [image: there is no content] and [image: there is no content].



Theorem 1.

Suppose that [image: there is no content] is an identity. For every object A in [image: there is no content], there exists an arrow [image: there is no content] in [image: there is no content] (Theorem 9) such that for every arrow [image: there is no content] in [image: there is no content] where X is a model for the system of premodels, if

	(i) 

	
the map β is an epimorphism for every square in [image: there is no content] and every [image: there is no content];




	(ii) 

	
the arrow [image: there is no content] is a monomorphism in [image: there is no content];




	(iii) 

	
the arrow [image: there is no content] is an epimorphism for every square in [image: there is no content] and every [image: there is no content],






then there exists a unique arrow [image: there is no content] making the following diagram commute (Theorems 8 and 9):
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As one can see, the previous theorem explains, in the language of systems of premodels, why one can expect a strict reflection property in the case of set-valued models for a limit sketch.



In Theorem 1, the assumption that the inclusion [image: there is no content] is an identity will be replaced, in Theorems 8 and 9, with the notion of effectiveness, which translates a variation of the concept of definability in [image: there is no content] (notice the parallelism with the concept of elimination of imaginaries given in Section 1.2). As will be shown in Theorem 7, this concept of definability becomes trivial if [image: there is no content] is taken to be equal to [image: there is no content].




1.4. Results for Motivation 2


From the point of view of motivation 2, the present paper mainly focus on models for limit sketches in [image: there is no content], so that we will mostly state our results from the perspective of these objects. This will nevertheless give an idea of what our theorems look like when generalised to other categories. The proof of the results stated below will be recapitulated in the conclusion of the present paper (Section 9).



We now consider a limit sketch [image: there is no content], where, for simplicity only, K is supposed to be a finite set of finite-limit cones. The proposition given below states that it is possible to construct the reflector of any presentation in a very specific way, which is not visible from Kelly’s construction [4].



Proposition 1.

For every presentation X in [image: there is no content] and ordinal [image: there is no content], there exist a pair of objects [image: there is no content] and [image: there is no content] and an epimorphism [image: there is no content] such that the reflector of X for the theory [image: there is no content] is given by the transfinite composition of the following sequence of arrows in [image: there is no content]:


[image: there is no content]











In addition, the mappings [image: there is no content] and [image: there is no content] are functorial and the arrow [image: there is no content] is natural in X.





Of course, one could argue that the map [image: there is no content] coming from Kelly’s construction can be factorised into an epimorphism and a monomorphism [image: there is no content], so that we might recover the previous form, but it is not obvious whether [image: there is no content] can be decomposed into a functorial sum [image: there is no content] in [image: there is no content], mainly because the quotients that acts on [image: there is no content] might prevent from doing so. In fact, there is a much stronger way to assess the difference between Kelly’s construction and the previous one, which is given below.



Proposition 2.

For every presentation X in [image: there is no content], there exist a sequence of epimorphism [image: there is no content], as given in Proposition 1, for which there is a natural transformation of transfinite sequences:


 [image: Mathematics 05 00037 i007]








for which [image: there is no content] is the identity on X and if there exists a dashed arrow making the following triangle commute, then it must factorise through the canonical map [image: there is no content] and the object [image: there is no content] is a model for the limit sketch [image: there is no content] whenever [image: there is no content]:


 [image: Mathematics 05 00037 i008]













In other words, Kelly’s construction has too many quotients to be non-trivially lifted to the elimination of quotients, and if a lift exists, then it cannot be in the free part [image: there is no content], which means that, at rank n, the free operations added to satisfy the theory [image: there is no content] are superfluous.



Even though the natural transformation [image: there is no content] is to identify free operations between each other, note that it cannot identify too much information either as the universal property of a reflector implies that the transfinite colimit of [image: there is no content] provides an isomorphism between the two underlying reflectors of X:
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In fact, we will show that, in the case of models for a limit sketch, the so-called elimination of quotients takes the form given in Theorem 2, in which every cone c in K is again viewed as a natural transformation [image: there is no content] where [image: there is no content] is an object in D, [image: there is no content] is a small category, [image: there is no content] is the obvious constant functor [image: there is no content] picking out [image: there is no content] in D and [image: there is no content] is some functor [image: there is no content].



Theorem 2.

For every presentation X in [image: there is no content], there exist a sequence of epimorphisms as given in Proposition 2, for which we will denote the coproduct object [image: there is no content] as a functor [image: there is no content], such that:

	-

	
[image: there is no content]and [image: there is no content];




	-

	
[image: there is no content] is the left Kan extension of the functor:


S^i[_]:K→Setc↦limSi∘in(c)








along the functor [image: there is no content], where K is seen as a discrete small category;
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	-

	
the epimorphism [image: there is no content] is the quotient map [image: there is no content] making the following identifications:

	(1) 

	
for every object d in D, it identifies a pair [image: there is no content] if there exists a cone [image: there is no content] and an arrow [image: there is no content] in D for which the pushout of the canonical arrow [image: there is no content] along [image: there is no content] maps x and y to the same element;
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	(2) 

	
for every object d in D, it identifies a pair [image: there is no content] where [image: there is no content] and [image: there is no content] if there exists a cone [image: there is no content], an object z in the diagram [image: there is no content] of c and a morphism [image: there is no content] in D such that x and y can be lifted to a common element in [image: there is no content] via the span [image: there is no content] made of the following composites.
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Even though we have only discussed the finite-limit case, all of the previous propositions hold for non-finite limit-sketches. In this case, the ordinal [image: there is no content] becomes the cardinality of the limit-sketch (see the end of Section 4.1) and the transfinite sequence of arrows [image: there is no content] needs to be defined such that [image: there is no content] is the transfinite colimits of all the arrows preceding the rank [image: there is no content].




1.5. Road Map


The main results of the paper start to be developed from Section 4, while Section 2 and Section 3 give an account of various notations, conventions and technicalities. Specifically, Section 2 introduces a set of conventions meant to facilitate our notations while Section 7 focuses on a notion of smallness that will only be used in Section 7.



Even if Section 2 does not sound so attractive, the reader might want to skim through this section to get used to specific notations such as [image: there is no content] (Section 2.1); [image: there is no content] (Section 2.3); [image: there is no content] as well as [image: there is no content] (Section 2.5) and [image: there is no content] (Section 2.14).



Section 3 defines a notion of smallness that generalises the usual one. Recall that one usually says that an object D in some category [image: there is no content] is small if for any functor (or, sometimes, any functor belonging to a certain classes of functors. This restriction generally arises in non-accessible categories such as in the category of topological spaces). Defined from the ordinal category [image: there is no content] to [image: there is no content], say [image: there is no content], the following canonical map is a bijection:


[image: there is no content]











On the other hand, the smallness condition defined in Section 3 would be more of the following type. The property is now centred on the functor F and not on the object D any more; we then consider a set of objects G in [image: there is no content] and say that a functor [image: there is no content] is G-convergent if the following canonical map is a bijection for every object [image: there is no content]:


[image: there is no content]



(1)







The reason for this change is that the image [image: there is no content] will not always be a colimit of the form [image: there is no content].



Then comes Section 4, in which is defined the notion of system of premodels. The difference with the simplified version given in Section 1.3 and that of Section 4 is that the canonical map [image: there is no content] is now constructed from various parts of the system of premodel structure, so that it is now of the form [image: there is no content] where R is a right adjoint endofunctor on [image: there is no content]. This right adjoint R will often be an identity functor in this paper, save for [image: there is no content]-spectra, in which case it will be equal to the loop space functor [image: there is no content]. In the future, the functor R will however take multiple forms.



Section 5 and Section 6 work together to formalise the idea of algebraic structure associated with a quotient. Recall that completing a presentation with operations usually requires the adding of free operations along with certain quotients. In our case, the free structure will be added to the presentations, but the quotient structure will be resolved in a separate object [image: there is no content] (see Section 6.7). The term resolved here refers to the concept of resolution developed in [28], which should be viewed as a way of passing from what looks like a set [image: there is no content] to a higher dimensional structure, such as category or a quotient map [image: there is no content].



The purpose of Section 5, alone, is to give a theoritical generalisation of Quillen’s small object argument [8] while Section 6 focuses on applying the formalism of Section 5 to systems of premodels.



The difference between our argument and Quillen’s one is that one does no longer consider strict pushouts at every step and the lifts meant to be produced by these pushouts only commutes in the subsequent steps. These differences arise for two reasons. The first one is the desired elimination of quotients and the second one is due to the fact that the pushouts used in the usual argument do not necessarily commute with the right adjoints (including the limits) involved in the construction of the object [image: there is no content].



To be able to formalise the previous ideas, we will introduce the concept of tome, whose goal is to gather all the squares that one would like to force to admit a lift through the small object argument. This will take the form of a functor [image: there is no content], where h is an object in the arrow category [image: there is no content]. Note that this tool will mainly find its use in the way the category [image: there is no content] is encoded.



Specifically, in Section 6, this category [image: there is no content] will be discrete and will take the form of a coproduct of what could look like two left Kan extensions:


[image: there is no content]











The left-hand sum will allow us to parameterise all those squares that are to force the adding of the structural information to the presentations while the right-hand sum will allow us to handle all of the quotients that the adding of this information is supposed to generate. Note that the rightmost sum of [image: there is no content] is only meant to quotient out what has been added at a previous step, leaving free the information added by the current leftmost sum and thus producing the elimination of quotients discussed in Section 1.4. All the data needed to talk about an elimination of quotients such as [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] (and some more) will be gathered into the notion of constructor (see Section 6.4). Remarks 11 and 13 might be helpful in seeing what all those left Kan extension-like constructions actually parameterise.



Finally, the small object argument is carried out in Section 7 where the smallness condition is used to prove the usual lifting properties. The universal property satisfied by our construction is discussed in Section 8 via Theorems 9 (existential part) and 8 (uniqueness). The latter mainly focus on the properties required to prove Theorem 2, whose proof is recapitulated in the conclusion (see Section 9.2).
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2. Background, Notations and Conventions


2.1. Ordinals


Any ordinal will be identified with the preorder category it induces. For every ordinal [image: there is no content], the inclusion functor [image: there is no content] will be denoted by [image: there is no content]. For convenience, the preorder category of one and two objects will be denoted by [image: there is no content] and [image: there is no content], respectively. We shall also use the notation [image: there is no content] to denote the least infinite ordinal.




2.2. Wide Subcategories


Let [image: there is no content] be a category. A subcategory [image: there is no content] will be said to be wide if the inclusion functor [image: there is no content] is surjective on objects. Put simply, this means that [image: there is no content] contains all the objects of [image: there is no content].




2.3. Limits and Colimits


For every category [image: there is no content] and small category D, the obvious functor [image: there is no content] mapping an object [image: there is no content] to the pre-composition of [image: there is no content] with the canonical functor [image: there is no content] will be denoted by [image: there is no content]. For convenience, the category [image: there is no content] will often be identified with the category [image: there is no content]. If they exist, the left and right adjoints of [image: there is no content] will be denoted by [image: there is no content] and [image: there is no content], respectively. Recall that the images of these two functors are understood as the colimits and limits of [image: there is no content] over D, respectively. As usual, in the case where the functor [image: there is no content] exists, the category [image: there is no content] will be said to be complete over D. Similarly, the category [image: there is no content] will be said to be cocomplete over D when the functor [image: there is no content] exists.



Proposition 3.

If a category [image: there is no content] is complete (resp. cocomplete), then so is [image: there is no content] for any small category D where the limits (resp. colimits) are defined objectwise in [image: there is no content].





Proof. 

Suppose that [image: there is no content] is complete. For every object d in D, the restriction functor [image: there is no content] mapping X to [image: there is no content] has a right adjoint whose images are given by the Right Kan extensions along the functor [image: there is no content] picking out d [29]. This implies that [image: there is no content] commutes with limits. By duality, the other statement regarding colimits follows.  ☐






2.4. Cardinality


Let A be an object in [image: there is no content]. The cardinality of A is the least ordinal [image: there is no content] such that there is a bijection between A and [image: there is no content]. In ZFC, the axiom of choice ensures that the cardinality of a set A always exists, which will be denoted by [image: there is no content].



For any small category D, the cardinality of D is the cardinality of the following coproduct of sets, where [image: there is no content] is the set of objects of D:


[image: there is no content]











The cardinality of D will be denoted by [image: there is no content]. Below is given a well-known result on the commutativity of limits and colimits.



Proposition 4.

For every small category D and limit ordinal [image: there is no content], the canonical natural transformation colκlimD⇒limDcolκ valued in [image: there is no content] over [image: there is no content] is an isomorphism.





Proof. 

See Appendix A.  ☐





Similarly, for every complete category [image: there is no content] and small category D, the functor [image: there is no content] commutes with colimits (see Proposition 3). In fact, it follows from Proposition 4 that the unit of the adjuncion [image: there is no content] commutes with colimits in [image: there is no content] as stated in the next proposition.



Proposition 5.

For every small category D and limit ordinal [image: there is no content], denote by the letter η the units of the two adjunctions [image: there is no content] in [image: there is no content] and [image: there is no content]. The following diagram of canonical arrows in [image: there is no content] commutes for any functor [image: there is no content]:


 [image: Mathematics 05 00037 i012]













Proof. 

See Appendix A. ☐






2.5. Universal Shiftings


Let [image: there is no content] be a functor between small categories. The pre-composition with i induces an obvious functor [image: there is no content]. Mostly for convenience, the composition of this functor with the colimit functor [image: there is no content] will later be denoted by [image: there is no content]. The obvious canonical natural transformation [image: there is no content] will be called the universal shifting along i. Similarly, the composition of the functor [image: there is no content] with the limit functor [image: there is no content] will be denoted by [image: there is no content].




2.6. Right Lifting Property


Let [image: there is no content] be a category and [image: there is no content] be a class of arrows in [image: there is no content]. The class of arrows of [image: there is no content] that have the right lifting property (abbrev. rlp) with respect to the arrows of [image: there is no content] will be denoted by [image: there is no content].




2.7. Sequential Functors


Let [image: there is no content] be some ordinal and [image: there is no content] be a category. A functor [image: there is no content] will be said to be sequential if for any limit ordinal [image: there is no content] in [image: there is no content], the object [image: there is no content] may be identified with the colimit of the functor [image: there is no content] such that, for every ordinal [image: there is no content] in [image: there is no content], the morphism [image: there is no content] corresponds to the arrow of the universal cocone of [image: there is no content] associated with [image: there is no content].



Proposition 6.

If a morphism [image: there is no content] has the rlp with respect to every arrow [image: there is no content] for every [image: there is no content], then f belongs to rlp({F(0<k)|k∈κ+1}).





Proof. 

It is straightforward to show that if a morphism f has the rlp with respect to two composable arrows i and j, then it has the rlp with respect to the composition [image: there is no content]. A direct generalisation to the transfinite case shows the proposition.  ☐






2.8. Limit Sketches


A limit sketch is a small category [image: there is no content] equipped with a subset Q of its cones (Recall that these are, by definition, natural transformations of the form [image: there is no content] in [image: there is no content] where A is a small category, U is a functor [image: there is no content] and d an object in [image: there is no content], called the peak). The cones in Q will be said to be chosen. A model for a limit sketch [image: there is no content] in a category [image: there is no content] is a functor [image: there is no content] that sends the chosen cones in Q to universal cones (‘Universal’ here means that the cone, say [image: there is no content], defines a limit of the functor [image: there is no content]) in [image: there is no content]. The models of a limit sketch [image: there is no content] in [image: there is no content] define the objects of a category [image: there is no content] whose morphisms are natural transformations in [image: there is no content] over [image: there is no content]. For any limit sketch [image: there is no content], the category of models for [image: there is no content] in [image: there is no content] will be denoted by [image: there is no content].



Example 1 (Limit sketc for monoids).

The category of monoids in [image: there is no content] may be defined as a category of models for a certain limit sketch [image: there is no content]. The underlying small category of [image: there is no content] is freely generated over a set of arrows and quotiented by commutativity relations. Specifically, the category [image: there is no content] has four objects [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], where [image: there is no content] is called the underlying object of the sketch, and a set of arrows as follows, where the identities have been forgotten:


g2⟶μg1g0⟶ηg1g3⟶p1̲2g1g3⟶p12̲g2g3⟶p2̲1g1g3⟶p21̲g2










g2⟶p1g1g2⟶p2g1g3⟶μ*g2g3⟶μ*g2g1⟶η*g2g1⟶η*g2g⟶!g0











The commutativity relations are given by the diagrams:


 [image: Mathematics 05 00037 i013]








while the chosen cones are given by the trivial cone, of peak [image: there is no content], defined over the empty category and the following spans:


g1⟵p1g2⟶p2g1g1⟵p21̲g3⟶p2̲1g2g1⟵p12̲g3⟶p1̲2g2











The astute reader might have noticed that μ and η stand for the multiplication and unit of the monoid structure. It will come in handy to denote the preceding limit sketch by [image: there is no content]. Note that other limit sketches can give rise to the same models, so that the previous limit sketch is only an example among other possible presentations of the theory of monoids.





Example 2 (Limit sketch for commutative monoids).

It is possible to add one more arrow and two diagrams to the limit sketch [image: there is no content] so that the category of models associated with the resulting limit sketch, say [image: there is no content], is that of commutative monoids. Precisely, this would imply the adding of an arrow [image: there is no content] that makes the following diagrams commute:


 [image: Mathematics 05 00037 i014]













Example 3 (Limit sketch for abelian groups).

It is also possible to add three more arrows and two diagrams to the limit sketch [image: there is no content] so that the category of models associated with the resulting limit sketch, which will later be denoted by [image: there is no content] for the notations given below, is that of abelian groups. Precisely, this would imply the adding of three arrows [image: there is no content] , [image: there is no content] and [image: there is no content] that makes the following diagrams commute:


 [image: Mathematics 05 00037 i015]













Example 4 (Limit sketch for rings).

By definition, the subcategory of [image: there is no content] generated by [image: there is no content], [image: there is no content], [image: there is no content], ⋯, [image: there is no content] and ! is also included in [image: there is no content]. The pushout of [image: there is no content] and [image: there is no content] along these underlying inclusions provides a certain limit sketch [image: there is no content] that contains five objects and all the arrows and cones appearing in [image: there is no content] and [image: there is no content]; the associated limit sketch combines the structure of a monoid with the structure of a commutative monoid. One thus recovers the theory of rings if one adds an object [image: there is no content], a chosen cone [image: there is no content] and the following arrows and commutativity relations to [image: there is no content]:


g3⟶δ*g4g3⟶δ*g4g4⟶π1g2g4⟶π2g2g4⟶μ′′g2










 [image: Mathematics 05 00037 i016]











The resulting limit sketch [image: there is no content]then defines a sketch for which the models are rings. The limit sketch [image: there is no content]to which the identity morphism [image: there is no content]is added to the set of chosen cones—when seen as a trivial cone—will later be denoted by [image: there is no content].






2.9. Subfunctors


Let D be a small category and [image: there is no content] be a functor. A subfunctor of F is a functor [image: there is no content] such that (1) for every object d in D, the inclusion [image: there is no content] holds and (2) for every morphism [image: there is no content] in D, the function [image: there is no content] is the restriction of [image: there is no content] along the respective inclusions of the domain and codomain.




2.10. Overcategories


Let [image: there is no content] be a category and X be an object in [image: there is no content]. The obvious functor [image: there is no content] mapping an arrow [image: there is no content] in [image: there is no content] to the object A in [image: there is no content] will be denoted by ∂.



Remark 1.

Let [image: there is no content] be a small category. Any functor [image: there is no content] may be seen as a natural transformation in [image: there is no content] over [image: there is no content] of the form [image: there is no content]. The converse is also true.





Let now [image: there is no content] be a functor. It will come in handy to denote by [image: there is no content] the obvious functor on [image: there is no content] satisfying the following mapping rule on the objects:


[image: there is no content]












2.11. Covering Families


Let D be a small category and d be an object in D. A covering family on d is a collection [image: there is no content] of arrows in D. For every morphism [image: there is no content] in D, we shall speak of the pullback of S along f to refer to a collection of arrows [image: there is no content] where the arrow [image: there is no content] is a pullback of [image: there is no content] along f. Also, note that every morphism [image: there is no content] gives rise to a family [image: there is no content]. This last operation is used to define a more complex operation on S as follows. For every [image: there is no content], take a covering family [image: there is no content] on [image: there is no content]. We will denote by [image: there is no content] the covering family on d obtained by the disjoint union of families [image: there is no content] for every [image: there is no content].




2.12. Grothendieck Pretopologies


Let D be a small category. A Grothendieck pretopology on D consists, for every object d in D, of a collection [image: there is no content] of covering families S on d such that:

	(1)

	
(Stability) for every arrow [image: there is no content] in D, the pullback [image: there is no content] exists in [image: there is no content];




	(2)

	
(Locality) for every [image: there is no content] and [image: there is no content] in [image: there is no content], the covering family [image: there is no content] is in [image: there is no content];




	(3)

	
(Identity) for every object d in D, the singleton [image: there is no content] is in [image: there is no content].









Such a collection will usually be denoted by J. A category D equipped with a Grothendieck pretopology J on D will be called a site.



Remark 2.

Every covering family [image: there is no content] on an object d in [image: there is no content] may be seen as a functor [image: there is no content] if A is seen as a discrete category. It follows from the stability and locality axioms that this functor extends to a product-preserving functor [image: there is no content] where [image: there is no content] is the completion of A under products. This functor will be called the stabilisation of S.






2.13. Families


For any category [image: there is no content], the notation [image: there is no content] will be used to denote the category whose objects are pairs [image: there is no content] where S is a discrete category and F is a functor [image: there is no content] and whose morphisms [image: there is no content] are given by pairs [image: there is no content] where a is a functor [image: there is no content] and [image: there is no content] is a natural transformation [image: there is no content].




2.14. Bounded Diagrams


Let D be a small category, d be an object in D and [image: there is no content] be a category. We will denote by [image: there is no content] the category whose objects are triples [image: there is no content] where P and Q are functors [image: there is no content] and e is an arrow [image: there is no content] in [image: there is no content] and whose morphisms, say [image: there is no content], are given by pairs of natural transformations [image: there is no content] of respective forms [image: there is no content] and [image: there is no content] making the following square commute:


 [image: Mathematics 05 00037 i017]











Note that [image: there is no content] is also a functor category [image: there is no content] where [image: there is no content] is the smallest subcategory of [image: there is no content] consisting of the two copies of D and the arrow linking the two copies of d.





3. Convergent Functors


This section aims to define the notion of convergent functor, which is to replace the notion of “small object” that is usually used in transfinite constructions.



3.1. Emulations


Let [image: there is no content] and [image: there is no content] be two small categories and [image: there is no content] be a category. A pair of functors [image: there is no content] and [image: there is no content] will be called an [image: there is no content]-emulation in [image: there is no content] if it is equipped with a natural isomorphism as follows:


 [image: Mathematics 05 00037 i018]











In terms of an equation, the previous diagram means that [image: there is no content] is equipped with a natural isomorphism (in the variables [image: there is no content], [image: there is no content] and [image: there is no content]) as follows:


[image: there is no content]



(2)







Example 5.

Let [image: there is no content] be a small category and [image: there is no content] be a category. Take g to be the identity functor [image: there is no content] and h to be the identity functor [image: there is no content]. By definition, the pair [image: there is no content] is a [image: there is no content]-emulation.





Example 6.

Let [image: there is no content] be a functor between small categories and [image: there is no content] be a category. Take g to be the pre-composition functor [image: there is no content] induced by U and h to be the equivalent version of g in [image: there is no content]. It suffices a few lines of calculation to show that the following isomorphism holds, which implies that the pair [image: there is no content] defines an [image: there is no content]-emulation:


[image: there is no content]













Example 7.

Let [image: there is no content] be a small category and [image: there is no content] be a category. Take g to be the functor [image: there is no content] and h to be the functor [image: there is no content]. It follows from Example 6 that the pair [image: there is no content] is a [image: there is no content]-emulation:


[image: there is no content]













Example 8.

Let [image: there is no content] be a small category and [image: there is no content] be a category complete over [image: there is no content]. Take g to be the limit functor [image: there is no content] and h to be the limit functor [image: there is no content]. It is a well-known fact following from Yoneda’s Lemma that the pair [image: there is no content] is an [image: there is no content]-emulation.





Example 9.

Let [image: there is no content] be a small category and [image: there is no content] be a category complete over [image: there is no content]. We will denote by η the unit of the adjunction [image: there is no content] valued in any category. Now, take g to be the obvious functor [image: there is no content] mapping an object X in [image: there is no content] to the arrow [image: there is no content] in [image: there is no content] and h to be the equivalent version of g in the category [image: there is no content] (which is complete over [image: there is no content]). It follows from Yoneda’s Lemma that the following diagram commutes, which implies that the pair [image: there is no content] is an [image: there is no content]-emulation:


 [image: Mathematics 05 00037 i019]













Example 10.

Let [image: there is no content] be a small category. For this example, we shall additionally need a small category A together a cone [image: there is no content] in [image: there is no content]. Let now [image: there is no content] denote a complete category over A. The unit of the adjunction [image: there is no content] in [image: there is no content] will be denoted by η. Now, to define our emulation, take g to be the obvious functor [image: there is no content] mapping a functor [image: there is no content] to the arrow:


[image: there is no content]








in [image: there is no content] and h to be the equivalent version of g in the category [image: there is no content]. It follows from Yoneda’s Lemma that the pair [image: there is no content] is an [image: there is no content]-emulation. Specifically, the isomorphism associated with the pair [image: there is no content] may be deduced from the isomorphisms involved in Examples 6, 8 and 9.





Example 11.

Let [image: there is no content] be a small category. For this example, we shall need a small category A together a cone [image: there is no content] in [image: there is no content]. Let now [image: there is no content] denote a complete category over A. The unit of the adjunction [image: there is no content] in [image: there is no content] will be denoted by η. Now, to define our emulation, take g to be the obvious functor [image: there is no content] mapping an object [image: there is no content] in [image: there is no content] to the arrow:


[image: there is no content]








in [image: there is no content] and h to be the equivalent version of g in the category [image: there is no content]. It follows from the isomorphisms involved in Examples 7, 8 and 10 that the pair [image: there is no content] is an [image: there is no content]-emulation.






3.2. Cocontinuous Emulations


Let [image: there is no content] and [image: there is no content] be two small categories, [image: there is no content] be a category and [image: there is no content] be a limit ordinal. An [image: there is no content]-emulation [image: there is no content] in [image: there is no content] will be said to be κ-cocontinuous, if for every object [image: there is no content], the functor [image: there is no content] preserves colimits over [image: there is no content].



Example 12.

Since identity functors preverse colimits, the pair [image: there is no content] of Example 5 is a κ-cocontinuous [image: there is no content]-emulation for every limit ordinal κ.





Example 13.

Consider the same context as that used in Example 6. Since [image: there is no content] is cocomplete over any small category D, the colimits of [image: there is no content] are componentwise colimits, which means that for every functor [image: there is no content], the following isomorphism holds for every [image: there is no content]:


[image: there is no content]











This directly implies that the functor [image: there is no content] preserves colimits, which shows that the [image: there is no content]-emulation [image: there is no content] is κ-cocontinuous for every limit ordinal κ.





Example 14.

It follows from Example 13 that the [image: there is no content]-emulation [image: there is no content] of Example 7 is κ-cocontinuous for every limit ordinal κ.





Example 15.

Consider the same context as that used in Example 8 and suppose to be given a limit ordinal κ satisfying the inequality [image: there is no content]. It directly follows from Proposition 4 that the functor [image: there is no content] preserves colimits over κ. This shows that the [image: there is no content]-emulation [image: there is no content] is κ-cocontinuous.





Example 16.

Consider the same context as that used in Example 9 and suppose to be given an limit ordinal κ satisfying the inequality [image: there is no content]. It follows from Proposition 5 that the functor [image: there is no content] preserves colimits over κ. This shows that the [image: there is no content]-emulation [image: there is no content] is κ-cocontinuous.





Example 17.

By using the cocontinuity involved in Examples 15 and 16, we may show that the [image: there is no content]-emulation [image: there is no content] is κ-cocontinuous for any limit ordinal κ satisfying the inequality [image: there is no content].





Example 18.

By using the cocontinuity involved in Examples 13, 15 and 16, Example we may show that the [image: there is no content]-emulation [image: there is no content] is κ-cocontinuous for any limit ordinal κ satisfying the inequality [image: there is no content].






3.3. Convergent Functors


For any class [image: there is no content] of objects of [image: there is no content], a functor [image: there is no content] will be said to be [image: there is no content]-convergent in [image: there is no content] if for every object [image: there is no content] in [image: there is no content], the following canonical function (obtained by homing) is an isomorphism in [image: there is no content]:


[image: there is no content]











If the class [image: there is no content] turns out to be a singleton [image: there is no content], the functor will more explicitly be said to be [image: there is no content]-convergent.



Remark 3.

One of the useful implications of the previous definition is that if a functor [image: there is no content] is [image: there is no content]-convergent in [image: there is no content], then for every object [image: there is no content] and morphism [image: there is no content] in [image: there is no content], there exist an ordinal [image: there is no content] and a morphism [image: there is no content] making the following diagram commute in [image: there is no content]:


 [image: Mathematics 05 00037 i020]













Let now [image: there is no content] and [image: there is no content] denote two small categories and [image: there is no content] be a functor. A functor [image: there is no content] will be said to be unimorly G-convergent in [image: there is no content] if for every object s in [image: there is no content] and object t in [image: there is no content], the following canonical function is an isomorphism in [image: there is no content]:


[image: there is no content]











In other words, the evaluation of F at an object s in [image: there is no content] is {G(t)|t∈Obj(T)}-convergent.



Lemma 1.

Let [image: there is no content] and [image: there is no content] be two small categories such that [image: there is no content] and [image: there is no content] be a category. Let [image: there is no content] be a functor and consider a uniformly G-convergent functor [image: there is no content] in [image: there is no content]. For every cocontinuous [image: there is no content]-emulation [image: there is no content], the composite functor [image: there is no content] is G-convergent in [image: there is no content].





Proof. 

The following series of natural isomorphisms proves the statement:


CT(G,g∘F(κ))≅∫t∈TCG(t),g∘F(κ)(t)(Definition)≅∫t∈ThCG(t),F(κ)(_)(t)(Equation(2))≅∫t∈ThcolκCG(t),F(ικ(_))(_)(t)(Uniformconv.)≅∫t∈TcolκhCG(t),F(ικ(_))(_)(t)(Cocontinuity)≅colκ∫t∈ThCG(t),F(ικ(_))(_)(t)(Proposition4)≅colκ∫t∈TCG(t),g(F∘ικ(_))(t)(Equation(2))≅colκCTG,g∘F∘ικ(_)(Definition)











This last isomorphism shows that [image: there is no content] is G-convergent in [image: there is no content]. ☐





Example 19.

Applying Lemma 1 to the [image: there is no content]-emulation [image: there is no content] of Example 5 implies that if a functor [image: there is no content] is uniformly G-convergent in [image: there is no content] and the inequality [image: there is no content] holds, then the functor [image: there is no content] is G-convergent in [image: there is no content].





Example 20.

Applying Lemma 1 to the [image: there is no content]-emulation [image: there is no content] of Example 18 implies that if a functor [image: there is no content] is uniformly G-convergent in [image: there is no content] for some functor [image: there is no content] and the inequality [image: there is no content] holds, then the functor mapping an ordinal n in [image: there is no content] to the following composite arrow in [image: there is no content] is G-convergent in [image: there is no content]:


[image: there is no content]













Remark 4.

It follows from Lemma 1 that if a functor [image: there is no content] is uniformly G-convergent in [image: there is no content], then [image: there is no content] is [image: there is no content]-convergent in [image: there is no content]. Specifically, this follows from the fact that [image: there is no content] commutes with hom-sets (see Example 14) and the following series of isomorphisms:


C(colTG,F(κ))≅CT(G,ΔT(F(κ)))(Adjointness)≅colκCT(G,ΔT∘F∘ικ)(Lemma1)≅colκC(colTG,F∘ικ)(Adjointness)















4. Models for a Croquis


This section defines the notions of premodel and model for which we want to construct the localisation. We start with the type of theory on which the models are defined.



4.1. Croquis


Let D be a small category. Recall that a cone in D over a small category A consists of two functors [image: there is no content] and [image: there is no content] and a natural transformation [image: there is no content]. When such a cone is called c, the functor [image: there is no content] will be denoted by [image: there is no content], the functor [image: there is no content] will be denoted by [image: there is no content] and the small category A will be referred to as the elementary shape of c and denoted by [image: there is no content].



Definition 1.

A croquis category (or croquis) in D consists of a set K of cones in D and a functor [image: there is no content] (where K is seen as a discrete category) called the regular output.





A croquis as above will be denoted by a triple [image: there is no content] and sometimes shortened to the pair [image: there is no content] when the ambient category D is obvious.



Convention 1.

For every croquis [image: there is no content], the operation [image: there is no content] induces a function from K to [image: there is no content]. Alternatively, this may be seen as a functor [image: there is no content]. If the functor [image: there is no content] is equal to [image: there is no content], then the croquis will be denoted by [image: there is no content] or K and the functor [image: there is no content] will be said to be trivial.





Example 21 (Arrow categories).

Let D be a small category, [image: there is no content] be a subcategory of D and [image: there is no content] be some given functor. The set [image: there is no content] of arrows of [image: there is no content] defines an obvious set of cones of elementary shape [image: there is no content] in [image: there is no content]. However, because [image: there is no content] is a subcategory of D, we shall in fact see [image: there is no content] as a set of cones specifically in D. The croquis (in D) made of [image: there is no content] and the regular output [image: there is no content] mapping any arrow [image: there is no content] in [image: there is no content] to the object [image: there is no content] will later be denoted by [image: there is no content].





Example 22 (Spectra).

Let [image: there is no content] denote the wide discrete subcategory of the ordinal category ω and [image: there is no content] denote the full subcategory of [image: there is no content] restricted to positive ordinals. Let [image: there is no content] be the predecessor operation [image: there is no content]. The croquis defined by [image: there is no content] will later be used to characterise Ω-spectra.





Example 23 (Sketches).

Any limit sketch [image: there is no content] defines an obvious croquis where K stands for the set of chosen cones and where the associated regular output [image: there is no content] is the trivial one.





Example 24 (Grothendieck’s pretopologies).

Let J denote a Grothendieck pretopology on a small (opposite) category [image: there is no content]. A covering family [image: there is no content] in [image: there is no content] may be seen as a cone of the form [image: there is no content] in D over A. If one denotes by [image: there is no content] the stabilisation of C (see Remark 2), this cone gives rise to another cone [image: there is no content] over [image: there is no content]. Equipping D with the set of these latest cones, say [image: there is no content], gives rise to an obvious croquis [image: there is no content].





Example 25 (Flabby pretopologies).

Let J denote a Grothendieck pretopology on a small (opposite) category [image: there is no content]. The croquis that will later give rise to flabby sheaves and the Godement resolution is the union of the two croquis [image: there is no content] and [image: there is no content]. Precisely, this croquis consists of the union of the two sets of cones [image: there is no content] and [image: there is no content] and the trivial regular output.





Example 26 (Segal croquis).

Let Δ denote the category of non-zero finite ordinals and preserving-order functions, which is known as the simplex category. Denote by [image: there is no content] the wide subcategory of Δ whose arrows are injective functions and, for every object [image: there is no content], denote by [image: there is no content] the composition of the functor [image: there is no content] (see Section 2.10) with the obvious inclusion [image: there is no content]. The Segal croquis of [image: there is no content] is of the form [image: there is no content] (for a trivial regular output) where:

	(i) 

	
[image: there is no content] contains, for every object [image: there is no content], the cone [image: there is no content], defined over [image: there is no content], that stems from the dual transformation described in Remark 1 for the inclusion functor [image: there is no content];




	(ii) 

	
[image: there is no content] contains, for every object [image: there is no content], the cone given below (expressed in Δ as a cocone), where, if one denotes [image: there is no content], [image: there is no content] and [image: there is no content]:

	(1) 

	
[image: there is no content] is the function with the mapping rules [image: there is no content] and [image: there is no content];




	(2) 

	
[image: there is no content] is the function with the mapping rule [image: there is no content];




	(3) 

	
[image: there is no content] is the function with the mapping rule [image: there is no content].








 [image: Mathematics 05 00037 i021]

















This croquis will be denoted by [image: there is no content].





Example 27 (Complete Segal croquis).

Let Δ be the simplex category. The complete Segal croquis of [image: there is no content] is given by its Segal croquis [image: there is no content] to which is added the unique cone whose peak is the ordinal [image: there is no content] and whose diagram in Δ is given, below, underlying the cocone of dotted arrows, where, if one denotes [image: there is no content] and [image: there is no content]:

	(1) 

	
[image: there is no content] is the function with the mapping rules [image: there is no content] and [image: there is no content];




	(2) 

	
[image: there is no content] is the function with the mapping rules [image: there is no content] and [image: there is no content];








 [image: Mathematics 05 00037 i022]











The induced cone in [image: there is no content] will be denoted by [image: there is no content] as it is meant to describe the set of isomorphism structures relative to the natural categorical (or nerval) structure of [image: there is no content]. The resulting croquis will be denoted by [image: there is no content].





We shall speak of an elementary shape of a croquis [image: there is no content] to refer to the elementary shape of one of its cones. Because K is a small category, the class of elementary shapes of [image: there is no content] is a set, which will be denoted by [image: there is no content]. The cardinality of a croquis [image: there is no content] is then given by the cardinal of the coproduct of every small category in [image: there is no content]:


[image: there is no content]












4.2. Premodels


Let [image: there is no content] be a croquis and [image: there is no content] be a category. For any endofunctor [image: there is no content], denote by [image: there is no content] the category whose objects are triples [image: there is no content] where (1) P is a functor [image: there is no content], (2) S is a functor (To not say a ‘function valued in a category’. Such a simplification will be common later on) [image: there is no content] and (3) e denotes a collection of arrows [image: there is no content] in [image: there is no content] for every [image: there is no content] and [image: there is no content] and whose morphisms, say of the form [image: there is no content], are pairs [image: there is no content] where f and a are two natural transformations of respective forms [image: there is no content] and [image: there is no content] making the following diagram commute for every [image: there is no content] and [image: there is no content]:
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The objects of [image: there is no content] will be called the R-premodels for [image: there is no content]. For convenience, the category [image: there is no content] will sometimes be denoted as [image: there is no content] when [image: there is no content] is trivial and as [image: there is no content] when R is also an identity.



Example 28 (Premodels).

The category of premodels for a sketch [image: there is no content] to a category [image: there is no content] corresponds to the full subcategory of [image: there is no content] whose objects [image: there is no content] are such that the images of S are equal to [image: there is no content] and the morphism [image: there is no content] is an identity for every [image: there is no content]. This subcategory is isomorphic to [image: there is no content].





Example 29 (Presheaves).

The category of presheaves over a site [image: there is no content] corresponds to the full subcategory of [image: there is no content] whose objects [image: there is no content] are such that the images of S are equal to [image: there is no content] and the morphism [image: there is no content] is an identity for every [image: there is no content]. This subcategory is isomorphic to [image: there is no content].





Example 30 (Prespectra).

If [image: there is no content] denotes the loop space functor on the category of pointed topological spaces and [image: there is no content] denotes the predecessor operation [image: there is no content] on [image: there is no content], then the category of prespectra is the full subcategory of [image: there is no content] whose objects [image: there is no content] are such that the images of S are equal to [image: there is no content]. This subcategory will be denoted by [image: there is no content].





Example 31 (Pre-localised rings).

Let [image: there is no content] denote the category of sets and [image: there is no content] be the limit sketch defined in Example 4. The category of ‘pre-localised rings’ is defined as the full subcategory of the category [image: there is no content] whose objects [image: there is no content] are such that (1) [image: there is no content] is a model for [image: there is no content]; (2) the image of [image: there is no content] above the cone [image: there is no content] is equal to a subset of [image: there is no content] while its images above all the other cones are equal to [image: there is no content] and (3) the morphism [image: there is no content] is given by:

	-

	
the right multiplication map [image: there is no content] for every [image: there is no content] if [image: there is no content];




	-

	
the identity morphism [image: there is no content] otherwise.









This subcategory will be denoted by [image: there is no content].





Example 32 (Pre-Segal spaces).

Let [image: there is no content] denote the category of topological spaces and continuous functions. The category of pre-Segal spaces is the category of simplical topological spaces; it is given as the full subcategory of [image: there is no content] whose objects [image: there is no content] are such that the images of the functor S are equal to [image: there is no content] and the morphism [image: there is no content] is an identity for every [image: there is no content]. Thecategory of pre-complete Segal spaces is defined similarly by replacing [image: there is no content] with [image: there is no content].





Definition 2.

Let D be a small category and [image: there is no content] be a category. For any given endofunctor [image: there is no content], a category of R-premodels is a subcategory of the category [image: there is no content].





Example 33.

Premodels for a sketch, presheaves on a site, prespectra, pre-localised rings and pre-Segal spaces are examples of such categories (see the previous examples).






4.3. Models


Let D be a small category, [image: there is no content] be a croquis in D and [image: there is no content] be a complete category over the elementary shapes of K. Suppose to be given a right adjoint [image: there is no content]. The first goal of this section is to define a functor [image: there is no content] for every cone [image: there is no content]. In this respect, for every cone c in K of the form [image: there is no content], for which we shorten the notation [image: there is no content] to the symbol r, the functor [image: there is no content] maps any premodel [image: there is no content] to the family taking any [image: there is no content] to the following composite arrow in [image: there is no content]:


[image: there is no content]











For every morphism of R-premodel of the form [image: there is no content], the image morphism [image: there is no content] is given, for every [image: there is no content], by the following morphism in [image: there is no content]:


 [image: Mathematics 05 00037 i024]











Definition 3 (System of premodels).

A system of R-premodels consists of (1) a croquis [image: there is no content]; (2) a category [image: there is no content] that is complete on the elementary shapes of K and admits a terminal object; (3) a category of R-premodels [image: there is no content] where R is a right adjoint and (4), for every cone [image: there is no content], a set [image: there is no content] of commutative squares in [image: there is no content], called the diskads (see left diagram, below) equipped with a pushout in [image: there is no content] (see right diagram, below):
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(3)









The collection consisting of all the sets [image: there is no content] will usually be denoted by [image: there is no content]. A system of R-premodels will be denoted as a 4-tuple [image: there is no content] and said to be defined over D in [image: there is no content]. The diagrams used in Definition 3 can more efficiently be described as a colimit sketch in [image: there is no content] (i.e. diagram equipped with colimits) of the following form:
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This type of colimit sketch will be called a vertebra and denoted by the symbols [image: there is no content]. For such a vertebra, it will come in handy to refer to the arrows [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] as the seed, coseed, stem and trivial stem, respectively. Finally, the left adjoint of [image: there is no content] will conventionally be denoted by L.



Definition 4 (Model).

An R-premodel [image: there is no content] in a system of R-premodels [image: there is no content] will be said to be anR-model if, for every cone [image: there is no content], every component of the arrow [image: there is no content] in [image: there is no content] has the right lifting property with respect to all the diskads of [image: there is no content] when these are seen as arrows [image: there is no content] in [image: there is no content] with respect to the notations of Equation (3):
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Example 34 (Models for a sketch).

For every limit sketch [image: there is no content], define the system of premodels consiting of the croquis K (see Example 23); the associated category of premodels [image: there is no content] and, for every cone c in K, the set made of the following vertebrae in [image: there is no content]:
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(4)







The [image: there is no content]-models of such a system correspond to the models for the sketch [image: there is no content].





Example 35 (Sheaves).

For every site [image: there is no content], define the system of premodels consiting of the croquis [image: there is no content] (see Example 29); the associated category of premodels [image: there is no content] and, for every cone c in [image: there is no content], the set made of the vertebrae given in Equation (4). The [image: there is no content]-models of such a system correspond to the sheaves over [image: there is no content].





Example 36 (Flabby sheaves).

For every site [image: there is no content], define the system of premodels consiting of the croquis [image: there is no content] defined in Example 25; the functor category [image: there is no content] and:

	(i) 

	
for every cone c in [image: there is no content], the set made of the vertebrae given in Equation (4);




	(ii) 

	
for every cone c in [image: there is no content], the set made of the leftmost vertebra of Equation (4) only.









The [image: there is no content]-models [image: there is no content] of such a system correspond to the sheaves over [image: there is no content] whose morphisms [image: there is no content] over any arrow [image: there is no content] in D are surjective, namely the flabby sheaves over [image: there is no content].





Example 37 (Sheaves in categories).

For every site [image: there is no content], define the system of premodels consiting of the croquis [image: there is no content] (see Example 29); the associated category of premodels [image: there is no content] and, for every cone c in [image: there is no content], the set made of the following vertebrae for the obvious choices of morphisms, where:

	(1) 

	
[image: there is no content] is a terminal category;




	(2) 

	
[image: there is no content] is the free living isomorphism category (i.e., two objects, one isomorphism);




	(3) 

	
[image: there is no content] is the free living arrow category (i.e., two objects, one arrow);




	(4) 

	
[image: there is no content] is category made of two objects and two parallel arrows between them.








 [image: Mathematics 05 00037 i029]



(5)







The [image: there is no content]-models of such a system correspond to those ‘sheaves’ [image: there is no content] for which the sheaf condition is not a bijection but an equivalence of categories.





Example 38 (Strong stacks).

For every site [image: there is no content], define the system of premodels consiting of the croquis [image: there is no content] defined in Example 25; the functor category [image: there is no content] and:

	(i) 

	
for every cone c in [image: there is no content], the set made of the leftmost vertebra of Equation (4) when seen in [image: there is no content] (instead of [image: there is no content]) and the rightmost two vertebrae of Equation (5);




	(ii) 

	
for every cone c in [image: there is no content], the set made of the leftmost vertebra of Equation (5) only.









The [image: there is no content]-models of such a system correspond to the strong stack (see [23]). The strong stacks completion constructed in ibid corresponds to a special case of the general construction given in this paper.





Example 39 (Strong stacks up to homotopy).

For every site [image: there is no content], define the system of premodels consiting of the croquis [image: there is no content] defined in Example 25; the functor category [image: there is no content] and:

	(i) 

	
for every cone c in [image: there is no content], the set made of the vertebrae given in Equation (5);




	(ii) 

	
for every cone c in [image: there is no content], the set made of the leftmost vertebra of Equation (5) only.









The [image: there is no content]-models of such a system may be identified to the strong stacks of [23] up to the notion of homotopy defined thereof.





Example 40 (Segal spaces).

Define the system of premodels consisting of the croquis [image: there is no content] defined in Example 26; the category of pre-Segal spaces [image: there is no content], which is included in [image: there is no content] and:

	(i) 

	
for every cone c in [image: there is no content], the set of obvious vertebrae induced by the diskads given in Equation (6), where:

	-

	
n runs over the natural numbers;




	-

	
the object [image: there is no content] is the topological n-disc;




	-

	
the map [image: there is no content] is the obvious hemisphere inclusion;
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(6)








	(ii) 

	
for every cone c in [image: there is no content], the set of Vertebrae (7), where n runs over the positive integers and:

	-

	
the object [image: there is no content] is the topological [image: there is no content]-sphere;




	-

	
the maps between the different objects are induced by the obvious inclusions;








 [image: Mathematics 05 00037 i031]



(7)













The [image: there is no content]-models of such a system correspond to the Segal spaces in [image: there is no content] (see [25] for a definition enriched in simplicial sets).





Example 41 (Complete Segal spaces).

Define the system of premodels consisting of the croquis [image: there is no content] defined in Example 27; the category of pre-complete Segal spaces [image: there is no content], which is included in [image: there is no content], and:

	(1) 

	
for every cone c in [image: there is no content] that is in fact in [image: there is no content], the same set of vertebrae defined in Example 40;




	(2) 

	
for the cone [image: there is no content] (see Example 27), the set of vertebrae of the form (7) for every positive integer n.









The [image: there is no content]-models of such a system correspond to the complete Segal spaces in [image: there is no content] (see [25] for a definition enriched in simplicial sets).





Example 42 (Spectra).

For the loop space functor [image: there is no content], define the system of Ω-premodels consiting of the croquis [image: there is no content] defined in Example 22; the category of prespectra [image: there is no content] and, for every cone c in [image: there is no content], the set of vertebrae of pointed spaces defined in Diagram (8), where n is a positive number and:

	-

	
where the object [image: there is no content] is the quotient of the [image: there is no content]-sphere by itself (i.e., a point);




	-

	
where the object [image: there is no content] is the quotient of the n-disc by its boundary;




	-

	
where the object [image: there is no content] is the quotient of the n-sphere by its equator;




	-

	
where the object [image: there is no content] is the quotient of the [image: there is no content]-disc by its equator;




	-

	
where the object [image: there is no content] is the quotient of the [image: there is no content]-disc by one of its hemispheres;




	-

	
where the object [image: there is no content] is the quotient of the [image: there is no content]-disc by its boundary;




	-

	
where the maps between the different objects are the obvious inclusions:








 [image: Mathematics 05 00037 i032]



(8)







The Ω-models of such a system correspond to the Ω-spectra.





Example 43 (Localisation of rings).

Consider the system of premodels consisting of the croquis [image: there is no content] (see Example 31), the subcategory [image: there is no content] and, for the cone c in [image: there is no content], the set made of the vertebrae given in Equation (4). The [image: there is no content]-models [image: there is no content] of such a system correspond to the rings P for which the map [image: there is no content] is invertible for every [image: there is no content], or in other words those rings that are localised at their associated subset of elements S. Fields are particular examples.





Remark 5.

Many other examples could have been provided. Recall that it is common fact (see [27] (Lemma 7.5.1), [30] or [31] (Proposition 8)) that, in some nice model category [image: there is no content], the notion of weak equivalence may be characterised via the type of right lifting property expressed in Example 4. For instance, Examples 40 and 41 on Segal spaces could have been extended to any nice cofibrantly generated model category, which need not be simplicial (contrary to usual practice). In fact, it is worth noting that the type of localisation described in the present article is an alternative to the usual simplicial Bousfield Localisation process (see [7]). On could also look at the type of localisation discussed in [32] (Corollary 8.8), which could be comprised in a more technical generalisation of the present work. Future work will also aim at generalising Example 37 to weaker functors in order to charactise the notions of [image: there is no content]-stack and strong [image: there is no content]-stack.







5. Narratives and the Small Object Argument


This section aims to introduce the small object argument that will be used for the construction of the localisation. The difference from that given below and the one defined by Quillen [8] is the notion of ‘degree’ coming along with the concept of narrative (see below). The degree is the key ingredient that allows us to obtain our so-called elimination of quotients.



	
Notions

	
Descriptions




	
Tome

	
A collection of commutative squares whose rightmost vertical arrows are all equal: this can be visualised as a ‘book’ whose pages are glued along a spine. The pages can satisfy certain compatibility relations.

	
 [image: Mathematics 05 00037 i033]




	
Morphisms of tomes

	
Regular: relate the spine and the pages of two ‘books’ together.




	
Loose: only relate the spines.




	
Oeuvre

	
An ordered collection of tomes related via loose morphisms; the theme is the common object towards which the spines of the books go to.




	
Narrative of degree [image: there is no content]

	
An oeuvre that is equipped with sub-diagrams of its tomes, called the events, and choices of lifts for these sub-diagrams, called the viewpoints These lifts only ‘commute’ from the k-th book to the [image: there is no content]-th book.









5.1. Numbered Categories and Compatibility


In the sequel, the term numbered category will denominate any pair [image: there is no content] where [image: there is no content] is a category and [image: there is no content] is a limit ordinal. A small category [image: there is no content] will be said to be compatible with [image: there is no content] if (1) the category [image: there is no content] admits colimits over [image: there is no content] and (2) the inequality [image: there is no content] holds. By extension, a functor [image: there is no content] will be said to be compatible with a numbered category [image: there is no content] if its domain [image: there is no content] is compatible with [image: there is no content].




5.2. Lifting Systems


Let us now define in formal terms what will later be seen as a set of generating cofibrations for our small object argument. Let [image: there is no content] be an numbered category. A lifting system in [image: there is no content] is a set J of objects of [image: there is no content] that are compatible with [image: there is no content] as functors.




5.3. Right Lifting Property


Let [image: there is no content] be an numbered category and J be a lifting system in [image: there is no content]. For every functor [image: there is no content] in J, the image of an object s in [image: there is no content] via [image: there is no content] will usually be denoted by [image: there is no content]. A morphism [image: there is no content] in [image: there is no content] will be said to have the right lifting property with respect to the system J if for any functor [image: there is no content] in J, the morphism [image: there is no content] has the rlp with respect to the arrow [image: there is no content] in [image: there is no content]. In the sequel, the class of morphisms of [image: there is no content] that have the right lifting property with respect to a lifting system J will be denoted by [image: there is no content].



Example 44.

If J is a set of functors of the form [image: there is no content] picking out some objects of [image: there is no content], then the preceding right lifting property corresponds to the usual one.






5.4. Tomes


Let [image: there is no content] be a category. A tome in [image: there is no content] is a triple consisting of a morhism [image: there is no content] in [image: there is no content], a small category [image: there is no content] on which [image: there is no content] admits all colimits and a functor [image: there is no content]. According to Remark 1 applied to the arrow category [image: there is no content], a way of seeing a tome in [image: there is no content] is in the form of a cocone [image: there is no content] in [image: there is no content] over the functor [image: there is no content]. Because [image: there is no content] has all colimits over [image: there is no content], the earlier cocone provides an arrow [image: there is no content] in [image: there is no content] after applying the adjunction property of [image: there is no content] on it. This latest arrow will be referred to as the content of [image: there is no content]. Note that for any functor [image: there is no content], we may pre-compose the universal shifting induced by i (see Section 2.5) with the content of [image: there is no content] as follows:


[image: there is no content]











The resulting arrow [image: there is no content] will later play a central role and be referred to as the content of [image: there is no content] along [image: there is no content].




5.5. Morphisms of Tomes


Let [image: there is no content] be a category. A loose morphism of tomes from [image: there is no content] to [image: there is no content] is given by a morphism [image: there is no content] in [image: there is no content]. A regular morphism of tomes[image: there is no content] is given by a morphism [image: there is no content] in [image: there is no content] and a functor [image: there is no content] making the next right diagram commute:
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The arrow symbol associated with loose morphisms will be denoted as T0⇒☆T1. The category whose objects are tomes in [image: there is no content] and whose arrows are regular (resp. loose) morphisms of tomes will be denoted by [image: there is no content] (resp. [image: there is no content]). For a fixed object Q in [image: there is no content], the wide subcategory of [image: there is no content] that is restricted to the loose morphisms (x,y):T0⇒☆T1 whose components [image: there is no content] are identities on Q will be denoted by [image: there is no content].




5.6. Oeuvres and Narratives


Let [image: there is no content] be a numbered category and Q be an object in [image: there is no content]. An oeuvre of theme Q in [image: there is no content] is a functor [image: there is no content] lifting (This lifting is formal and is mostly justified by the definition of the morphisms given in Section 5.9) to [image: there is no content] along the obvious inclusion [image: there is no content].



Convention 2.

In the sequel, the image of an inequality [image: there is no content] in [image: there is no content] via an oeuvre [image: there is no content] will be denoted by (χkl,idQ):(hk,Sk,φk)⇒☆(hl,Sl,φl). For convenience, when l is successor of k in [image: there is no content], the notations [image: there is no content] will be shortened to [image: there is no content]. For every object k in [image: there is no content], the morphism [image: there is no content] will be denoted as an arrow [image: there is no content] while the image of the composite functor [image: there is no content] at an object s in [image: there is no content] will be denoted as [image: there is no content].





For every finite ordinal [image: there is no content], a narrative of theme Q and degree δ in [image: there is no content] is an oeuvre [image: there is no content] of theme Q equipped with:



(1) (events) for every ordinal [image: there is no content], a set [image: there is no content], called the set of events at rank k, consisting of objects of [image: there is no content] that are compatible with [image: there is no content] as functors;



(2) (viewpoint) for every functor [image: there is no content] in the set [image: there is no content], a lift for the commutative square (living in [image: there is no content]) resulting from the pre-composition of the content of [image: there is no content] along [image: there is no content] with the arrow [image: there is no content]; the square is therefore of the form [image: there is no content] in [image: there is no content]. The lift will later be referred to as the viewpoint at rank k along i.



Remark 6.

It follows from Convention 2 that the viewpoint at rank k along i mentioned in item (2) must be of the form [image: there is no content].





Convention 3.

The functor [image: there is no content] induced by the sequence of arrows [image: there is no content] for every inequality [image: there is no content] in [image: there is no content] will be denoted by G and called the context functor.





Observe that any oeuvre and, a fortiori, any narrative as defined above provides a factorisation in [image: there is no content] as given below. This factorisation is that used for our small object argument:
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(9)







Also, notice that the set of events [image: there is no content] induces an obvious lifting system {∂φk∘i|i∈Jk}, which will be denoted by [image: there is no content].




5.7. Small Object Argument


Let [image: there is no content] be a numbered category, Q be an object in [image: there is no content] and [image: there is no content] be a narrative of theme Q and degree [image: there is no content]. A lifting system J in [image: there is no content] will be said to agree with the narrative [image: there is no content] if for every ordinal [image: there is no content] and functor [image: there is no content] in J admiting a lift [image: there is no content] of [image: there is no content] along ∂ (see left diagram below), there exists a functor [image: there is no content] in [image: there is no content] whose composite with [image: there is no content] gives the lift [image: there is no content] (see right diagram below):
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(10)







Proposition 7 (Small Object Argument).

Let J be a lifting system in [image: there is no content] agreeing with the narrative [image: there is no content]. If the context functor [image: there is no content] is uniformly [image: there is no content]-convergent in [image: there is no content] for every [image: there is no content], then the morphism [image: there is no content] appearing in Equation (9) is in [image: there is no content].





Proof. 

The goal of the proof is to show that the morphism [image: there is no content] is in [image: there is no content]. To do so, let [image: there is no content] be a functor in J and consider any arrow [image: there is no content]. The proposition will be proven if the commutative square encoded by this arrow admits a lift. By assumption, the functor [image: there is no content] is uniformly [image: there is no content]-convergent in [image: there is no content]. It follows from Remark 4, taken from the viewpoint of Remark 3, and the fact that [image: there is no content] is limit (Recall that if [image: there is no content] is limit, then for every ordinal [image: there is no content], the successor [image: there is no content] is also in [image: there is no content] for every [image: there is no content]) that there exist an ordinal [image: there is no content] and an arrow [image: there is no content] factorising [image: there is no content] as follows:


[image: there is no content]



(11)







Note that an application of the universal property of the adjunction [image: there is no content] on the leftmost arrow of Equation (11) provides an arrow in [image: there is no content] as follows (where the leftmost arrow, given below, is the unit of [image: there is no content]):


[image: there is no content]



(12)







According to Remark 1, Arrow (12) induces a functor [image: there is no content], which makes the leftmost diagram of Equation (10) commute. Because the lifting system J agrees with the narrative [image: there is no content], there must exist a functor [image: there is no content] making the right diagram of Equation (10) commute. This means, after re-applying the adjunction [image: there is no content], that Equation (11) is in fact of the following form, where the leftmost arrow is precisely the content of the tome [image: there is no content] along [image: there is no content]:


[image: there is no content]



(13)







It follows from the viewpoint axiom (see Section 5.6) satisfied by [image: there is no content] that the Composite [image: there is no content] admits a lift. This implies that the whole composite (13) admits a lift, which, a fortiori, implies that the arrow [image: there is no content] admits a lift.  ☐






5.8. Strict Narratives


Let [image: there is no content] be a numbered category and Q be an object in [image: there is no content]. For any narrative [image: there is no content] of theme Q, recall that the set of events [image: there is no content] gives a collection of functors that induces a cocone under the category [image: there is no content] (see Section 5.6). A narrative [image: there is no content] of theme Q and degree [image: there is no content] will be said to be strict in [image: there is no content] if:

	(1)

	
for every ordinal [image: there is no content], the cocone induced by the elements of [image: there is no content] is universal in [image: there is no content];




	(2)

	
it is equipped with a morphism [image: there is no content] factorising the content of [image: there is no content] into a pushout as follows;


 [image: Mathematics 05 00037 i037]












	(3)

	
for every functor [image: there is no content] in [image: there is no content], the viewpoint [image: there is no content] along i is equal to the pre-composition of [image: there is no content] with the universal shifting along i as follows;


[image: there is no content]












	(4)

	
the context functor [image: there is no content] is sequential (see Section 2.7).









Proposition 8.

If a morphism [image: there is no content] is in [image: there is no content] (see end of Section 5.6) for every [image: there is no content], then it has the rlp with respect to the arrow [image: there is no content] (see Diagram (9)).





Proof. 

Let [image: there is no content] be a morphism that has the rlp with respect to the lifting system [image: there is no content] for every [image: there is no content]. For any [image: there is no content], this means that it has the rlp with respect to the following arrow in [image: there is no content], for every functor [image: there is no content] in [image: there is no content]:


[image: there is no content]











It directly follows that f has the rlp with respect to the coproduct of these arrows over the set [image: there is no content] (seen as a discrete category), which may be identified to the arrow [image: there is no content] up to isomorphism as shown below:


∐i∈JkcolSk(∂φk∘i)≅colSk(∐i∈Jk∂φk∘i)(colimitscommute)≅colSk(∂φk)(universalityofJk)











It follows from classical facts that, since f has the rlp with respect to [image: there is no content], it has the rlp with respect to any of its pushouts, and hence with respect to [image: there is no content] for any [image: there is no content]. It finally follows from Proposition 6 and the fact that the context functor [image: there is no content] is sequential that f has the rlp with respect to the arrow [image: there is no content] in [image: there is no content].  ☐






5.9. Morphisms of Oeuvres


Let [image: there is no content] be a numbered category. For every pair of oeuvres [image: there is no content] and [image: there is no content], of respective themes Q and [image: there is no content], a morphism of oeuvres from [image: there is no content] to [image: there is no content] consists, for every ordinal [image: there is no content], of a regular morphism of tomes:


(xk,yk,σk):Ok⇒Ok′(withyk:Q→Q′)








such that the underlying loose morphisms (xk,yk):Ok⇒☆Ok′ induce a morphism [image: there is no content] in the functor category [image: there is no content] (see Remark 7). The category whose objects are oeuvres for the numbered category [image: there is no content] and whose arrows are morphisms of oeuvres will be denoted by [image: there is no content].



Remark 7.

The previous definition implies that all the arrows [image: there is no content] are equal to the same morphism [image: there is no content] for every [image: there is no content]. In addition, it forces the equality [image: there is no content] to hold in [image: there is no content] for every [image: there is no content].







6. Constructors and Their Tomes


This section introduces the notion of constructor that allows one to associate systems of premodels with tomes. Constructors contain all the necessary information that permits the ‘elimination of quotients’. We will see that their definition already brings out what is meant to be analytic (or structural) and what is meant to be quotiented out. Even if they appear to comprise many components, the main goal of the items defined in Section 6.2 and Section 6.4 is to be able to define two sums whose forms look like the following type:


[image: there is no content]











The hom-sets [image: there is no content]—which are defined in Section 6.4—are meant to ensure a certain functoriality (i.e., they are the monomials for a certain type of species [33]) while the hom-sets [image: there is no content]—which are defined in Section 6.2—are meant to contain the ‘squares’ that will enable us to perform our small object argument. In the sequel, I shall therefore try to give evoking names to the different parameters used to define these sums. In particular, one sum is to encode the structural data of our elimination of quotients while the other one is to encode the quotient acting on this data. To make the reader more confident with the items of Section 6.2 and Section 6.4, here is a preluding summary of the different notations used therein.





	

	
[image: there is no content]

	
1st Hom

	
[image: there is no content]

	
[image: there is no content]

	
2nd Hom

	
[image: there is no content]

	
[image: there is no content]




	
analytic sum

	
[image: there is no content]

	
D

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
quotient sum

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]







6.1. Some More Notations


The following conventions are meant to ease the combinatorial description of a constructor and its associated tomes, which will be defined in Section 6.6.



Convention 4 (Vertebrae).

The diskad of a vertebra [image: there is no content] will be denoted by [image: there is no content] and seen as an arrow [image: there is no content] in [image: there is no content]. The other arrow [image: there is no content] in [image: there is no content], which is induced by the ‘dual’ vertebra [image: there is no content], will be denoted by [image: there is no content] and called the codiskad of v. Finally, the stem β and seed [image: there is no content] of v will be referred to by the notations [image: there is no content] and [image: there is no content], respectively.





Convention 5 (Domains and codomains)

Let [image: there is no content] and [image: there is no content] be two categories and [image: there is no content] be a functor. In order to avoid too many notations in our reasonings, the image [image: there is no content] of an object X of [image: there is no content] in the arrow category [image: there is no content] will be denoted as [image: there is no content]. This implies that every morphism [image: there is no content] in [image: there is no content] gives a commutative diagram as follows:


 [image: Mathematics 05 00037 i038]











Similarly, for every functor [image: there is no content], we will denote by [image: there is no content] and [image: there is no content] the “source” and “target” arrows of the squares involved in the image of H.





Example 45.

For every vertebra v in [image: there is no content] as displayed in Equation (3), the arrow [image: there is no content] is equal to [image: there is no content]. Thus, when the reader reads [image: there is no content] in Section 6.4, where [image: there is no content] is a functor [image: there is no content] mapping any element in I to the diskad of a certain vertebra in [image: there is no content], they should think of the seed of the so-called vertebra.





Convention 6 (Closedness).

Let [image: there is no content], [image: there is no content] and [image: there is no content] be three categories. The image of any functor of the form [image: there is no content] will later be denoted as [image: there is no content] for any pair of objects [image: there is no content] in [image: there is no content] – instead of the usual notation [image: there is no content].





Convention 7 (Families).

Let [image: there is no content] be a category. In the sequel, we will denote by [image: there is no content] the obvious functor [image: there is no content] mapping a pair [image: there is no content] to the functor [image: there is no content]. Also, mainly for convenience, the images of any object [image: there is no content] in [image: there is no content] at some [image: there is no content] will be denoted by [image: there is no content]. This means that the equation [image: there is no content] holds for every [image: there is no content].





Convention 8 (Families of arrows).

Convention 5 will be extended to [image: there is no content] in the obvious way: for every functor [image: there is no content], we shall denote by [image: there is no content] and [image: there is no content] the obvious functors [image: there is no content] mapping any object [image: there is no content] to the families [image: there is no content] and [image: there is no content], respectively.





Convention 9.

Later on, I shall often identify a set with a discrete category and identify many functions with functors. The reason for this is that we shall pre-compose these functions with functors going from discrete categories to non-trivial categories, which, for their parts, should really be seen as functors. This convention should thus ease the back and forth between set theory and category theory.






6.2. Preconstructors


This section introduces the concept of preconstructor. This notion tries to capture what it takes to specify the data of a localisation. For instance, in Modern Algebra, localising a ring [image: there is no content] requires one to specify:

	☆

	
the underlying set that one wants to act on, which is here the set R;




	☆

	
the subset [image: there is no content] by which one wants to localise the ring;




	☆

	
the operation that one wants to inverse, which is here given by the S-indexed family of group morphisms [image: there is no content] defined by the mappings [image: there is no content];




	☆

	
the type of inversion one wants to see happening on the maps [image: there is no content].









Regarding this last item, the inversion would, for instance, be expressed in terms of a bijection for the type of localisation used in Classical Algebraic Geometry, but it would be expressed in terms of a quasi-isomorphism in the category of unbounded chain complexes in Derived Algebraic Geometry.



To pass from the earlier description to the formalism of preconstructors, one can try to describe what a preconstructor would be for the previous list of items, so that we could make the following associations (also, see the structure below): the data [image: there is no content] would specify the object R while the data [image: there is no content] would give the subset S; the data [image: there is no content], [image: there is no content] and [image: there is no content] would enumerate the maps [image: there is no content] with theirs domains R and codomains R (which would be required to be independent of the indices in S); and the data [image: there is no content] and [image: there is no content] would specify the type of inversion one wants to see happening. We now give a formal definition.



Let [image: there is no content] and [image: there is no content] be two categories and D be a small category. A preconstructor of type [image: there is no content], let us call it [image: there is no content], consists of a discrete category I together with:

	(a)

	
two functors [image: there is no content] and [image: there is no content], called the regulator and the localisor;




	(b)

	
three functors as given below, which satisfy the string diagram axioms given underneath them (or the equations given just after);


Φ:I×B→Fam(C2)Υ:D×B→CΨ:I×B→C










 [image: Mathematics 05 00037 i039]








The previous string diagrams amount to saying that the following equations hold in the functor “category” [image: there is no content] for every [image: there is no content];


Φθ∘(_)=Iλθ(_)Υρ(θ)(_)Φθ•(_)=Iλθ(_)Ψθ(_)












	(c)

	
two functors [image: there is no content] and [image: there is no content], called the analysor and the quotientor, such that the image [image: there is no content] encodes the diskad of a vertebra of stem [image: there is no content] for every [image: there is no content];









As mentioned in the preamble of Section 6, a preconstructor contains all the information that is necessary to define the parametrising ‘squares’ on which we will run the small-object-argument algorithm. These so-called parameters will be presented either as families (see Definition 5) or as formal sums (see Definition 6) – both presentations being useful.



Definition 5 (Families).

For any preconstructor [image: there is no content] as defined above, the analytic family of [image: there is no content] and the quotient family of [image: there is no content] are two functors [image: there is no content] and [image: there is no content] whose images are determined, for every arrow [image: there is no content] in [image: there is no content] and object [image: there is no content], by the following mappings (or families) over [image: there is no content]:


ΓA(f){θ}:s↦C2×2(α(θ),Φθ(f)s)ΓQ(f){θ}:s↦C2(ω(θ),Φθ•(f)s)













Remark 8 (Concept of vertebra).

The relationship between the analytic family and the quotient family is established in item c) via the concept of vertebra. At this stage, this should suggest to the reader that the notion of vertebra subtly encompass both the idea of quotient—or coherence—via its stem and the idea of cellular structure—or ana-lysis—via its diskad.





Definition 6 (Species).

For any preconstructor [image: there is no content] as defined above, the analytic species of [image: there is no content] and the quotient species of [image: there is no content] are two functors [image: there is no content] and [image: there is no content] defined as follows, for every arrow [image: there is no content] in [image: there is no content] and object [image: there is no content]:


ΓA(f)[θ]:=∑s∈λθ(X)ΓA(f){θ}sΓQ(f)[θ]:=∑s∈λθ(X)ΓQ(f){θ}s














6.3. Preconstructor of a System of Premodels


Let [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. The goal of this section is to associate any such system with a preconstructor of type [image: there is no content]. In this respect, define the set I to be the following leftmost disjoint sum:


[image: there is no content]











Remark 9 (Encoding).

Any element θ in I may be presented as a pair [image: there is no content] where [image: there is no content] is a cone in K and v is a vertebra in [image: there is no content].





By keeping the notational convention suggested by Remark 9, one defines the data of the preconstructor for the system of premodels [image: there is no content] as follows:

	(1)

	
the regulator is given by the mapping [image: there is no content];




	(2)

	
the localisor is given by the evaluation [image: there is no content];




	(3)

	
the analysor is given by the mapping [image: there is no content];




	(4)

	
the quotientor is given by the mapping [image: there is no content];






and because both equations:


Gc0K(P,S,e)s∘=P(rou(c0))andGc0K(P,S,e)s•=limRPin(c0)








hold for every [image: there is no content], one may define the functor [image: there is no content] as the obvious functor satisfying the mapping [image: there is no content] on objects, so that the two associated functors [image: there is no content] and [image: there is no content] are defined as follows:


Υ:D×P→C(d,(P,S,e))↦P(d)Ψ:I×P→C(θ,(P,S,e))↦limRPin(c0)











Remark 10 (Encoding).

For every arrow [image: there is no content] in [image: there is no content] and element θ in I, the image of the analytic species [image: there is no content] contains the tuples (The symbol [image: there is no content] is, here, preferred to the plain letter s as it could be confused with the notation [image: there is no content] (in bold) or thought to be related to the notation [image: there is no content], which is not the case. I shall sometimes use s instead of [image: there is no content] when no confusion is possible) [image: there is no content] where: [image: there is no content] is a cone in K; v is a vertebra in [image: there is no content]; [image: there is no content] is an element in [image: there is no content] and [image: there is no content] is a commutative square in [image: there is no content] of the form given below, on the left, for the notation [image: there is no content], which may also be seen as the right commutative cube in [image: there is no content] when viewed from the bottom-left corner:


 [image: Mathematics 05 00037 i040]



(14)







Similarly, the image of the quotient functor [image: there is no content] contains the tuples [image: there is no content] where: [image: there is no content] is a cone in K; v is a vertebra in [image: there is no content]; [image: there is no content] is an element in [image: there is no content] and [image: there is no content] is an arrow [image: there is no content] in [image: there is no content] for the notation [image: there is no content].






6.4. Constructors


This section introduces the concept of constructor. In comparison to the informal introduction of Section 6.2, a constructor should be seen as a structure giving all the data that we need to describe the localisation of the ring R by a subset S in terms of freely-added tuples and relations acting on these.



Specifically, one usually constructs the localisation [image: there is no content] by freely adding tuples of the form [image: there is no content], for every [image: there is no content] and [image: there is no content], to the set R. These tuples are often denoted as quotients [image: there is no content]. Because S has not been supposed to be a multiplicative set, one would also need to specify tuples of the form [image: there is no content] for every [image: there is no content] and [image: there is no content] where [image: there is no content]. The equivalence relations defined on the pairs [image: there is no content] are quite well-known: two pairs [image: there is no content] and [image: there is no content] are equivalent if there exists [image: there is no content] for which the following relation holds:


[image: there is no content]











In the case of the elements of the form [image: there is no content], it is less obvious how this should be done. A constructor can help us with this as it contains all the required structure for this type of general description without involving the need of focusing on the encoding.



In terms of the notations given below, in the definition of constructor, the data [image: there is no content] would specify the set of elements that are to be paired with elements in S; the data [image: there is no content] would specify the set of elements that are to be subject to relations of the form given earlier; the data [image: there is no content] and [image: there is no content], which are used for coherence purposes, would be identities; the data [image: there is no content] and [image: there is no content] would specify the types of quotients one would like to see happening: they provide the seeds and the stems of the vertebrae given by the data [image: there is no content] coming from the preconstructor structure; the maps denoted by [image: there is no content] would map every element [image: there is no content] to [image: there is no content] (for the analytic links) and every pair [image: there is no content] where [image: there is no content] to a pair [image: there is no content] (for the quotient links); and the data j would specify how the set R injects into the localisation [image: there is no content]. With respect to the definition given below, all of these data would be associated with the canonical ring morphism [image: there is no content].



We now give the definition of constructor. Let [image: there is no content] and [image: there is no content] be two categories and D be a small category. A constructor of type [image: there is no content] consists of a preconstructor [image: there is no content] of type [image: there is no content], say [image: there is no content] as defined in Section 6.2, and a mapping [image: there is no content] that equips every object [image: there is no content] with a pair of sets [image: there is no content] together with:

	(1)

	
two functors [image: there is no content] and [image: there is no content] called the analytic and quotient exponents;




	(2)

	
two functors [image: there is no content] and [image: there is no content] called the analytic and quotient indicators;




	(3)

	
a functor [image: there is no content] called the transitive analysor and, for every [image: there is no content], a function [image: there is no content], called the analytic link, of the following form:


[image: there is no content]












	(4)

	
a functor [image: there is no content] called the transitive quotientor and, for every [image: there is no content], a function [image: there is no content], called the quotient link, of the following form:


[image: there is no content]












	(5)

	
a functor [image: there is no content], called the analytic section, satisfying the equalities [image: there is no content], [image: there is no content] and [image: there is no content] so that the analytic link [image: there is no content] is an identity for every [image: there is no content];









For such a constructor, we define, for every object [image: there is no content], an analytic functor[image: there is no content] and a quotient functor[image: there is no content] whose images [image: there is no content] and [image: there is no content] are given by the following formulae, respectively:


∑ϑ∈JAD(ϵ(ϑ),d)×ΓA(f)[ι(ϑ)]∑ϑ∈JQD(χ(ϑ),d)×ΓQ(f)[δ(ϑ)]












6.5. Constructor of a System of Premodels


Let [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. The goal of this section is to associate any such system with a constructor of type [image: there is no content]. We shall, of course, use the preconstructor structure defined in Section 6.3. To define the supplementary structure, let us now define the following set (where [image: there is no content] denotes the set of objects of the elementary shape of [image: there is no content]):


[image: there is no content]








and let us associate every arrow [image: there is no content] in [image: there is no content] with two sets [image: there is no content] and [image: there is no content] as follows:


JA:=I+∑c0∈KVc0×J˜rou(c0)JQ:=I′+∑c0∈KVc0×∑z∈Obj(Es(c0))J˜in(c0)(z)








where the set [image: there is no content] is defined for every [image: there is no content] as the following sum, in which [image: there is no content] denotes a tuple of the form [image: there is no content] in [image: there is no content] and [image: there is no content] stands for the products of sets [image: there is no content]:


[image: there is no content]











The initial section [image: there is no content] is taken to be the canonical monomorphism.



Remark 11 (Encoding).

It will turn out to be convenient to have conventional notations for any element [image: there is no content], [image: there is no content], [image: there is no content] or [image: there is no content]. In this respect, if one denotes:

	-

	
by [image: there is no content] any tuple of cones in [image: there is no content], for some positive integer n;




	-

	
by [image: there is no content] any tuple in [image: there is no content], for some tuple of cones [image: there is no content] as above;




	-

	
by [image: there is no content] any tuple of morphisms living in [image: there is no content] for some object d in D;






the elements of the sets I, [image: there is no content], [image: there is no content] and [image: there is no content] will be described as tuples of the form:


θ:=(c0,v)θ′:=(c0,v,z)ϑA:=(c0,v,n,c̲,s̲,t̲)andϑQ:=(c0,v,z,n,c̲,s̲,t̲)








respectively, where [image: there is no content], [image: there is no content], [image: there is no content] and, obviously, [image: there is no content].





Now, if one denotes by [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] any tuple of I, [image: there is no content], [image: there is no content] and [image: there is no content] as displayed in Remark 11, one defines the mappings [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] associated with the constructor structure of [image: there is no content] as follows:





	
Analytic Exponent [image: there is no content]

	
 

	
Quotient Exponent [image: there is no content]




	
[image: there is no content]

	
on I

	
 

	
[image: there is no content]

	
on I′




	
[image: there is no content]

	
otherwise

	
 

	
[image: there is no content]

	
otherwise




	
 

	
 

	
 




	
Analytic Indicator [image: there is no content]

	
 

	
Quotient Indicator [image: there is no content]




	
[image: there is no content]

	
on I

	
 

	
[image: there is no content]

	
on I′




	
[image: there is no content]

	
otherwise

	
 

	
[image: there is no content]

	
otherwise




	
 

	
 

	
 




	
Transitive Analysor [image: there is no content]

	
 

	
Transitive Quotientor [image: there is no content]




	
[image: there is no content]

	
on I

	
 

	
[image: there is no content]

	
on I′




	
[image: there is no content]

	
otherwise

	
 

	
[image: there is no content]

	
otherwise







Finally, one produces a constructor of type [image: there is no content] by defining the analytic link [image: there is no content] as an identity map when [image: there is no content], and, otherwise, as a compositional iteration of the form:


[image: there is no content]



(15)




where the triples [image: there is no content], ⋯, [image: there is no content] are made out of the obvious components of [image: there is no content] and the functor [image: there is no content] maps any commutative square as given below, on the left, to the commutative trapezoid given on the right, where [image: there is no content] denotes the counit of the adjunction [image: there is no content] and the component [image: there is no content] is, here, seen as an arrow of the form [image: there is no content] with [image: there is no content] and [image: there is no content] otherwise:


 [image: Mathematics 05 00037 i041]











For its part, the quotient link [image: there is no content], which is defined for every [image: there is no content], is given by a first application of the functor [image: there is no content] that maps any commutative square as given below, on the left, to the commutative trapezoid given on the right, where [image: there is no content] is the universal projection of the adjunction [image: there is no content] at z:


 [image: Mathematics 05 00037 i042]








and, in the case where [image: there is no content] is not in [image: there is no content], followed by successive iterations of the functor [image: there is no content] over the triples [image: there is no content] made out of the obvious components of [image: there is no content] (see Formula 15). It is easy to check that the initial section [image: there is no content] satisfies the axioms of item 5) of Section 6.4. The constructor associated with [image: there is no content] will later be referred to as [image: there is no content].



Remark 12.

In the case where the associated maps [image: there is no content] of our premodels are identities, the functors R and [image: there is no content] are trivial and the associated sets S are all equal to a fixed one, the set [image: there is no content] can be set empty for every [image: there is no content] and [image: there is no content] so that j can be defined as an identity. In this case, the validity of our results still holds for Examples 28 and 29, but not for Examples 30 and 31, which require [image: there is no content] to be as above. See Remark 16 and the proof of Theorem 3 for more insight.





Remark 13 (Encoding).

For every arrow [image: there is no content] in [image: there is no content] and object d in D, the image of the analytic functor [image: there is no content] contains the tuples [image: there is no content] and the tuples [image: there is no content] where: [image: there is no content] is a cone in K; v is a vertebra in [image: there is no content]; n is a positive integer; [image: there is no content], [image: there is no content] and [image: there is no content] are the tuples defined in Remark 11 and used to define the analytic link; t is an arrow in D of the form [image: there is no content] for the first type of tuple and an arrow [image: there is no content] otherwise; [image: there is no content] is an element in [image: there is no content] and [image: there is no content] is an arrow in [image: there is no content] as displayed in Equation (14) for the notation [image: there is no content].



Similarly, the image of the quotient functor [image: there is no content] contains the tuples [image: there is no content] and the tuples [image: there is no content] where: [image: there is no content] is a cone in K; v is a vertebra in [image: there is no content]; n is a natural number; [image: there is no content], [image: there is no content] and [image: there is no content] are the tuples defined in Remark 11 and used to define the quotient link; z is an object of [image: there is no content]; t is an arrow in D of the form [image: there is no content] for the first type of tuple and an arrow [image: there is no content] otherwise; [image: there is no content] is an element in [image: there is no content] and [image: there is no content] is an arrow [image: there is no content] in [image: there is no content] for the notation [image: there is no content].





Remark 14 (Encoding).

It is not hard to see from Remark 13 that any type of tuple in [image: there is no content] may be written as a tuple of the form [image: there is no content] where the encoding of the parameter ϑ may vary. Similarly, it follows from Remark 13 that any tuple in [image: there is no content] may be written as a tuple [image: there is no content] where the encoding of the parameter ϑ may vary.






6.6. Tomes of a Constructor


Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.4. This section shows that [image: there is no content] may be associated with a variety of canonical tomes, each of them being used for specific purposes. The first one, called the operadic tome, is meant to be used in the small object argument (see Section 5) and is constructed out of the preconstructor structure of [image: there is no content] as follows: For every object [image: there is no content], arrow [image: there is no content] in [image: there is no content] and [image: there is no content], it is given by the functor [image: there is no content] defined by the following inclusion:


[image: there is no content]











A second tome, called the analytic tome, is given by a functor [image: there is no content] and is defined on each term of [image: there is no content]—which denoted as [image: there is no content] below—as follows:


tϑ,s=D(ϵ(ϑ),d)×C2×2(αι(ϑ),Φι(ϑ)(f)s)(definition)→D(ϵ(ϑ),d)×C2(α∘ι(ϑ),Φι(ϑ)∘(f)s)(seeConvention5)→D(ϵ(ϑ),d)×C2(α∘ι(ϑ),Υρι(ϑ)(f))(definitionofΓ)→D(ϵ(ϑ),d)×C2(μ(ϑ),Υϵ(ϑ)(f))(analyticlink)→C2(Υϵ(ϑ)(f),Υd(f))×C2(μ(ϑ),Υϵ(ϑ)(f))(func.Υ_(f))→C2(μ(ϑ),Υd(f))(comp.ofC2)→C2/Υd(f)(inclusion)











Explicitly, the functor maps any tuple [image: there is no content] in [image: there is no content] (see Remark 14) to the composite arrow given, below, by Equation (16) in [image: there is no content]:


[image: there is no content]



(16)







A third tome, called the quotient tome, is given by a functor [image: there is no content] and is defined on each term of [image: there is no content] — which denoted as [image: there is no content] below — as follows:


tϑ,s=D(χ(ϑ),d)×C2(ωδ(ϑ),Φδ(ϑ)•(f)s)(definition)=D(χ(ϑ),d)×C2(ωδ(ϑ),Ψδ(ϑ)(f))(def.ofΓ)→D(χ(ϑ),d)×C2(ν(ϑ),Υχ(ϑ)(f))(quotientlink)→C2(Υχ(ϑ)(f),Υd(f))×C2(ν(ϑ),Υχ(ϑ)(f))(func.Υ_(f))→C2(ν(ϑ),Υd(f))(compofC2)→C2/Υd(f)(inclusion)











Explicitly, the quotient tome [image: there is no content] maps any tuple [image: there is no content] in [image: there is no content] (see Remark 14) to the composite arrow given, below, by Equation (17) in [image: there is no content]:


[image: there is no content]



(17)







The proofs of the following propositions follow from the previous definitions:



Proposition 9.

The operadic tome [image: there is no content] is natural in the variable [image: there is no content]. This amounts to saying that the mapping [image: there is no content] induces a functor [image: there is no content].





Proposition 10.

The analytic tome [image: there is no content] is natural in the variable [image: there is no content]. This amounts to saying that the mapping [image: there is no content] induces a functor [image: there is no content].





Proposition 11.

The quotient tome [image: there is no content] is natural in the variable [image: there is no content]. This amounts to saying that the mapping [image: there is no content] induces a functor [image: there is no content].






6.7. Quotiented Arrows


Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.4. This section defines the concept of “quotient” whose essential idea is to restrict the quotient family of [image: there is no content] to certain parametrising “squares” only. In this respect, a [image: there is no content]-quotient for a morphism [image: there is no content] in [image: there is no content] consists of a collection of discrete categories, as given below, on the left, as well as a collection of functors as given on the right:


{Es(θ)}θ∈I,s∈λθ(X)q={qθs{_}:Es(θ)→Set}θ∈I,s∈λθ(X)








such that the inclusion [image: there is no content] holds for every element [image: there is no content]. We may associate any such [image: there is no content]-quotient [image: there is no content] with a functor [image: there is no content] defined as follows for every [image: there is no content]:


[image: there is no content]











This functor will be called the species of [image: there is no content]. In much the same fashion as the quotient species of [image: there is no content] was used to define its quotient functor, we use the species of [image: there is no content] to define a third functor [image: there is no content] given by the following equation:


[image: there is no content]











This functor will be referred to as the quotienting functor of [image: there is no content].



Proposition 12.

The inclusions [image: there is no content] holding for every [image: there is no content] and [image: there is no content] induce functions of the form [image: there is no content] for every [image: there is no content], which in turn induce a morphism [image: there is no content] in [image: there is no content].





Proof. 

By universality of the coproducts.  ☐





Convention 10.

The natural transformation of Proposition 12 may be composed with the quotient tome [image: there is no content] of [image: there is no content] to give a natural transformation [image: there is no content]. Because this arrow lives in the functor category [image: there is no content], it may be factorised into an epimonomorphism followed by a monomorphism as follows (this is an image factorisation):


[image: there is no content]



(18)









For every object [image: there is no content], the image [image: there is no content] will be thought of as the set [image: there is no content], but quotiented by the obvious binary relation. In any case, the elements of [image: there is no content] and [image: there is no content] will be denoted as tuples [image: there is no content] where t is an arrow of the form [image: there is no content]; s is an element in [image: there is no content]; [image: there is no content] is an element in [image: there is no content] and [image: there is no content] is an element in [image: there is no content].



Remark 15 (In preparation for Theorem 3).

Let [image: there is no content] be a morphism in [image: there is no content] as above. For every object [image: there is no content], denote by [image: there is no content] the following sum of sets, which is defined with respect to the structure of f provided by the constructor [image: there is no content]:


[image: there is no content]













The definition of [image: there is no content]-quotient for [image: there is no content] implies that any function of the form [image: there is no content] that maps a pair [image: there is no content] in [image: there is no content] to a pair [image: there is no content] in [image: there is no content] so that the equality [image: there is no content] is satisfied lifts to a function [image: there is no content] mapping any tuple [image: there is no content] in [image: there is no content] to the tuple [image: there is no content] in [image: there is no content].



Example 46 (In preparation for Theorem 3).

In the case of a constructor [image: there is no content] associated with a system of R-premodels [image: there is no content] over a small category D in a category [image: there is no content], the disjoint sum [image: there is no content] associated with a morphism [image: there is no content] in [image: there is no content] contains two types of tuples, which are of the form [image: there is no content] and [image: there is no content] with respect to the same notations given in Remark 13. For every [image: there is no content] and [image: there is no content], if one takes r to be [image: there is no content] and [image: there is no content] to be [image: there is no content], then it is possible to define a function [image: there is no content] with the following mapping rules, where [image: there is no content] stands for [image: there is no content], [image: there is no content] stands for [image: there is no content] and [image: there is no content] stands for [image: there is no content]:


hc,s:D(JQ,r)→D(JQ,d0)(c0,v,z,t)↦(c0,v,1,c,s,t,z,idd0)(c0,v,n,c̲,s̲,t̲,z,t)↦(c0,v,n+1,c̲c,s̲s,t̲t,z,idd0)













Because the following equations hold, it follows from Remark 15 that the function [image: there is no content] extends to a function [image: there is no content]:


[image: there is no content]











In fact, the function [image: there is no content] also restricts to a function [image: there is no content]. To see this, take two tuples [image: there is no content] and [image: there is no content] in [image: there is no content] that are equivalent in [image: there is no content], that is to say that have the same image under [image: there is no content] (see below, according to Equation (17)):


[image: there is no content]











It follows that their images via [image: there is no content] are also equivalent in [image: there is no content]. This comes from the fact that the previous equation gives rise to the following one, after some obvious compositional operations on it (see the definitions for [image: there is no content] and [image: there is no content] in Section 6.5):


[image: there is no content]











However, this last equation also amounts to saying that the images of [image: there is no content] and [image: there is no content] via [image: there is no content] are the same, and thus shows that [image: there is no content] restricts to a function [image: there is no content].



Definition 7 (Quotiented arrows).

From now on, we shall speak of a[image: there is no content]-quotiented arrow in [image: there is no content] to refer to any arrow [image: there is no content] in [image: there is no content] that is equipped with a [image: there is no content]-quotient [image: there is no content] for f.





A [image: there is no content]-quotiented arrow as defined above will be denoted either as a pair [image: there is no content] or as a paired arrow [image: there is no content]. A morphism of [image: there is no content]-quotiented arrows, denoted as an arrow [image: there is no content], will be understood as a morphism [image: there is no content] in [image: there is no content]. The category of [image: there is no content]-quotiented arrows and their morphisms will be denoted by [image: there is no content].




6.8. Merolytic Functors and Their Tomes


Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.4 where [image: there is no content] has coproducts. For every [image: there is no content]-quotiented arrow [image: there is no content], define the merolytic functor of [image: there is no content] as the coproduct of functors given below:


[image: there is no content]











Then, define the merolytic tome of [image: there is no content] as the coproduct [image: there is no content] of the following cospan whose right leg is given by the rightmost arrow of Equation (18):


[image: there is no content]











Proposition 13.

For every [image: there is no content], the merolytic tome [image: there is no content] is natural in the variable [image: there is no content]. This amounts to saying that the mapping rule [image: there is no content] induces a functor [image: there is no content].





Proof. 

Follows from Propositions 10 to 12.  ☐





Proposition 14.

For every [image: there is no content], the mapping [image: there is no content] induces a functor [image: there is no content].





Proof. 

According to the definition of Section 5.5, it is sufficient to assign any arrow [image: there is no content] in [image: there is no content] to the arrow [image: there is no content] in [image: there is no content]. This mapping is functorial by functoriality of [image: there is no content].  ☐





Because the tome [image: there is no content] is functorial in [image: there is no content], so is its content [image: there is no content] (see Section 5.4). In other words, the content gives us a commutative diagram in [image: there is no content] as follows:


 [image: Mathematics 05 00037 i043]











The previous diagram will be referred to as the functorial content of [image: there is no content].




6.9. Effectiveness of Quotiented Arrows


The goal of this section is to introduce what logicians could see as a concept of definability. The concept of effectiveness will allow us to designate those arrows that can be equipped with well-defined pushout factorisations in the category associated with a constructor. We prepare the notion of effectiveness by introducing the (almost-trivial) concept of realisability. Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.4 where [image: there is no content] has coproducts. A [image: there is no content]-quotiented arrow [image: there is no content] in [image: there is no content] will be said to be [image: there is no content]-realised if one may form a componentwise pushout square inside the functorial content of its merolytic tome as shown below:


 [image: Mathematics 05 00037 i044]



(19)







The functor [image: there is no content] will then be called the [image: there is no content]-realisation of [image: there is no content] while the pair of arrows [image: there is no content] will be referred to as the [image: there is no content]-prefactorisation of [image: there is no content].



Definition 8 (Effectiveness).

Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.4. A [image: there is no content]-quotiented arrow [image: there is no content] in [image: there is no content] will be said to be effective if it is [image: there is no content]-realised and its [image: there is no content]-prefactorisation in [image: there is no content] lifts to a factorisation of [image: there is no content] in [image: there is no content], as shown in Equation (20), such that the arrow [image: there is no content] is an identity for every [image: there is no content]:


 [image: Mathematics 05 00037 i045]



(20)









The leftmost factorisation of Equation (20) will be called the [image: there is no content]-factorisation of [image: there is no content].



Remark 16.

Let [image: there is no content] be a given set and [image: there is no content] be the constructor of a system of R-premodels [image: there is no content] over a small category D in a category [image: there is no content] where every object [image: there is no content] in [image: there is no content] is such that S is equal to [image: there is no content] and e is made of identities only. In this case, the underlying functor [image: there is no content] is fully faithful and it follows that if [image: there is no content] has pushouts, then every [image: there is no content]-quotiented arrow in [image: there is no content] is effective. This means that the theorem given below becomes trivial, which explains why the set [image: there is no content] mentioned in Remark 12 may be set empty since it is not really needed anywhere else in the paper except for Theorem 3 (and Theorem 7, which is a copy of it). See Example 48 in the case where [image: there is no content] is defined as in Section 6.5.





Theorem 3.

Let [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] has pushouts and the inclusion [image: there is no content] is an identity, then every [image: there is no content]-quotiented arrow in [image: there is no content] is effective.





Proof. 

For convenience, the symbol [image: there is no content] will be shortened to [image: there is no content]. Since [image: there is no content] has pushouts, every [image: there is no content]-quotiented arrow is [image: there is no content]-realised by definition. Let [image: there is no content] be an [image: there is no content]-quotiented arrow in [image: there is no content]. We are going to prove that the [image: there is no content]-realisation of [image: there is no content] has an R-premodel structure of the form [image: there is no content] and that this structure lifts the [image: there is no content]-prefactorisation of [image: there is no content] in [image: there is no content] to another one in [image: there is no content]. In this respect, fix [image: there is no content] and [image: there is no content] and denote [image: there is no content] and [image: there is no content] by r and [image: there is no content], respectively. For simplicity, we will denote by [image: there is no content] the obvious morphism [image: there is no content] in [image: there is no content] whose components are given by the pair of arrows [image: there is no content] and [image: there is no content] in [image: there is no content].



To prove the statement, we first need to define two functors. The first one is of the form [image: there is no content] and is induced by the following mappings, where [image: there is no content] stands for [image: there is no content], [image: there is no content] stands for [image: there is no content] and [image: there is no content] stands for [image: there is no content]:


ζc,s:Γf,q(r)→Γf,q(d0)(c0,v,t,s′,c)↦(c0,v,1,c,s,t,idd0,s′,c)onΓA(r)(c0,v,z,t,s′,υ,s)↦(c0,v,1,c,s,t,z,idd0,s′,υ,s)onq˜(r)(c0,v,n,c̲,s̲,t̲,t,s′,c)↦(c0,v,n+1,c̲c,s̲s,t̲t,idd0,s′,c)onΓA(r)(c0,v,n,c̲,s̲,t̲,z,t,s′,υ,s)↦(c0,v,n+1,c̲c,s̲s,t̲t,z,idd0,s′,υ,s)onq˜(r)











Note that the mappings on [image: there is no content] have already been given in Example 46. The second functor is of the form [image: there is no content] and maps any arrow [image: there is no content] to the map [image: there is no content], where [image: there is no content] denotes the unit of the adjunction [image: there is no content].



We are now going to show that the following diagram commutes:


 [image: Mathematics 05 00037 i046]



(21)







On the set [image: there is no content], the calculation on a tuple [image: there is no content] goes as follows:


ξc,sφrq(x̲)=ε∘L(ec,s(f)∘Υt(f)∘c∘)(Equation(16))=l(c,s,t)(c∘)(reformulation)=φd0qζc,s(x̲)(definitionofζc,s)











On the set [image: there is no content], the calculation for [image: there is no content] goes as follows:


ξc,sφrq(x̲)=ε∘L(ec,s(f)∘Υt(f)∘ℓϑ(s))(Equation(16))=ε∘L(ec,s(f)∘Υt(f)∘lz(s))(definitionofthelink)=l(c,s,t)∘lz(s)(reformulation)=φd0qζc,s(x̲)(definitionofζc,s)











On the set [image: there is no content], the calculation on a tuple [image: there is no content] goes as follows:


ξc,sφrq(x̲)=ε∘L(ec,s(f)∘Υt(f)∘ℓϑ(c∘))(Equation(16))=ε∘L(ec,s(f)∘Υt(f)∘l(cn,sn,tn)⋯∘l(c1,s1,t1)(c∘))(definitionofthelink)=l(c,s,t)∘l(cn,sn,tn)⋯∘l(c1,s1,t1)(c∘)(reformulation)=φd0qζc,s(x̲)(definitionofζc,s)











On the set [image: there is no content], the calculation for [image: there is no content] goes as follows:


ξc,sφrq(x̲)=ε∘L(ec,s(f)∘Υt(f)∘ℓϑ(s))(Equation(16))=ε∘L(ec,s(f)∘Υt(f)∘l(cn,sn,tn)⋯∘l(c1,s1,t1)∘lz(s))(definitionofthelink)=l(c,s,t)∘l(cn,sn,tn)⋯∘l(c1,s1,t1)∘lz(s)(reformulation)=φd0qζc,s(x̲)(definitionofζc,s)











Now, the equation [image: there is no content] tells us that the content of the tome [image: there is no content] along [image: there is no content] is equal to the content of [image: there is no content] after applying the functor [image: there is no content] on it. More specifically, the equation means that the respective composites of Equations (22) and (23) are equal:


[image: there is no content]



(22)






[image: there is no content]



(23)







If one denotes by [image: there is no content] the unit of the adjunction [image: there is no content], the definition of adjunction implies that the function [image: there is no content] is inverse of [image: there is no content]. Since the content [image: there is no content] appearing in Equation (22) may be factorised as in Diagram (19) on [image: there is no content], an application of the inverse function of [image: there is no content] on the arrow represented by Equations (22) and (23) provides the following commutative diagram, where Equation (22) provides the inside while Equation (23) provides the outside.


 [image: Mathematics 05 00037 i047]











Now, because the top left corner of the previous diagram corresponds to the top left corner of the commutative square defining the [image: there is no content]-realisation of [image: there is no content] when evaluated at r, it follows that there exists a natural transformation [image: there is no content] making the following diagram commute.


 [image: Mathematics 05 00037 i048]











The previous diagram provides a morphism [image: there is no content] in the category of R-premodels [image: there is no content]. The universality of [image: there is no content] also provides a morphism [image: there is no content] in [image: there is no content]. These two morphisms obviously define a factorisation of the morphism [image: there is no content] in [image: there is no content]. Finally, since the second component of the morphism [image: there is no content] is the identity on S, its image via the functor [image: there is no content] is an identity for every [image: there is no content] (see Section 6.5). In other words, the arrow [image: there is no content] mentioned in Definition 8 is indeed an identity.  ☐





Definition 9 (Fibered).

A system of R-premodels [image: there is no content] over a small category D in a category [image: there is no content] will be said to be fibered if the category [image: there is no content] has pushouts and the [image: there is no content]-factorisation of any [image: there is no content]-quotiented arrow (obtained in Theorem 3) lifts to [image: there is no content].





Example 47.

By Theorem 3, any system of R-premodels [image: there is no content] where [image: there is no content] has pushouts and [image: there is no content] is identified with the category [image: there is no content] is fibered.





Example 48.

In the proof of Theorem 3, note that if the objects [image: there is no content] and [image: there is no content] are such that the associated arrows [image: there is no content] and [image: there is no content] are identities, then so is [image: there is no content]. This implies that any system of R-premodels [image: there is no content] where [image: there is no content] has pushouts and [image: there is no content] may be identified with the functor category [image: there is no content] is fibered (e.g., Examples 34–41)





Example 49.

In the proof of Theorem 3, note that if the objects [image: there is no content] and [image: there is no content] are such that the images of S and [image: there is no content] are equal to [image: there is no content], then so is the [image: there is no content]-realisation [image: there is no content]. This implies that the system of Ω-premodels given in Example 42 is fibered.





Remark 17.

A system of R-premodels [image: there is no content] is not always fibered (e.g., Example 43), which is often due to a too strong restriction of the premodels via the inclusion [image: there is no content]. However, Theorem 3 shows that if [image: there is no content] is too strong, we might want to stay in [image: there is no content] to process most of our calculations. The idea would then be that it is possible to go back to [image: there is no content] at the very end of a transfinite calculation.





Example 50.

This example discusses the form that the [image: there is no content]-realisation takes when considering categories of models for a limit sketch. Let [image: there is no content] be a limit sketch seen as a croquis. Consider the system of premodels defined in Example 34 for the category [image: there is no content]. Recall that the vertebrae associated with any cone [image: there is no content] were of the following form:


 [image: Mathematics 05 00037 i049]











It follows from the definition of the transitive analysor and quotientor that, for any [image: there is no content]-quotiented arrow [image: there is no content], the [image: there is no content]-realisation of [image: there is no content] evaluated at an object [image: there is no content] is defined over the following types of span:


 [image: Mathematics 05 00037 i050]











The contribution of the left span to the construction of the [image: there is no content]-realisation [image: there is no content] is to add an element to [image: there is no content] while the contribution of the right span to the construction of the [image: there is no content]-realisation [image: there is no content] is to quotient a pair of elements in [image: there is no content]. After unravelling the indices that parametrise the two types of span, we may deduce that the colimit [image: there is no content] is of the following form, where [image: there is no content] and [image: there is no content] are the restrictions of [image: there is no content] to the vertebrae [image: there is no content] and [image: there is no content], respectively:


[image: there is no content]











After further unravelling the parameterisation of the rightmost summand, we may show that the colimit [image: there is no content] may be expressed as follows, where R is a binary relation on X in [image: there is no content]:


[f/q](d)=X(d)/R(d)+∑ϑA∈JAforv0D(ϵ(ϑA),d)×C2×2(disk(v0),Φι(ϑA)(f))



(24)







Concretely, the set [image: there is no content] is nothing but the set [image: there is no content] with respect to the notations of [image: there is no content] given in Remark 11 while the object [image: there is no content] is given by [image: there is no content] for the same notations.



Recall that, according to Remarks 12 and 16, the set [image: there is no content] could in fact be given by the set I itself in the present situation (i.e. premodels for a sketch). In this case, the expression of Equation (24) turns out to be as follows:


[image: there is no content]














6.10. Rectification of Effective Quotiented Arrows


Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.9, with the usual notations, and [image: there is no content] be an effective [image: there is no content]-quotiented arrow in [image: there is no content]. Usually, effectiveness does not mean that the quotiented arrow is as we would like it to be. It is in fact necessary to rectify its defaults via a second quotient. The goal of this section is to define the ‘rectification’ of [image: there is no content], which is nothing but a [image: there is no content]-quotient [image: there is no content] for the arrow [image: there is no content].



To do so, let us define, for every element [image: there is no content] and [image: there is no content], the associated functor of the following form:


[image: there is no content]











First, define the discrete category [image: there is no content] to be the set [image: there is no content]. By definition, an element [image: there is no content] may be identified with an element [image: there is no content], which may be sent to the arrow:


[image: there is no content]



(25)




via the domain restriction [image: there is no content]. The arrow encoded by [image: there is no content] may be identified with an element in the image of the analytic tome of [image: there is no content] as follows (see Formula (16) and the assumption of the initial section [image: there is no content]):


[image: there is no content]











This therefore defines a function [image: there is no content] mapping any element [image: there is no content] to the tuple [image: there is no content] whose image via the merolytic tome [image: there is no content] is the arrow encoded by [image: there is no content].



This being said, denote by r the element [image: there is no content] and, for every [image: there is no content], denote by [image: there is no content] the function [image: there is no content] that picks out the element [image: there is no content]. From the point of view of these notations, we have showed that the image of the composite [image: there is no content] corresponds to the commutative square [image: there is no content]. However, this also means that the content of the merolytic tome of [image: there is no content] along [image: there is no content] is equal to the commutative Square (25) in [image: there is no content] as illustrated below:


[image: there is no content]











Because the left arrow [image: there is no content] (i.e., the content) may be factorised as shown in Diagram (19), it follows that the commutative square encoding [image: there is no content] factorises as shown below, on the left:


 [image: Mathematics 05 00037 i051]



(26)







The diagram displayed above, on the right, is for its part the image of the [image: there is no content]-factorisation of [image: there is no content] in [image: there is no content] via the functor [image: there is no content]. The definitions of the diagrams involved in Equation (26) imply that the commutative square [image: there is no content] factorises as follows, where the image [image: there is no content] is replaced with the diskad of a vertebra [image: there is no content] for which [image: there is no content] by definition:


 [image: Mathematics 05 00037 i052]



(27)







Notice that the previous commutative cube provides the following left commutative square:


 [image: Mathematics 05 00037 i053]











By using the structure of the vertebra [image: there is no content], we may form a pushout [image: there is no content] inside so that we obtain a canonical arrow [image: there is no content] making the preceding right diagram commute. It is not hard to deduce from the universality of this pushout that both arrows:


Φθ•(⌊f⌋q)s∘w:S′→Φθ•(Y)sandy′∘β:S′→Φθ•(Y)s








are solutions for a same universal problem over [image: there is no content] (Diagram (27) might come in handy to visualise this fact). In particular, this means that the following diagram must commute:


 [image: Mathematics 05 00037 i054]



(28)







Because [image: there is no content] corresponds to the image [image: there is no content], we have defined a functor [image: there is no content] mapping a commutative cube [image: there is no content] to the subset of [image: there is no content] consisting of Diagram (28) only. Thus, the images of [image: there is no content] are sets (or singletons) included in [image: there is no content] so that the collection of functors given below, denoted by [image: there is no content], defines a [image: there is no content]-quotient for the arrow [image: there is no content]:


[image: there is no content]











Definition 10 (Rectification).

The[image: there is no content]-rectification of the [image: there is no content]-quotiented arrow [image: there is no content] is the [image: there is no content]-quotiented arrow [image: there is no content], which will sometimes be denoted by [image: there is no content].





Later on, the diagram obtained in Equation (28), which is entirely determined by the image of the [image: there is no content]-rectification of [image: there is no content] above a cube [image: there is no content] at the parameters [image: there is no content] and [image: there is no content], will be referred to as the obstruction square of [image: there is no content] for [image: there is no content] at [image: there is no content].



Definition 11 (Ideal).

A [image: there is no content]-quotiented arrow [image: there is no content] will be said to be ideal if it is effective, its [image: there is no content]-rectification [image: there is no content] is effective and for every [image: there is no content], [image: there is no content] and [image: there is no content], there exists an arrow [image: there is no content] factorising the obstruction square of [image: there is no content] for [image: there is no content] at [image: there is no content] as follows:


 [image: Mathematics 05 00037 i055]



(29)









Remark 18 (Structure of narrative of degree 2).

Consider an ideal [image: there is no content]-quotiented arrow [image: there is no content] and a commutative cube [image: there is no content] in [image: there is no content]. According to the previous discussion, this cube [image: there is no content] may be factorised as in Diagram (27). Merging this factorisation of [image: there is no content] with: (1) the factorisation of the obstruction square of [image: there is no content] for [image: there is no content] at [image: there is no content] on its front face and (2) the [image: there is no content]-factorisation of the [image: there is no content]-rectification of [image: there is no content] on its back face leads to the following factorisation of [image: there is no content] (where the top front corner has been forgotten and [image: there is no content]):


 [image: Mathematics 05 00037 i056]











This means that the composite arrow given in Equation (30), whose the leftmost arrow is given by the content of the operadic tome [image: there is no content], admits a lift in [image: there is no content]:


[image: there is no content]



(30)







This last fact will later imply that we may construct a narrative of degree 2 out of the operadic tome.





Remark 19 (About π0).

This section discusses the encoding of the arrow that we have denoted [image: there is no content]. We shall use the same notations as that introduced at the beginning of the section. Recall that we defined the element [image: there is no content], which we used to shift the merolytic tome of [image: there is no content] and obtain the leftmost diagram of Equation (26). Therefore, we have the following formula if we use the notation of Diagram (19):


[image: there is no content]













If we now denote [image: there is no content] for some arrow [image: there is no content], the functionality of [image: there is no content] and the construction of the merolytic tome of [image: there is no content] gives the following Equation:


[image: there is no content]











This formula will later come in handy in the proof of Theorem 9.



Theorem 4.

Let [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] admits pushouts and the inclusion [image: there is no content] is an identity, then every [image: there is no content]-quotiented arrow is ideal.





Proof. 

For convenience, the symbol [image: there is no content] will be shortened to [image: there is no content]. The present proof uses the construction made in the proof of Theorem 3. In particular, we shall use the notations defined thereof, such as [image: there is no content] and [image: there is no content]. Let [image: there is no content] be an [image: there is no content]-quotiented arrow in [image: there is no content]. By Theorem 3, it is effective and so is its [image: there is no content]-rectification [image: there is no content]. There now remains to show the existence of an arrow:


[image: there is no content]








factorising the obstruction square of [image: there is no content] for any cube [image: there is no content] at any parameter [image: there is no content] and [image: there is no content] (see Diagram (29)).



First, recall that, for every [image: there is no content], [image: there is no content] and cube [image: there is no content], the obstruction square of [image: there is no content] for [image: there is no content] at [image: there is no content] is given by an arrow in [image: there is no content] of the following form:


s:ω(θ)⇒Φθ•(⌊f⌋q)s=s:ω(θ)⇒limzRhfqin(c0)(z)











By using the notations of Section 6.5 and the adjointness properties of R and [image: there is no content], the preceding righthand arrow may be turned into the following arrow in [image: there is no content] for every [image: there is no content]:


[image: there is no content]



(31)







Now, observe from the definitions of Section 6.5 that, for every [image: there is no content] and [image: there is no content], we may define an object [image: there is no content] in [image: there is no content], which precisely lands in the component [image: there is no content] of [image: there is no content]. From the notations of Section 6.5, the arrow given in Equation (31) may in fact be rewritten as follows (We have the identities [image: there is no content] and [image: there is no content]):


[image: there is no content]











It therefore follows from Formula (17) that the arrow given in Equation (31) may be identified with the image of Tuple (32) (see below) via the quotient tome [image: there is no content]:


[image: there is no content]



(32)







In order to avoid overloading the next diagrams, denote by [image: there is no content] the functorial mapping [image: there is no content] and, for every [image: there is no content], denote by [image: there is no content] the function [image: there is no content] that picks out Tuple (32) in [image: there is no content] for every [image: there is no content]. Now, to resume, the previous discussion showed that the image of the composite [image: there is no content] corresponds to the arrow [image: there is no content]. However, this is equivalent to saying that the content of the merolytic tome of [image: there is no content] along [image: there is no content] is equal to the arrow [image: there is no content] as illustrated below:


 [image: Mathematics 05 00037 i057]











Because the rightmost arrow [image: there is no content] may be factorised as shown in Diagram (19), it follows that the commutative square encoded by [image: there is no content] factorises as follows:


 [image: Mathematics 05 00037 i058]











The idea is now to obtain a factorisation of the form given in Equation (29) by reconstructing the obstruction square [image: there is no content] (from which the previous diagram is derived) without losing the factorisation.



First, note that, by definition of the quotient acting on [image: there is no content] (see Convention 10), the collection of arrows [image: there is no content] is natural in [image: there is no content] since the following tuples have the same images via the functor [image: there is no content] for every arrow [image: there is no content] in [image: there is no content]:


(θz′,idd(z′),υ,s,s)(θz,d(t),υ,s,s)











The functoriality of Diagram (19) over D and the naturality of [image: there is no content] in [image: there is no content] then implies that the earlier commutative diagram is natural over [image: there is no content]. Forming the limit of that diagram over [image: there is no content] and then applying the inverse of the function [image: there is no content] (which is given by the function [image: there is no content] if [image: there is no content] denotes the unit of [image: there is no content]) provides a factorisation of the original obstruction square [image: there is no content] as follows:


 [image: Mathematics 05 00037 i059]











This finally shows that the [image: there is no content]-quotiented arrow [image: there is no content] is ideal.  ☐





Example 51.

This example continues the discussion started in Example 50 (we shall use the same notations as those used thereof) in order to describe, in more details, the binary relation [image: there is no content] acting on [image: there is no content] (see Formula (24)) in the case where f is taken to be the canonical map [image: there is no content]. Recall that the quotient [image: there is no content] was meant to simplify the following expression:


[image: there is no content]











Also, recall that, by definition, the binary relations contained in [image: there is no content] (see Remark 13 for the encoding of [image: there is no content]) are those pairs [image: there is no content] that may be related to commutative diagrams as follows:


 [image: Mathematics 05 00037 i060]











Precisely: The above diagram says that two elements [image: there is no content] will be identified if there exist a cone [image: there is no content], a morphism [image: there is no content] and two elements [image: there is no content] and [image: there is no content] in [image: there is no content] such that the identities [image: there is no content] and [image: there is no content] hold and the elements [image: there is no content] and [image: there is no content] have the same image via the canonical map [image: there is no content].



On the other hand, the binary relations contained in [image: there is no content] were given as part of our assumptions. However, in the sequel, the idea will be to define [image: there is no content] either as the empty binary relation or as we defined the set [image: there is no content] in Section 6.10. In the latter case, in order to make sense of [image: there is no content], we need to suppose that the image [image: there is no content] takes the form given below for some functor [image: there is no content] and binary relation [image: there is no content]:


[image: there is no content]











The quotient [image: there is no content], which will later be shortened as [image: there is no content], is supposed to identify pairs of elements coming from a previous [image: there is no content]-quotient [image: there is no content]. In this case, the pairs contained in the relation [image: there is no content] are those pairs [image: there is no content] that are the top parts of commutative diagrams of the form displayed below, where the leftmost commutative square is one of those obstruction squares constructed in Section 6.10:


 [image: Mathematics 05 00037 i061]











Precisely: After unravelling the details of the construction of the corresponding obstruction square, the above diagram says that two elements:


[image: there is no content]








will be identified if there exist a cone [image: there is no content], say encoded by a natural transformation [image: there is no content], an element [image: there is no content], a morphism [image: there is no content] and two elements [image: there is no content] and [image: there is no content] living in [image: there is no content] of the form:


[image: there is no content]








such that the following relations hold:


x=(t∘ρz,(xz)z∈Es(c))∈D(ou(c),d)×Y[c]andy=Y′(t)(y′)∈Y′(d)











We can clearly see that the role of two binary relations [image: there is no content] and [image: there is no content] is to turn the canonical arrow [image: there is no content] into a surjection and an injection, respectively.





Example 52 (Comparison with Kelly’s construction).

Let us compare the quotients acting on the pushout object [image: there is no content], as described in Examples 51 and 50 (where [image: there is no content] denotes the canonical arrow [image: there is no content]), with those acting on the pushout object of Kelly’s construction [4]. Recall that, for each cone [image: there is no content], the latter is given by a well-pointed endofunctor [image: there is no content] in [image: there is no content]. More specifically, if we take c to be a cone of the usual the form:


[image: there is no content]








in D, then for every functor [image: there is no content], the object [image: there is no content] can be computed in [image: there is no content] as the pushout object of the following span [4] (diag. (10.1), p. 31), whose components are further detailed below, while the natural transformation [image: there is no content] is the bottom arrow of the resulting pushout square:


 [image: Mathematics 05 00037 i062]













For every object [image: there is no content], we can decompose the previous span in four parts as follows:

	(1)

	
The arrow given below, part of the vertical leg, maps every pair [image: there is no content], where t is an arrow [image: there is no content] and [image: there is no content], to the element [image: there is no content] in [image: there is no content]:


[image: there is no content]












	(2)

	
The arrow given below, also part of the vertical leg, maps every pair [image: there is no content], where t is an arrow [image: there is no content] in the colimit colzD(in(c)(z),d) and [image: there is no content] is a tuple in X[c]=limX∘in(c), to the element [image: there is no content] in [image: there is no content]:


[image: there is no content]












	(3)

	
The arrow given below, part of the horizontal leg, is induced by the canonical arrow [image: there is no content] and maps every pair [image: there is no content] to the pair [image: there is no content], where [image: there is no content] is the tuple [image: there is no content] in the limit object [image: there is no content]:


[image: there is no content]












	(4)

	
The arrow given below, also part of the horizontal leg, is induced by the canonical arrow [image: there is no content] and maps every pair [image: there is no content], where t is an arrow [image: there is no content] for some object [image: there is no content] and [image: there is no content], to the pair [image: there is no content]:


[image: there is no content]

















It takes a few lines of calculations to see that the pushout [image: there is no content] of the previous span evaluated at d can be described as a quotiented sum of the form:


[image: there is no content]



(33)




where:



▹[image: there is no content] identifies all pairs [image: there is no content], where [image: there is no content] and [image: there is no content], such that there exist [image: there is no content] and an arrow [image: there is no content] for which the following identities hold:


x=(t,(ρz(a))z∈Es(c))y=X(t)(a)











▹[image: there is no content] identifies all pairs [image: there is no content], where [image: there is no content] and [image: there is no content], such that there exist [image: there is no content] and an arrow [image: there is no content] for which the following identities hold:


x=(t∘ρz,(xz)z∈Es(c))y=X(t)(xz)











We can see that the definition of the relation [image: there is no content] exactly matches that of the relation [image: there is no content] given in Example 51. On the other hand, we can check that for every relation [image: there is no content], as described in Example 51, there is an (obvious) element y for which both relations [image: there is no content] and [image: there is no content] are satisfied.



However, a relation of the form [image: there is no content] cannot be retrieved from the union of the relations [image: there is no content] and [image: there is no content], given in Example 51. It can only be retrieved if one allows a use of these relations up to quotients. Indeed, the reader can check that the identification of the second line, below, cannot be made unless the one given in the fist line has already occured.











	
	elt.
	Relation
	elt.



	first identify
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	which then allows us to identify
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]






As mentioned in Section 1.4, Kelly’s construction is pursued by pushing out all the maps [image: there is no content] to give a natural transformation [image: there is no content] where [image: there is no content] identifies each component X appearing in the expression of the objects [image: there is no content] for every [image: there is no content]. We therefore obtain an expression as follows, for very object [image: there is no content]:


[image: there is no content]











This expression should be compared with the (similar) expression of the [image: there is no content]-realisation [image: there is no content] obtained in Example 51, whose sum over K is, here, quotient-free:


[image: there is no content]











Because the relations contained in [image: there is no content] can be written as a zigzag of relations in [image: there is no content], we can construct an obvious arrow from [image: there is no content] to [image: there is no content] matching all the components [image: there is no content] together (here, the symbol ∼ stands for the obvious relation):


[image: there is no content]











In fact, our earlier discussion showed that, if we denote [image: there is no content] and [image: there is no content] where [image: there is no content] and [image: there is no content], then we can continue this process iteratively, by matching the components of the sum over K, so that we have arrows as follows:


[!X1/u1]⇒P(P(X))X1/∼+∑c∈KD(ou(c),_)×X1[c]⇒P(P(X))⋮⋮⋮[!Xn/un]⇒Pn+1(X)Xn/∼+∑c∈KD(ou(c),_)×Xn[c]⇒Pn+1(X)











One can check that all these arrows are compatible, in an obvious way, with the arrows [image: there is no content] and [image: there is no content]. However, one of our previous remarks on the fact that [image: there is no content] can only be retrieved from the relations [image: there is no content] and [image: there is no content] up to quotients shows that if there exists a dashed arrow making the following diagram commute:


 [image: Mathematics 05 00037 i063]











then this arrow must factorise through the following canonical arrow (see the reason below):


[image: there is no content]











Indeed, otherwise we could derive a contradiction from every element of the form:


[image: there is no content]








which must be identified with the element [image: there is no content] in [image: there is no content] via the relation [image: there is no content], but must be left free in the expression of [image: there is no content]. The empty case [image: there is no content] obviously leads to the same conclusion.



If we now look at Formula (33), this factorisation means that that all the elements in the component [image: there is no content] of [image: there is no content] must be identified with elements in the other component [image: there is no content]. From the point of view of the relation [image: there is no content] at [image: there is no content] where t is taken to be the identity on [image: there is no content], this means that the canonical arrow [image: there is no content] must be a surjection.



Finally, observe that, when [image: there is no content], the arrow [image: there is no content] is also an injection because the images of [image: there is no content] are quotiented by the relations [image: there is no content] and hence the relation [image: there is no content], which precisely characterises its injectiveness (see Example 51). In other words, the canonical arrow [image: there is no content] is a bijection, which makes the object [image: there is no content] a model for [image: there is no content].





7. Combinatorial Categories and Their Oeuvres


The notion of combinatorial category encompasses all the assumptions that are necessary to the application of the small object argument in the case of systems of premodels.



7.1. Numbered Constructor


Let [image: there is no content], [image: there is no content] be two categories and D be a small category. A numbered constructor of type [image: there is no content] consists of a constructor [image: there is no content] of type [image: there is no content], where [image: there is no content] has coproducts, together with a limit ordinal [image: there is no content] such that the category [image: there is no content] admits colimits over every limit ordinal [image: there is no content] when seen as a preorder category. Such a structure will be denoted as a pair [image: there is no content] where [image: there is no content] will be equipped with its usual notational conventions.




7.2. Factorisable Morphisms


Let [image: there is no content] be a numbered constructor of type [image: there is no content]. A morphism [image: there is no content] in [image: there is no content] will be said to be [image: there is no content]-factorisable if it is equipped with a sequence [image: there is no content] of ideal [image: there is no content]-quotiented arrows in [image: there is no content] satisfying the following conditions:

	▹

	
initial case:[image: there is no content];




	▹

	
successor cases:[image: there is no content];




	▹

	
limit cases: for any (infinite) limit ordinal [image: there is no content], the arrow [image: there is no content] is the colimit [image: there is no content] in [image: there is no content] of the following diagram over the category [image: there is no content]:


 [image: Mathematics 05 00037 i064]



(34)













Convention 11.

For every (infinite) limit ordinal [image: there is no content], the domain of the arrow [image: there is no content] will be denoted by [image: there is no content]. The object [image: there is no content] is by definition the colimit of the sequence of arrows [image: there is no content] where n runs over λ (see Diagram (34)). We will later denote by [image: there is no content] the associated canonical arrow [image: there is no content].





By induction, we may show that the arrows [image: there is no content] and [image: there is no content] define a sequential functor [image: there is no content] with the following mapping rules:


n+1↦[fn/un](succ.objects)λ↦Xifλ=0and[f/u]λotherwise.(lim.objects)n+1<n+2↦{fn}un(succ.arrows)n+1<λ↦χnλ(f)(lim.arrows)λ<λ+1↦{fλ}uλ(lim.arrows)











Remark 20.

The functor [image: there is no content] turns the mapping [image: there is no content] into an obvious functor [image: there is no content], which also lifts to the category [image: there is no content] via the mapping [image: there is no content] (see Diagram (34)).





Theorem 5.

Let κ denote a limit ordinal and [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] is cocomplete, R preserves colimits over every limit ordinal [image: there is no content] and the inclusion [image: there is no content] is an identity, then every morphism in [image: there is no content] may be equipped with the structure of a [image: there is no content]-factorisable morphism.





Proof. 

First, the assumption that [image: there is no content] is cocomplete and R preserves colimits over every limit ordinal [image: there is no content] implies that [image: there is no content] admits colimits over every limit ordinal [image: there is no content]. We are now going to show that every morphism [image: there is no content] of the category [image: there is no content] may be equipped with the structure of a [image: there is no content]-factorisable morphism by induction. Let us define the sequence of [image: there is no content]-quotiented arrow [image: there is no content] as follows:

	▹

	
For the initial case, take [image: there is no content] to be the morphism [image: there is no content] and [image: there is no content] to be given by the collection of empty functors [image: there is no content];




	▹

	
By Theorem 4, the [image: there is no content]-quotiented arrow [image: there is no content] is ideal and we can take the next [image: there is no content]-quotiented arrow [image: there is no content] to be [image: there is no content];




	▹

	
For any (infinite) limit ordinal [image: there is no content], the arrow [image: there is no content] is given by the colimit [image: there is no content] in [image: there is no content] of Diagram (35) over the category [image: there is no content] while [image: there is no content] is given by the collection of empty functors [image: there is no content]


 [image: Mathematics 05 00037 i065]



(35)













By Principle of Transfinite Induction, the preceding construction equip the morphism [image: there is no content] with the structure of a [image: there is no content]-factorisable morphism.  ☐





Corollary 1.

Let κ denote a limit ordinal and [image: there is no content] be a fibered system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] is cocomplete and R preserves colimits over every limit ordinal [image: there is no content], then every morphism in [image: there is no content] may be equipped with the structure of a [image: there is no content]-factorisable morphism.





Proof. 

Follows from fiberedness and Theorem 5.  ☐





Example 53 (Systems of premodels).

Let κ denote a limit ordinal and [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content] where [image: there is no content] may be identified with the category of R-premodels [image: there is no content] – hence R is an identity. It follows from Example 48 and Corollary 1 that the morphisms of [image: there is no content] are all [image: there is no content]-factorisable.





Proposition 15.

Let [image: there is no content] be a [image: there is no content]-factorisable morphism. For every object d in D, the mapping [image: there is no content] induces an oeuvre [image: there is no content] of theme [image: there is no content]. This induces a functor [image: there is no content] whose images are strict narratives of degree 1.





Proof. 

The fact that the mapping [image: there is no content] induces an oeuvre follows from Proposition 14 and Remark 20. One thus obtains an oeuvre [image: there is no content] of theme [image: there is no content]. It follows from Proposition 13 that the mapping [image: there is no content] defines a functor [image: there is no content]. The narrative structure is defined as follows:

	(1)

	
for every [image: there is no content], the set of events [image: there is no content] contains all the functors [image: there is no content];




	(2)

	
for every [image: there is no content] and functor [image: there is no content] in [image: there is no content], the viewpoint associated with the arrow


[image: there is no content]








is given by the [image: there is no content]-realisation of [image: there is no content] (see Diagram (19)) that may be inserted in the content [image: there is no content], so that we obtain a lift [image: there is no content] for the previous composite that makes the following diagram commute.


 [image: Mathematics 05 00037 i066]











Note that the object [image: there is no content] must stand for X when [image: there is no content].









By definition (see Section 5.8), the previous narrative is strict.  ☐





Proposition 16.

Let [image: there is no content] be a [image: there is no content]-factorisable morphism. For every object [image: there is no content] and [image: there is no content], the mapping [image: there is no content] induces an oeuvre [image: there is no content] of theme [image: there is no content] that is equipped with the structure of a narrative of degree 2.





Proof. 

The fact that the mapping [image: there is no content] induces an oeuvre follows from Proposition 9 and Remark 20. One thus obtains an oeuvre [image: there is no content] of theme [image: there is no content]. The narrative structure is defined as follows:

	(1)

	
for every [image: there is no content], the set of events [image: there is no content] contains all the functors [image: there is no content];




	(2)

	
for every [image: there is no content] and functor [image: there is no content] in [image: there is no content], the viewpoint is given by the pair [image: there is no content] defined in Section 6.10 if one replaces the functor [image: there is no content] with i and the [image: there is no content]-quotiented arrow [image: there is no content] with [image: there is no content]. As noticed in Remark 18, the version of Diagram (27) for these parameters provides the wanted lift.









This finishes the proof.  ☐






7.3. Combinatorial Categories


Convention 12.

Let [image: there is no content] be a constructor as in Section 6.4. Recall that for every [image: there is no content], the image [image: there is no content] encodes the diskad of a vertebra whose stem is given by [image: there is no content]. According to the conventions set in Section 4, if this vertebra is denoted by [image: there is no content], the diskad [image: there is no content] is seen as an arrow [image: there is no content]. We shall let [image: there is no content] denote the set consisting of the domain and codomain of the coseed of the vertebra [image: there is no content] (i.e., the domain and codomain of [image: there is no content]) for every object [image: there is no content]. Similarly, we shall let [image: there is no content] denote the set consisting of the coseeds of every vertebra [image: there is no content] for every object [image: there is no content].





Remark 21.

For every object [image: there is no content], the set [image: there is no content] may alternatively be seen as the set of domains of every codiskad [image: there is no content] for every object [image: there is no content].





For every limit ordinal [image: there is no content], a category [image: there is no content] will be said to be κ-combinatorial in a category [image: there is no content] if it is equipped with a numbered constructor [image: there is no content] of type [image: there is no content] such that:

	(1)

	
every morphism in [image: there is no content] is [image: there is no content]-factorisable;




	(2)

	
for every object f in [image: there is no content] and object [image: there is no content] in I, the functor [image: there is no content], which is the context functor of the oeuvre [image: there is no content], is [image: there is no content]-convergent.









Remark 22.

In practice, it is easy to prove that for every morphism [image: there is no content] in [image: there is no content] and object d in D, the context functor :


[image: there is no content]








of the oeuvre [image: there is no content] is [image: there is no content]-convergent. This is generally due to the fact that the context functor [image: there is no content] is sequential and the vertebrae [image: there is no content] are rather “small”.





Example 54.

The following discussion continues the discussion began in Examples 50 and 51. In this respect, let [image: there is no content] be a limit sketch seen as a croquis and consider the system of premodels defined in Example 34 for the category [image: there is no content]. If one numbers the constructor [image: there is no content] with an ordinal [image: there is no content], then for every morphism [image: there is no content] in [image: there is no content] and object d in D, the context functor:


[image: there is no content]








of the oeuvre [image: there is no content] is U-convergent for any finite set U. This comes from the fact that any sequential functor of the form [image: there is no content] where [image: there is no content] is convergent with respect to finite sets. Now, in the case of the constructor [image: there is no content], the set [image: there is no content] is made of the finite sets ∅, [image: there is no content] and [image: there is no content], so the functor [image: there is no content] is [image: there is no content]-convergent.





Example 55.

Let [image: there is no content] denote the wide subcategory of [image: there is no content] restricted to inclusions [image: there is no content] defining relative CW-complex structures (see [17]). It is well-known that any sequential functor of the form [image: there is no content], where [image: there is no content], is convergent with respect to compact topological spaces (see Appendix of [17]). Since topological spheres and discs are compact, it follows that the functor [image: there is no content] associated with the constructors of the systems ofΩ-premodels defined in Examples 40 and 41 is [image: there is no content]-convergent when K is taken to be equal to [image: there is no content] and [image: there is no content], respectively.





Example 56 (Systems of premodels).

Let [image: there is no content] be a fibered system of R-premodels over a small category D in a category [image: there is no content]. In addition, suppose that [image: there is no content] is cocomplete and R preserves colimits over every limit ordinal [image: there is no content]. Corollary 1 shows that every morphism in [image: there is no content] is [image: there is no content]-factorisable for any limit ordinal κ. Let us prove that the category [image: there is no content] becomes κ-combinatorial if:

	-

	
κ is a well-chosen limit ordinal;




	-

	
the statement of Remark 22 holds.









As specified by Remark 22, for every morphism [image: there is no content] in [image: there is no content] and object d in D, the context functor [image: there is no content] of the oeuvre [image: there is no content] is generally [image: there is no content]-convergent. Recall that this functor lifts to a functor landing in [image: there is no content] as follows:


[image: there is no content]











Let c denote a cone of the form [image: there is no content] in K where [image: there is no content] is a functor [image: there is no content]. Let also g denote the functor [image: there is no content] defined in Example 11 where the cone ‘r’ used thereof is replaced with the natural transformation [image: there is no content]. By definition, the following equations hold for every ordinal [image: there is no content], cone [image: there is no content], vertebra [image: there is no content] and element [image: there is no content]:


Φ(c,v),s∘G(f)(n)=GcK(G(f)(n))s=g(ec,s)ifn=0g(ec,sun−1)ifnissucc.g(coln∈λec,sun)ifnislimit.











In the case where the inequalities [image: there is no content] and [image: there is no content] hold, Example 20 says that the composite of the functor [image: there is no content] with the functor [image: there is no content] is [image: there is no content]-convergent. In other words, this shows that if [image: there is no content] is greater than or equal to the cardinality [image: there is no content] and [image: there is no content], then the context functor of the oeuvre [image: there is no content] is [image: there is no content]-convergent.





Definition 12 (Lifting system).

Let [image: there is no content] be a combinatorial category as defined above. For every morphism [image: there is no content] in [image: there is no content], every [image: there is no content] and [image: there is no content], denote by [image: there is no content] the lifting system consisting of the functors [image: there is no content] picking out the codiskad [image: there is no content].





Proposition 17.

For every morphism [image: there is no content] in [image: there is no content], every [image: there is no content] and [image: there is no content], the lifting system [image: there is no content] agrees with the narrative [image: there is no content] in the numbered category [image: there is no content].





Proof. 

To show that the lifting system [image: there is no content] in [image: there is no content] agrees with the narrative [image: there is no content], which is generated by the operadic tomes [image: there is no content] for n running over [image: there is no content], consider an ordinal [image: there is no content] and suppose that the functor [image: there is no content] in [image: there is no content] that admits a lift [image: there is no content] along ∂ as follows:


 [image: Mathematics 05 00037 i067]











By definition, the functor [image: there is no content] picks out an element in [image: there is no content] which is therefore an element of [image: there is no content]. This means that we found a functor [image: there is no content] in the set of events [image: there is no content] whose composite with [image: there is no content] gives the lift [image: there is no content] as follows:


 [image: Mathematics 05 00037 i068]











This exactly shows the statement of the proposition.  ☐





Theorem 6.

Let κ be a limit ordinal and [image: there is no content] be a κ-combinatorial category as defined above. Every morphism [image: there is no content] may be factorised into two arrows:


[image: there is no content]








such that, for every [image: there is no content] and [image: there is no content], the arrow [image: there is no content] in [image: there is no content] has the rlp with respect to the codiskad of [image: there is no content] and, for every object d in D, the arrow [image: there is no content] has the llp with respect to every morphism in [image: there is no content] (see end of Section 5.6) for every [image: there is no content].





Proof. 

The factorisation is given by the image of the arrow [image: there is no content] via the functor [image: there is no content] defined in Remark 20. The statement on the arrow [image: there is no content] follows from Propositions 7 and 17 since the context functor:


[image: there is no content]








of the oeuvre [image: there is no content] is [image: there is no content]-convergent (and hence [image: there is no content]-convergent for every [image: there is no content]). The statement on the arrow [image: there is no content] follows from Propositions 8 and 15, which ensures that [image: there is no content] is a strict narrative for every object [image: there is no content].  ☐





Let [image: there is no content] be a limit ordinal. A category [image: there is no content] will be said to be trivially κ-combinatorial over a set [image: there is no content] if it is [image: there is no content]-combinatorial when equipped with the numbered constructor [image: there is no content] associated with the obvious category of [image: there is no content]-premodels [image: there is no content] whose set of vertebrae consists of the following degenerate vertebrae for every arrow [image: there is no content]:


 [image: Mathematics 05 00037 i069]











Corollary 2 (Quillen’s small object argument).

Let [image: there is no content] be a trivially κ-combinatorial category over a set of arrows [image: there is no content] in [image: there is no content]. Every morphism [image: there is no content] in [image: there is no content] may be factorised into two arrows [image: there is no content] and [image: there is no content] where the arrow [image: there is no content] is in the class [image: there is no content] and the arrow [image: there is no content] is in the class [image: there is no content].





Proof. 

Theorem 6 implies that every morphism [image: there is no content] in [image: there is no content] may be factorised into two arrows [image: there is no content] and [image: there is no content] where the arrow [image: there is no content] is in the class [image: there is no content] and the arrow [image: there is no content] has the llp with respect to every morphism in [image: there is no content] for every [image: there is no content]. However, because of the triviality of our data, it follows that the equality [image: there is no content] holds for every [image: there is no content].  ☐





Remark 23.

For every system of R-premodels [image: there is no content] where: [image: there is no content] is cocomplete; [image: there is no content] preserves colimits over every limit ordinal [image: there is no content] and [image: there is no content] is combinatorial (see Example 56), Theorem 6 provides every arrow [image: there is no content] in [image: there is no content] with a factorisation:


[image: there is no content]








where [image: there is no content] is an R-model and the arrow [image: there is no content] satisfies nice lifting properties. In the case of a category of premodels for a sketch, Example 50 shows that the ‘localisation’ [image: there is no content] admits a presentation as given in Theorem 2. There now remains to show that the arrow [image: there is no content] is universal. This is the goal of the next and last section.







8. Universal Property


This section discusses the universal properties of the factorisations provided by Theorem 6. To do so, we shall require our constructor to be ‘normal’ (see Section 8.1). An existential resut is given in Theorem 9 while a universal one is given in Theorem 8.



8.1. Normal Constructors


A constructor [image: there is no content] of type [image: there is no content] will be said to be normal if:

	(1)

	
the categories [image: there is no content] and [image: there is no content] possess terminal objects (denoted by [image: there is no content]);




	(2)

	
for every [image: there is no content] and [image: there is no content], the functor [image: there is no content] preserves [image: there is no content].




	(3)

	
the mappings [image: there is no content] and [image: there is no content] (see Section 6.4) induce functors from [image: there is no content] to [image: there is no content] that extend the mappings [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] into obvious functors from [image: there is no content] to [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively;









Example 57.

The constructor associated with a system of R-premodels [image: there is no content] over a small category D in a category [image: there is no content] that possesses a terminal object [image: there is no content] is normal. Item (1) is straightforward and item (2) follows from the fact that [image: there is no content] preserves any terminal object by adjointness. The functoriality of the sets [image: there is no content] and [image: there is no content] is induced by the action of a morphism [image: there is no content] on the sets S and [image: there is no content] (see Section 6.5) while the functoriality of the functors [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] is straightforward .





Remark 24.

A consequence of item (3) is that the mappings [image: there is no content] and [image: there is no content] now induce functors [image: there is no content] and [image: there is no content].






8.2. Quasi-Models and Models


Let [image: there is no content] be a normal constructor of type [image: there is no content]. For every object X in [image: there is no content], there is an obvious morphism in [image: there is no content] given by the following commutative square:


 [image: Mathematics 05 00037 i070]



(36)







Applying the functor [image: there is no content] (see Remark 24) on this morphism provides the following natural transformation in [image: there is no content] over D, which is natural in [image: there is no content]:


[image: there is no content]











An object X in [image: there is no content] will be said to be a quasi-model of [image: there is no content] if for every object d in D, the function [image: there is no content] is surjective. A model of [image: there is no content] is a quasi-model X of [image: there is no content] that is equipped with a natural section [image: there is no content] of the natural surjection [image: there is no content]. Such a structure will be denoted as a pair [image: there is no content].



Remark 25.

It follows from the definition of a surjection that an object [image: there is no content] is a quasi-model of [image: there is no content] if and only if for every object [image: there is no content] and tuple [image: there is no content] in [image: there is no content], every commutative cube [image: there is no content] admits a lift as follows (where θ stands for [image: there is no content]):


 [image: Mathematics 05 00037 i071]













Remark 26.

The difference between a quasi-model and a model is that the lifts are chosen. Specifically, any model [image: there is no content] of [image: there is no content] is determined by a collection of lifts [image: there is no content] chosen for every object [image: there is no content], element [image: there is no content] as follows:


 [image: Mathematics 05 00037 i072]











Indeed, if one denotes the previous commutative cube by [image: there is no content] and its upper commutative part seen as a degenerate commutative cube by [image: there is no content], the section [image: there is no content] is determined by the following mapping rules:


[image: there is no content]











The fact that such a mapping defines a natural section of the natural surjection [image: there is no content] is straightforward. Conversely, if a natural section [image: there is no content] was not of this form, we could find two arrows [image: there is no content] and [image: there is no content] such that the elements [image: there is no content] and [image: there is no content] would be sent to elements of the following form via the section [image: there is no content]:


(ϑ,t,s,lift(ϑ,t,s,c))(ϑ,t′,s,c,lift(ϑ,t′,s,c))











However, the naturality of [image: there is no content] above the arrows t and [image: there is no content] also implies the equalities:


[image: there is no content]








which show that the section has to be of the form previously given in the remark.





Example 58 (System of premodels).

Let [image: there is no content] be a system of R-premodels as in Example 57. The R-models are exactly given by the quasi-models of [image: there is no content]. By Remark 26, it is always possible to turn a quasi-model X into a model [image: there is no content] by using the axiom of choice on the different possible lifts.





Let now A be an object in [image: there is no content]. An A-quasi-model for the constructor [image: there is no content] consists of a morphism [image: there is no content] in [image: there is no content] where X is equipped with the structure of a quasi-model X. Similarly, an A-model for the constructor [image: there is no content] consists of a morphism [image: there is no content] in [image: there is no content] where X is equipped with the structure of a model [image: there is no content]. The latter structure will be denoted as a triple [image: there is no content].




8.3. Quotiented Models


Let [image: there is no content] be a normal constructor of type [image: there is no content] and A be an object in [image: there is no content]. A [image: there is no content]-quotiented A-quasi-model consists of an [image: there is no content]-quotiented arrow [image: there is no content] in [image: there is no content] together with an A-quasi-model [image: there is no content]. Such a structure will be denoted as an arrow [image: there is no content].



Remark 27 (In preparation of Definition 13).

In Definition 13, we define two new quotients that relies on the definition of [image: there is no content]. There is the quotient denoted by [image: there is no content], which should be thought of as the collections of all commutative squares contained in [image: there is no content] (when viewed in [image: there is no content]) whose top horizontal arrows are post-composed with the morphism [image: there is no content] (in [image: there is no content]) while the bottom horizontal arrows consist of identities on the terminal object [image: there is no content]. The other quotient, denoted by [image: there is no content], should be thought of as the collections of commutative squares contained in [image: there is no content] that admit lifts.





Definition 13.

For every [image: there is no content]-quotiented quasi-model [image: there is no content] where [image: there is no content] is given by a collection of functors [image: there is no content], we may define a collection of functors:


[image: there is no content]








whose component at the parameters [image: there is no content] and [image: there is no content] is given by the following image factorisation for every [image: there is no content]:


 [image: Mathematics 05 00037 i073]











Then, we may define another collection of functors of the form:


[image: there is no content]








whose component at the parameters [image: there is no content] and [image: there is no content] is obtained by pulling back the inclusion [image: there is no content] along the image of the morphism given in Equation (36) via the functor [image: there is no content] (see diagram below):


 [image: Mathematics 05 00037 i074]













Definition 14 (Quotiented model).

A [image: there is no content]-quotiented A-model consists of a [image: there is no content]-quotiented arrow [image: there is no content] in [image: there is no content] together with an A-model [image: there is no content] such that for every element [image: there is no content] and [image: there is no content], the transformation [image: there is no content] has a section [image: there is no content]. Such a structure will be denoted as an arrow [image: there is no content].





For every [image: there is no content]-quotiented A-model [image: there is no content], we may define two functors [image: there is no content] and [image: there is no content] given by the following sums for every [image: there is no content]:


f[u][θ]:=∑s∈λθ(A)∑υ∈Es(θ)f[u]θs{υ}(f|u)[θ]:=∑s∈λθ(A)∑υ∈Es(θ)(f|u)θs{υ}











These two functors give rise to two others [image: there is no content] and [image: there is no content] defined as the following sums over the set [image: there is no content] associated with [image: there is no content]:


f[u](d):=∑ϑ∈JQf[u][θ](f|u)(d):=∑ϑ∈JQ(f|u)[θ]











It follows from the structure of [image: there is no content] that the functions [image: there is no content], [image: there is no content] and [image: there is no content] induce an obvious sequence of natural transformations as follows:


[image: there is no content]











Applying an image factorisation on the three composite arrows of codomain [image: there is no content] that results from the previous sequence leads to a new sequence of arrows as follows:


[image: there is no content]












8.4. Tomes for Quotiented Models


Let [image: there is no content] be a normal constructor of type [image: there is no content] where [image: there is no content] has coproducts, A be an object in [image: there is no content] and [image: there is no content] be a [image: there is no content]-quotiented A-model. The merolytic tome of [image: there is no content] is the functor [image: there is no content] resulting from the coproduct of the following two functors for every [image: there is no content]:


[image: there is no content]



(37)






[image: there is no content]



(38)







This functor is therefore equipped with the following mapping rules:


(ϑ,t,s,c)↦Υt(idX)∘ℓϑ(lift(ϑ,s,Φι(ϑ)(f)s∘c)∘)onΓA(!A)(d)(ϑ,t,s,s)↦Υt(idX)∘ℓϑ(lift(ϑ,s,Φδ(ϑ)•(f)s∘s))onu˜(d)



(39)







Proposition 18.

The merolytic tome [image: there is no content] is natural in the variable [image: there is no content]. This amounts to saying that the mapping [image: there is no content] induces a functor [image: there is no content].





Proof. 

Follows from the naturality of the arrows given in Equations (37) and (38).  ☐





Remark 28.

The naturality of [image: there is no content] over D extends to its content. In particular, it takes a few lines of straightforward calculations to see from the definitions of the functor [image: there is no content] and the functor [image: there is no content] that the top-left corner of the content of [image: there is no content] is equal to the top-left corner of the content of the tome [image: there is no content]:


 [image: Mathematics 05 00037 i075]













The diagram given on the left of Remark 28 induces a commutative diagram in [image: there is no content] of the form given below. This diagram will be referred to as the functorial content of [image: there is no content]:


 [image: Mathematics 05 00037 i076]












8.5. Effectiveness of Quotiented Models


Let [image: there is no content] be a normal constructor of type [image: there is no content] where [image: there is no content] has coproducts and A be an object in [image: there is no content]. A [image: there is no content]-quotiented A-model [image: there is no content] will be said to be [image: there is no content]-realised if one may form a pushout square inside the functorial content of its merolytic tome as shown below:


 [image: Mathematics 05 00037 i077]



(40)







By Remark 28, the pushout square may be supposed to be exactly the same as that defined for the [image: there is no content]-realisation of [image: there is no content]. In particular, the following result holds.



Proposition 19.

A [image: there is no content]-quotiented A-model [image: there is no content] is [image: there is no content]-realised if and only if so is the [image: there is no content]-quotiented arrow [image: there is no content].





Definition 15 (Effectiveness).

Let [image: there is no content] denote a constructor of type [image: there is no content] as defined in Section 6.4. A [image: there is no content]-quotiented A-model [image: there is no content] will be said to be effective if it is [image: there is no content]-realised and it is equipped with a factorisation of [image: there is no content] in [image: there is no content], as given on the left of Equation (41), that lifts the factorisation of [image: there is no content] through the [image: there is no content]-realisation of [image: there is no content] along [image: there is no content]:


 [image: Mathematics 05 00037 i078]



(41)









The leftmost factorisation of Equation (20) will be called the [image: there is no content]-factorisation of [image: there is no content].



Theorem 7.

Let [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] has pushouts and the inclusion [image: there is no content] is an identity, then every [image: there is no content]-quotiented relative model is effective.





Proof. 

Consider a relative model given by a morphism [image: there is no content]. The goal is to show that this morphism satisfies to the lifting conditions expressed in Equation (41) where the arrow [image: there is no content] is already constructed in Theorem 3. In fact, the proof of the present theorem is very similar to that of Theorem 3, except that it uses Diagram (42) instead of Diagram (21) for every [image: there is no content] and [image: there is no content]. As in the proof of Theorem 3, the symbols r and [image: there is no content] stand for the objects [image: there is no content] and [image: there is no content] in D, respectively:
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(42)







The proof that Diagram (42) commutes goes as in the proof of Theorem 3 by using Formula (39). Then, Diagram (42) may be used to show that the following diagram commutes:


 [image: Mathematics 05 00037 i080]











The substantial information given by the previous diagram is the inner bottom commutative trapezoid, which shows that the lift [image: there is no content] exists; the desired factorisation is deduced by universality.  ☐





Definition 16 (Strongly Fibered).

A system of R-premodels [image: there is no content] over a small category D in a category [image: there is no content] will be said to be strongly fibered if it is fibered and, for every [image: there is no content]-quotiented arrow [image: there is no content], the [image: there is no content]-factorisation of any corresponding [image: there is no content]-quotiented [image: there is no content]-model (obtained in Theorem 3) lifts to [image: there is no content].





Remark 29.

Let [image: there is no content] be a category with all pushouts. By Definitions 8 and 15, any subcategory [image: there is no content] of [image: there is no content] whose associated functor [image: there is no content] is fully faithful is necessarily strongly fibered. As a result, the category [image: there is no content] is strongly fibered. Thus, examples of strongly fibered systems of premodels are : Example 34–41.





Example 59.

For the same reasons put forward in Example 49, the system of Ω-premodels defined in Example 42 is strongly fibered.





Proposition 20.

Let [image: there is no content] be a normal constructor of type [image: there is no content] where [image: there is no content] has coproducts. Let [image: there is no content] be an effective [image: there is no content]-quotiented arrow in [image: there is no content] and [image: there is no content] be some effective A-model of [image: there is no content]. There exists a section [image: there is no content] turning the [image: there is no content]-quotiented [image: there is no content]-quasi-model [image: there is no content] into a [image: there is no content]-quotiented [image: there is no content]-model.





Proof. 

Let us define the section [image: there is no content], which must be a function of the following form for every [image: there is no content] and [image: there is no content].


[image: there is no content]



(43)







The idea is that the section [image: there is no content] is induced by the action of the section [image: there is no content] on the obstruction squares contained in the domain of Equation (43). On the other hand, the other section mentioned in the statement does play any role here.



First, recall that an obstruction square in [image: there is no content] is given by the lower front commutative square of a commutative cuboid as follows:


 [image: Mathematics 05 00037 i081]











By using the factorisation [image: there is no content], we can also obtain Diagram (44), whose lower trapezoid going from the arrow [image: there is no content] to the arrow [image: there is no content], on the front face, is the image of our previous obstruction square via the canonical map:


[image: there is no content]








induced by Diagram (36). By definition, this lower trapeziod is an element in the quotient [image: there is no content]:


 [image: Mathematics 05 00037 i082]



(44)







To define our section [image: there is no content], we simply need to explain how the lower trapezoid going from the arrow [image: there is no content] to the arrow [image: there is no content], on the front face of the previous diagram, is mapped to an element in the following quotient:


[image: there is no content]











We will do so by simply showing that this lower trapezoid admits a lift.



By assumption on the A-model [image: there is no content], the outer cuboid of Diagram (44) admits a lift [image: there is no content] (see Remark 26). By universality of [image: there is no content], this implies that the commutative diagram given below, on the left, must commute. The corresponding square given on the right then encodes an element in [image: there is no content]:
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This finishes the description of the section [image: there is no content] for the parameters [image: there is no content] and [image: there is no content].





The following theorem provides a universal property that only makes sense in the case of Examples 34 and 35. However, possible extensions of its assumptions (to a homotopical context) may be discussed so that the examples that were provided in Section 4.3 may be equipped with universal properties too; this will be discussed in a future work.



Theorem 8 (Universality).

Let [image: there is no content] be an effective [image: there is no content]-quotiented A-model such that the [image: there is no content]-quotiented arrow [image: there is no content] is also effective. If:

	(i) 

	
the transitive quotientor [image: there is no content] is a epimorphism in [image: there is no content] for every [image: there is no content];




	(ii) 

	
the arrow [image: there is no content] is a monomorphism is [image: there is no content];




	(iii) 

	
the trivial stem of [image: there is no content] is an epimorphism for every [image: there is no content];




	(iv) 

	
the functor [image: there is no content] is faithful;




	(v) 

	
the initial section [image: there is no content] is an isomorphism,






then every arrow [image: there is no content] in [image: there is no content] that factorises as shown below, on the left, and makes the succeeding diagram, on the right, commute must be equal to [image: there is no content]:
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Proof. 

Consider some arrow [image: there is no content] making the right diagram of the statement commute. Let d be an object in D. After application of [image: there is no content] on it and using the definition of the [image: there is no content]-realisation of [image: there is no content], we obtain the following commutative diagram:
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By universality of the [image: there is no content]-realisation [image: there is no content] and faithfulness of [image: there is no content], the statement is proven if we show that the composite [image: there is no content] is equal to the arrow [image: there is no content] of Diagram (40) for every object [image: there is no content]. Equivalently, we need to show that, for every functor [image: there is no content], the universal shifting of [image: there is no content] along i is equal to the composite [image: there is no content]. By definition, the universal shifting of the preceding diagram along any functor [image: there is no content] provides a diagram as given below, on the left. On the right is given the shifting of Diagram (40) along that same functor i:


 [image: Mathematics 05 00037 i086]



(45)







Because the top vertical arrows of the previous two diagrams are the same and the transitive quotientor [image: there is no content] is an epimorphism, the shifting of [image: there is no content] along [image: there is no content] must be equal to [image: there is no content]. There only remains to check the same property for functors of the form [image: there is no content].



Consider a functor [image: there is no content]. By assumption (v), the image of this functor is of the form [image: there is no content] where [image: there is no content] (since [image: there is no content]) and [image: there is no content]. For this particular parameter [image: there is no content], apply the functor [image: there is no content] on the two factorisations given in the statement. With these two factorisations, the diagram obtained in Remark 18 for the parameters [image: there is no content] gives a commutative diagram as follows (where [image: there is no content]):


 [image: Mathematics 05 00037 i087]



(46)







As shown in the diagram above, the composite [image: there is no content] is equal to [image: there is no content]. Because the two factorisations of the statement are also true when replacing g and [image: there is no content] with [image: there is no content] and [image: there is no content], we similarly deduce that the composite [image: there is no content] is equal to [image: there is no content]. Because the trivial stem [image: there is no content] of [image: there is no content] is an epimorphism, the following equality must hold:


[image: there is no content]











It is not hard to see that this equality implies the next one (Diagram (46) might help visualise this point if one imagines the arrows that were forgotten in the background):


[image: there is no content]











Because [image: there is no content] is a monomorphism, we obtain the equation [image: there is no content], which leads to the following one after post-composing with the arrow [image: there is no content] and using the bifunctoriality of [image: there is no content]:


[image: there is no content]











Now, by Remark 19, we know that the composite [image: there is no content] is equal to the composite [image: there is no content]. According to the bottom part of the rightmost diagram of Equation (45), this means that the right-hand side of the previous equation corresponds to the component of the natural transformation h evaluated above the element picked out by the functor [image: there is no content]. This therefore concludes the proof of the statement. ☐





Example 60.

The vertebrae of Examples 34 and 35 satisfy assumptions (i), (iii) and (iv) of Theorem 8. Similarly, the [image: there is no content]-models generated by these examples, which are quasi-models of the associated constructor by Remark 25, or, in fact, actuals models, by Remark 26 and the axiom of choice, satisfy condition (ii). Finally, it follows from Remark 12 that condition (v) can also be satisfied in the case of these examples.






8.6. Factorisable Models


Let [image: there is no content] be a normal numbered constructor of type [image: there is no content] where [image: there is no content] has coproducts, A be an object in [image: there is no content] and [image: there is no content] be a model of [image: there is no content]. An A-model [image: there is no content] will be said to be [image: there is no content]-factorisable if the morphism [image: there is no content] is equipped with the structure of a [image: there is no content]-factorisable arrow, say [image: there is no content], together with a sequence [image: there is no content] of effective [image: there is no content]-quotiented relative models satisfying the following conditions:

	▹

	
initial case:[image: there is no content];




	▹

	
successor cases:[image: there is no content] is given by the arrow [image: there is no content];




	▹

	
limit cases: for any (infinite) limit ordinal [image: there is no content], the arrow [image: there is no content] is the colimit [image: there is no content] in [image: there is no content] of the following diagram over the category [image: there is no content].


 [image: Mathematics 05 00037 i088]

















Remark 30.

Every [image: there is no content]-factorisable A-model [image: there is no content] is equipped with a factorisation of the Form (47), where the arrow [image: there is no content] is the image of the sequential functor [image: there is no content] (defined after Convention 11) above the arrow [image: there is no content]:


 [image: Mathematics 05 00037 i089]



(47)







Later on, the arrow [image: there is no content] will be denoted as [image: there is no content] and called the localisation of [image: there is no content]. According to Theorem 6 and Remark 25, if the category [image: there is no content] is equipped with the structure of a κ-combinatorial category for the constructor [image: there is no content], then the object [image: there is no content] must be a quasi-model of [image: there is no content].





Theorem 9 (Weak localisation).

Let κ denote a limit ordinal and [image: there is no content] be a system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] is cocomplete, R preserves colimits over every limit ordinal [image: there is no content] and the inclusion [image: there is no content] is an identity, then every relative model of [image: there is no content] may be equipped with the structure of a [image: there is no content]-factorisable relative model.





Proof. 

Let [image: there is no content] be a relative model of [image: there is no content]. By Theorem 5, the morphism [image: there is no content] may be equipped with the structure of a [image: there is no content]-factorisable arrow [image: there is no content] where:

	▹

	
[image: there is no content] is a collection of empty functors [image: there is no content];




	▹

	
the object [image: there is no content] is given by [image: there is no content];




	▹

	
For any (infinite) limit ordinal [image: there is no content], the object [image: there is no content] is the colimit [image: there is no content] in [image: there is no content] of Diagram (48) over the category [image: there is no content] while [image: there is no content] is given by the collection of empty functors [image: there is no content]:


[image: there is no content]



(48)













Because [image: there is no content] is made of empty functors, the identity on the empty set provides a section [image: there is no content] that turns [image: there is no content] into an obvious [image: there is no content]-quotiented [image: there is no content]-model. By Proposition 20, this model structure generates new model structures [image: there is no content] for all the finite successor ordinals of [image: there is no content]. These structures of relative model give rise to an [image: there is no content]-model by forming the colimit of the previous ones along the arrows [image: there is no content]. The same argument can be repeated for all ordinals of [image: there is no content], since, for every infinite limit ordinal [image: there is no content], the [image: there is no content]-quotient [image: there is no content] is made of empty functors. By Principle of Transfinite Induction, this shows that we can define a sequence of [image: there is no content]-quotiented relative models [image: there is no content], which must be effective by Theorem 7 and where [image: there is no content] is given by [image: there is no content]. This concludes the proof by definition of a factorisable [image: there is no content]-model.  ☐





Corollary 3.

Let κ denote a limit ordinal and [image: there is no content] be a strongly fibered system of R-premodels over a small category D in a category [image: there is no content]. If [image: there is no content] is cocomplete and R preserves colimits over every limit ordinal [image: there is no content], then every relative model of [image: there is no content] may be equipped with the structure of a [image: there is no content]-factorisable relative model.





Proof. 

This corollary is an obvious generalisation of Theorem 9 that takes advantage of the notion of strong fiberedness (see Definition 16).  ☐






8.7. Elimination of Quotients


A normal numbered constructor [image: there is no content] of type [image: there is no content] will be said to eliminate quotients if the category [image: there is no content] is a [image: there is no content]-combinatorial category for the constructor [image: there is no content] and every canonical arrow [image: there is no content] is equipped with the structure of a [image: there is no content]-factorisable morphism such that every A-model [image: there is no content] is [image: there is no content]-factorisable for this structure.



Remark 31.

For every object A in [image: there is no content], all A-models [image: there is no content] are equipped with the same localisation [image: there is no content] where [image: there is no content] is a quasi-model (see Remark 30). The way in which this arrow has been defined from the data of [image: there is no content] is the key of the so-called ‘elimination of quotients’.





Theorem 10.

Let [image: there is no content] be a normal numbered constructor of type [image: there is no content] that eliminates quotients. For every object A in [image: there is no content], every quasi-model X and arrow [image: there is no content] in [image: there is no content], there exists an arrow [image: there is no content] in [image: there is no content] making the following diagram commute:
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Proof. 

By Remark 26 and the axiom of choice, every quasi-model X may be equipped with the structure of a model [image: there is no content]. It follows from Remark 30 that the diagram of the statement commutes.  ☐





Example 61.

Save for Example 43, all the examples of Section 4.3 satisfy Corollary 3 (see Remark 29). Following Examples 54 and 55 for premodels valued in [image: there is no content] and [image: there is no content] and considering similar arguments for premodels valued in [image: there is no content] and [image: there is no content], one can deduce from Example 56 that these examples are κ-combinatorial for some well-chosen ordinal κ. This means that these examples eliminate quotients and are equipped with a localisation of the form given in Theorem 10. In particular, this localisation tends to organise the different sorts of data appearing in the diskads of the systems in the form of bundles—this was explicited in Examples 50 and 51 in the case of the models for a limit sketch.





Remark 32.

Under the conditions of Theorem 8, the factorisation of Theorem 10 may be shown to be unique by using an obvious transfinite induction.







9. Concusions


9.1. Conclusions for Motivation 1


In Section 1.3, one of our main goals was to provide a language that would allow us to show strict universal properties from weak definitions. In this paper, we address this question in the form of Theorem 8. This theorem shows us what the main ingredients that are responsible for universal properties look like and most of them pertain to the sets of vertebrae associated with our systems of premodels (see conditions (i), (ii) and (iii)).



In fact, many sections and concepts were introduced in this paper because of these vertebrae. The need for each of these sections can be explained by the following storyline. At the centre of things is Section 4.3, which introduces the concept of system of premodels. This structure is a formal way to present the lifting problems associated with our vertebrae. To handle these lifting problems, we have to introduce the analytic and quotient species given in Definition 6. However, because these species need some formal setting, the concept of constructor is introduced in Section 6.4, which a fortiori motivates the introduction of preconstructors in Section 6.2. Note that the main purpose of the latter is to allow the handling of the premodel structure (e.g., the maps [image: there is no content] defined in Section 4.2) while the purpose of the former is to allow the handling of the vertebrae associated with systems of premodels. The way one handles the species is formalised via the tools of Section 5, in which is expressed our small object argument (Proposition 7). This section really allows us to see the big picture without introducing too much detail. On the other hand, from Section 6.6 to the end of Section 6, we give all the details of this big picture in the case of systems of premodels. We also use Section 7 to explain what it takes, in terms of required assumptions, to be able to apply the small object argument of Section 5. The need for Section 8 naturally presents itself if one is interested to know more about the universal properties satisfied by the models living in systems of premodels. As one is able to see there, this section heavily relies on the concept of species introduced in Section 6.4 and hence the concept of vertebra.



The fact that this last section relies so heavily on the vertebrae is not so surprising when one knows that vertebrae are meant to encode some sort of homotopical information and that, on the other hand, Homotopy Theory is all about coherence property. In fact, this idea of coherence—and universal property—coming from vertebrae is already discussed in my thesis [34] and this is exactly the spirit in which Theorem 8 should be regarded. In this respect, I will use the rest of this conclusion to explain why the formalism of systems of premodels is something that one might want to consider if one wants to solve higher coherence problem.



A way to put it would be to ask what happens if one starts changing the assumptions of Theorem 1 (see Section 1) in terms of homotopical properties. The notion of epimorphism used thereof could be replaced with a notion of epimorphism up to homotopy. For instance, the arrow [image: there is no content] could be called a weak epimorphism if for every pair of arrows [image: there is no content] for which the equation [image: there is no content] holds, we can form the pushout [image: there is no content] of [image: there is no content] with itself (see below) so that a given arrow [image: there is no content] factorises the universal arrow induced by f and g under [image: there is no content] as follows:


 [image: Mathematics 05 00037 i091]



(49)







A quick look at the beginning of the proof of Theorem 8, in which [image: there is no content] should be viewed as the transitive quotientor [image: there is no content], shows that such a notion of weak epimorphism would imply that the universal solution of the reflection would be unique up to a homotopy relation as defined in Equation (49). However, this type of statement would only hold if the vertebra:


 [image: Mathematics 05 00037 i092]



(50)




satisfies some nice compositional properties, and, more specifically, compositional properties of the type defined in [34]. In other words, our vertebra would need to satisfy axioms of the same type as those usually considered in the case of (co)limit sketches – the compositional properties would try to recapture the idea of composition of cells in (Higher) Category Theory.



Interestingly, these axioms would also mingle different vertebrae together. For instance, it is interesting to note that our current discussion has made us consider two vertebrae: one for which [image: there is no content] is a stem (as usual) and one for which [image: there is no content] is both a seed and a coseed, given in Equation (50). This pair of vertebrae can be arranged in the form of the following diagram:
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Such a commutative diagram defines what is called a spine (of degree 1) in [34]. There, spines are shown to be essential in the understanding of higher coherence results of the type mentioned above and one can see that these structures arise very naturally once one starts talking about universal properties. The degree of a spine hides a dimensional nature and it is interesting to note that this dimensional aspect already arises among the examples discussed in [14] (Section 4) when it is asked whether weak reflections can possess strict universal property such as functoriality and naturality.



In conclusion, the idea of universal property and coherence fits the language of systems of premodels nicely, so that these structures appear to be the right setting to address the question whether a class of algebraic objects defined via weak lifting properties can satisfy strict (or at least stricter than expected) universal properties—and an important part of the work to be done in this direction can already be perceived in [34].




9.2. Conclusions for Motivation 2


In Section 1.4, our other main goal was to prove Theorem 2, along with Propositions 1 and 2. These results were proven in different sections of the present paper. Before addressing the usefulness of these results, we briefly recapitulate their proof below.



Let [image: there is no content] be a limit sketch, seen as a croquis, and consider the system of premodels defined in Example 34 for the inclusion [image: there is no content]. First, Example 61 tells us that the reflector [image: there is no content] associated with a premodel (Also called a ‘presentation’ in Section 1.4) A in [image: there is no content] is given by Theorem 10. Its strict universal property then follows from Remark 32, where one needs to look at Example 60 in order to use Theorem 8. The functoriality of the reflection [image: there is no content] and the naturality of the reflector [image: there is no content] obviously follows from this (strict) universal property.



Now, if one consider the transfinite construction of the reflector [image: there is no content] given in Section 7.2, one may see that the transfinite sequence that gives rise to the reflector [image: there is no content] is of the desired form:

	-

	
for Proposition 1 by using Example 50;




	-

	
for Proposition 2 by using Example 52;




	-

	
for Theorem 2 by using Examples 50–52, for which one needs to realise that a sum of the form:


[image: there is no content]








is the same thing as a left Kan extension [image: there is no content] of the form given in Equation (51), where K must regarded as a discrete category:


 [image: Mathematics 05 00037 i094]



(51)













The question that now remains to be answered is: what is the combinatorial presentation given by Theorem 2 useful for? Recall that, according to Theorem 2, the reflector associated with a presentation X in [image: there is no content] is the transfinite composition of a sequence of arrows as follows:


[image: there is no content]








where, for every [image: there is no content], the object [image: there is no content] is the left Kan extension of the functor:


S^i[_]:K→Setc↦limEs(c)Si∘in(c)








where, here, the functor [image: there is no content] denotes the sum [image: there is no content]:
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The restriction of the quotient map [image: there is no content] (see Section 1.4) to the object [image: there is no content] gives us a way to organise the data of [image: there is no content] with respect to its fibres. Of course, this organisation is also present in Kelly’s construction via the quotients acting on [image: there is no content] (see Example 52), but this organisation is also unlikely to be the one that one wants to consider if one decides to study the combinatorial properties of the models. In fact, while Kelly’s construction forces us to consider an actual quotient of the object [image: there is no content], the elimination of quotients leaves the object [image: there is no content] free of quotients, so that one can now use any other type of relations on [image: there is no content] without being forced to deal with the relations of the localisation. Furthermore, the formalism of quotient maps (formalised in terms of quotiented arrows in Section 6.7) makes compatibility and distributivity questions between potential new relations and those forced by the localisation much easier to study.



For instance, one could want to study the colimits of the category of models for [image: there is no content]. Recall that colimits in this category are given by the images of the reflection G on the corresponding colimits in the category of premodels [image: there is no content], as shown below:


colF=G(colF)











In addition, recall that a colimit of the form colF in [image: there is no content] can be seen as a quotiented sum:


[image: there is no content]











The relations ∼ acting on the sum [image: there is no content] usually generates the type of identifications that one wants to study. Specifically, one usually wants to understand how these propagate through the transfinite constructions building the models. However, their propagation is usually non-obvious and requires some more-or-less non-trivial case-by-case analysis, depending on how complicated the theory [image: there is no content] is. This case-by-case analysis might not even depend on the quotients implied by the localisation and might instead depend on the properties of the objects [image: there is no content]. In order to be efficient and clear, this case-by-case analysis needs to be processed in a quotient-free environment separated from the quotients generated by the localisation, but what is better than a quotient map whose domain is a quotient-free left Kan extension of the form given in Equation (51) to make such a separation? Interestingly, the construction of the quotient maps [image: there is no content] has motivated the formalisation of the concept of quotient (in Section 6.7), so that our results open the door to the development of a new language to talk about quotients living in algebraic objects in general.
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Appendix A


Recall that the category of sets [image: there is no content] is complete and cocomplete. The limit [image: there is no content] of a functor [image: there is no content] for some small category D is given by the set:


(xd)d∈Obj(D)|xd∈F(d)andforanyt:d→d′inD:F(t)(xd)=xd′



(A1)




while the colimit [image: there is no content] of a functor [image: there is no content] for some small category D is given by the quotient set:


(d,x)|d∈Obj(D);x∈F(d)/∼








where ∼ denotes the binary relation whose relations [image: there is no content] are defined when there exists an object e and two arrow [image: there is no content] and [image: there is no content] in D such that the equation [image: there is no content] holds. Note that in the case where D is a preorder category [image: there is no content] for some ordinal [image: there is no content], the binary relation ∼ is an equivalence relation.



Proof of Proposition 4.

A proof may be found in [35] (Corollaire 9.8). For the sake of self-containedness, the proof is recalled in this appendix. Let [image: there is no content] be a functor. An equivalence class for the equivalence relation ∼ will be denoted into brackets, i.e., [image: there is no content]. The notation:


[image: there is no content]








will be used to mean that the collection [image: there is no content] is compatible with the action of the functor F in the appropriate way (see Equation (A1)). By definition, the following equations hold:


colκlimDF=k,(xd)d∈Obj(D)F|(xd)d∈Obj(D)F∈limDFk(_)










limDcolκF=[kd,xd]d∈Obj(D)F|[kd,xd]∈colκF_(d)











The natural transformation colκlimD⇒limDcolκ(_) is given by the following mapping:


[image: there is no content]











Let us prove its surjectiveness. Consider an element in [image: there is no content] of the following form:


[image: there is no content]











By definition of the compatibility with the action of F, for any arrow [image: there is no content] in D, there exist arrows [image: there is no content] and [image: there is no content] in [image: there is no content] such that the next equation holds:


[image: there is no content]



(A2)







Since [image: there is no content] is a limit ordinal greater than or equal to [image: there is no content], we may define the following supremum in [image: there is no content]:


 [image: Mathematics 05 00037 i096]











Denote the supremum [image: there is no content] by e. Note that for any pair of arrows [image: there is no content] and [image: there is no content] in D, the arrows [image: there is no content] and [image: there is no content] are equal in [image: there is no content]. The family made of the elements [image: there is no content] for every object d in D is then compatible with the action of F, since, for any arrow [image: there is no content] in D, the following equation holds from Equation (A2):


[image: there is no content]











In addition, it is not hard to check that the mapping rule of the natural transformation colκlimD(_)⇒limDcolκ(_) includes the rule:


[image: there is no content]








since [image: there is no content]. Let us now prove its injectiveness. Note that any equality [image: there is no content] implies the existence of cospans:


 [image: Mathematics 05 00037 i097]








such that the identity [image: there is no content] holds for every object d in D. Now, define the following supremum, which will be denoted by [image: there is no content]:


 [image: Mathematics 05 00037 i098]











For every object d in D, the arrows [image: there is no content] are equal in [image: there is no content]. The same is true for [image: there is no content]. It follows that the equation:


[image: there is no content]








holds, which implies the identity [image: there is no content].  ☐





Proof of Proposition 5.

We keep the convention set in the proof of Proposition 4. We only need to check that the diagram of the statement commutes. For any set X, the unit [image: there is no content] maps an element of [image: there is no content] to the constant collection [image: there is no content]. Similarly, for any functor [image: there is no content], the unit [image: there is no content] maps an element of [image: there is no content] to the constant collection [image: there is no content] in [image: there is no content]. The diagram of the statement is therefore encoded by the following mapping rules:


 [image: Mathematics 05 00037 i099]











In particular, this shows that the diagram commutes.  ☐
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