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Abstract: In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty principle.
They both express Fourier dualities within the space of tempered distributions and these dualities
are also inverse of each other. While Poisson’s summation formula expresses a duality between
discretization and periodization, Heisenberg’s uncertainty principle expresses a duality between
regularization and localization. We define regularization and localization on generalized functions
and show that the Fourier transform of regular functions are local functions and, vice versa, the
Fourier transform of local functions are regular functions.
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1. Introduction

Regularization is a popular trick in applied mathematics; see [1] for example. It is the technique
“to approximate functions by more differentiable ones” [2]. Moreover, its terminology coincides
with the terminology used in generalized function spaces. They contain two kinds of functions:
“regular functions” and “generalized functions”. While regular functions are functions in the ordinary
functions sense which are smooth (infinitely differentiable) in the ordinary functions sense, all other
functions become smooth (infinitely differentiable) in the “generalized functions sense” [3]. In this
way, all functions are smooth. Localization, in contrast to that, is another popular technique. It allows,
for example, to integrate functions which could not be integrated otherwise, if we think of “locally
integrable” functions or if we think of the Short-Time Fourier Transform (STFT), capable of analyzing
infinitely extended signals.

Although regularization (Figure 1) and localization (Figure 2) appear to be quite different,
a connection between these operations is no surprise. It is rather ubiquitous in the literature. However,
the theorem below (Figure 3) appears in a wider sense. It even holds within the space of tempered
distributions and is directly related to Heisenberg’s uncertainty principle. It is moreover the inverse
of an already known discretization–periodization duality (Poisson’s Summation Formula). While
discretization and periodization map functions from smoothness towards discreteness in both time
and frequency domain, the operations investigated in this study, regularization and localization, map
functions from discreteness towards smoothness in both time and frequency domain (Figure 4 and
Figure 5). In this way, we have a full range of tools (discretization, periodization, regularization,
localization) in order to describe any transition from smoothness towards discreteness and also back
from discreteness towards smoothness in a mathematically rigorous and formally correct way.

This paper is organized as follows. Section 2 describes the overall motivation for this study and
Section 3 explains the rough proof idea. Section 4 provides an introduction to the notations used and
previous results. Section 5 presents a justification for Section 6 where regularization and localization
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within the space of tempered distributions are defined. Section 7 provides symbolic calculation rules
based on these definitions, needed to prove the theorem in Section 8. Section 9 connects these results
to results in a previous study and Section 10, finally, concludes this study and provides an outlook.

2. Motivation

In contrast to more practical applications of regularizations and localizations, the actual intention
of this study is to provide universally valid calculation rules for regularizations and localizations together
with the scope of their validity within a preferably most general setting. In this way, regularizations
can be expressed in terms of localizations and, vice versa, localizations can be expressed in terms of
regularizations, i.e., poorly converging formulas can be replaced by better converging ones. Another
important application of our rules is knowing the scope of their validity. Knowing not only a formula
but also its validity scope is especially important in applied mathematics. It is simply not very
reasonable to implement a formula that will never converge.

2.1. Generalized Functions

The setting of generalized functions, also called distributions, is today a most modern, very
general setting in Fourier analysis [3–11]. It meets the requirements of Fourier analysis in both theory
and practice. It allows, for example, to Fourier transform functions which are not even Lebesgue
integrable, such as the Dirac impulse δ or even constants such as the function that is constantly 1.

In this study, we prove simple symbolic calculation rules within S ′, the space of tempered
distributions, for handling both, regularizations and localizations, and their interactions. The space
of tempered distributions S ′ is known to be an ideal setting in Fourier analysis, mainly due to
three facts. First, the Fourier transform is understood in a much wider sense than usually (on
Lebesgue square-integrable functions); secondly, the Fourier transform is still an automorphism
in S ′ (as on Lebesgue square-integrable functions), i.e., the Fourier transform of any element in S ′ is
again an element in S ′; thirdly, all functions are smooth, i.e., all functions can be derived infinitely
often. Smoothness is especially required to treat Fourier series (and the Fourier transform as their
limit). They consist of complex exponentials which are functions that can be derived infinitely
often. Furthermore, recall that Lebesgue square-integrable functions (and their Fourier transforms
accordingly) must decrease to zero as their arguments increase, otherwise they would not be Lebesgue
integrable. This very strong restriction has, in fact, never been accepted by those who are working with
Fourier transforms practically. It actually led to the acceptance of S ′ as a standard space in Fourier
analysis throughout many scientific communities; beside mathematics and engineering, also in physics,
especially in quantum mechanics [12–15]. In S ′, in contrast to traditional approaches, we may even
allow functions to grow up to the order of polynomials as their arguments increase and they can still
be sampled and/or Fourier transformed.

2.2. Symbolic Calculation

The overall goal in this and in our previous study [16] is to compile a number of rules including
their validity scope and therewith to fill a toolbox that will enable us to symbolically calculate with
operations of discretization (sampling), periodization (replicating), regularization (smoothing) and
localization (windowing). Performing such calculations on a symbolic level has several advantages.
We are now able to rigorously prove higher-level theorems in S ′; we may replace more complicated
formulas by simpler ones (or by better converging ones) prior to implementing them in software and,
lastly, we may even implement these rules in symbolic calculation environments such as in Wolfram
Mathematica [17] or in Python SymPy [18] in order to exclude human errors in formula derivations.

Some applications of our rules [19] are, for example, extending the scope of validity of Poisson’s
Summation Formula to a validity on tempered distributions [16], proving that four differently defined
Fourier transforms (more precisely, the Integral Fourier Transform, Discrete-Time Fourier Transform
(DTFT), Discrete Fourier Transform (DFT) and the Integral Fourier Transform for periodic functions)
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coincide in the distributional sense [20–22] or deriving a digital radar image from the continuous case
(the landscape being imaged) via operations of localization (windowing), discretization (sampling),
convolution (defocusing) and deconvolution (focusing) [23].

3. Idea

The proof technique in generalized function spaces may appear a bit unusual to those who are
practically oriented. For any equality f = g in generalized function spaces X′ where f , g ∈ X′, it must
be shown that both, f and g, yield the same result if applied to arbitrarily chosen test functions ϕ ∈ X
taken from their test function space X. A very short introduction to this technique is given in the
section Distribution Theory in our previous paper [16].

However, the argumentation in this paper is much simpler. We do not need to prove any results
on test functions because it has already been done by other authors [24–27]. Instead, we simply argue
with subspaces of S ′. We implicitly use the fact that functions in subspaces in S ′ inherit all function
properties from the spaces where they are embedded. This idea is one of the fundamental tricks
in distribution theory. A full range of distribution space embeddings can be found in [24], p. 170.
However, only a few of these spaces are needed here (see section Notation and Figure 4 in [16]).
We need the space of slowly growing regular functions OM ⊂ S ′ (where “regular” means smooth
functions in the ordinary functions sense), the space of rapidly decreasing generalized functions
OC
′ ⊂ S ′ (where “generalized” means that they are smooth but not necessarily “regular”) and the

Schwartz space S ⊂ S ′ which is the space of regular, rapidly decreasing functions, i.e., functions in
OM ∩OC

′ = S are “regular” and “local” (rapidly decreasing). They inherit “regular” from OM and
“local” from OC

′. Another important fact is that S contains the space D ⊂ S which is the space of
compactly supported smooth functions. So, in the special case of having some ϕ ∈ D, the property of
ϕ being “local” turns into ϕ being “finite”, i.e., ϕ is zero outside some given interval. Accordingly,
ϕ · f for some f ∈ S ′ will be zero outside the given interval. In this case, we talk about “finitization”
as a special form of “localization”. A concatenation of discretization and finitization is of particular
importance, especially for turning integrals into finite sums.

Moreover, we make intensive use of the following dualities of the Fourier transform: F (S) = S
and hence F (S ′) = S ′ as well as F (OM) = OC

′ and F (OC
′) = OM. The first duality means that the

Fourier transform maintains the function property of being “regular and local”, the second duality
means that “tempered” functions (slowly growing functions, i.e., functions that do not grow faster than
polynomials) are again “tempered” after Fourier transforming them and the latter duality (Theorem 3,
p. 424 in [26]) means that the Fourier transform of slowly growing (“regular”) functions are rapidly
decreasing (“local”) functions and, vice versa, the Fourier transform of rapidly decreasing (“local”)
functions are slowly growing (“regular”) functions. This simple circumstance resulted in a validity
statement for the Poisson Summation Formula in S ′, see Theorem 1 in [16]—the widest comprehension
of the Poisson Summation Formula today to the best of this author’s knowledge.

Another issue in generalized function spaces, hence also in S ′, is the fact that arbitrary generalized
functions cannot be multiplied with each other. Accordingly, arbitrary generalized functions cannot be
convolved with each other. We evade this problem in S ′ by using Laurent Schwartz’ [24] subspace of
multiplication operators OM and his space of convolution operators OC

′ as introduced above. These
spaces provide a secure footing for multiplications and convolutions in S ′, see Theorem 3, p. 424
in [26]. Recall that O stands for Opérateurs (operators), M for Multiplication, C for Convolution, an
apostrophe as X′ indicates spaces of “generalized” functions, no apostrophe as X indicates spaces of
“regular” functions. Elements from X′ can always be applied to elements of X.
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4. Preliminaries

Let δkT be the Dirac impulse shifted by k ∈ Zn units of T ∈ Rn
+ = {t ∈ Rn : 0 < tν < ∞, 1 6 ν 6 n},

kT being component-wise multiplication, within the space S ′ ≡ S ′(Rn) of tempered distributions
(generalized functions that do not grow faster than polynomials) and let

IIIT := ∑
k∈Zn

δkT

be the Dirac comb. Then, δkT ∈ S ′ and IIIT ∈ S ′ for any T ∈ Rn
+ are tempered distributions [8,24,25].

We shortly write δ instead of δkT if k = 0. The Fourier transform F in S ′ is defined as usual and such
that F1 = δ and Fδ = 1 where 1 is the function being constantly one [3–7,9,11,24]. The Dirac comb is
moreover known for its excellent discretization (sampling) and periodization (replicating) properties
[4,9,11,28]. While multiplication IIIT · f in S ′ samples a function f ∈ S ′, the corresponding convolution
product IIIT ∗ f periodizes f in S ′.

The following two lemmas summarize the demands that must be put on f ∈ S ′ such that f can
be sampled and/or periodized in S ′. Recall that smoothness, i.e., infinite differentiability, is not a
demand. It is a given fact for all functions in generalized function spaces. Also recall that OM is the
space of multiplication operators in S ′ and OC

′ is the space of convolution operators in S ′ according
to Laurent Schwartz’ theory of distributions [14,16,24–27,29–31].

Lemma 1 (Discretization). Generalized functions f ∈ S ′ can be sampled in S ′ if f ∈ OM.

Proof. Any uniform discretization (sampling) in S ′ corresponds to forming the product

IIIT · f in S ′

where IIIT ∈ S ′ is the Dirac comb. Furthermore, IIIT is not a regular function, i.e., IIIT ∈ S ′ \ OM.
However, for any multiplication product in S ′, it is required that at least one of the two factors is in
OM. Otherwise, the existence of this product cannot be secured. Hence, f ∈ OM ⊂ S ′ or another
reasonable definition of this multiplication product would be required. Vice versa, if f ∈ OM then
IIIT · f exists due to S ′ · OM ⊂ S ′ (Theorem 3, p. 424 in [26]).

One may observe that even ”if and only if” holds in Lemma 1 if the operation · is not redefined
(in the sense that at least one of the two factors converges in any sense). An equivalent statement is the
following lemma.

Lemma 2 (Periodization). Generalized functions f ∈ S ′ can be periodized in S ′ if f ∈ OC
′.

Proof. Any periodization in S ′ corresponds to forming the convolution product

IIIT ∗ f in S ′

where IIIT ∈ S ′ is the Dirac comb. Furthermore, IIIT is of no rapid descent, i.e., IIIT ∈ S ′ \ OC
′.

However, for any convolution product in S ′, it is required that at least one of the two factors is in OC
′.

Otherwise, the existence of this product cannot be secured. Hence, f ∈ OC
′ ⊂ S ′ or another reasonable

definition of this convolution product would be required. Vice versa, if f ∈ OC
′, then IIIT ∗ f exists

due to S ′ ∗ OC
′ ⊂ S ′ (Theorem 3, p. 424 in [26]).

In a previous study [16], we used these insights in order to define operations of discretization ⊥⊥⊥T

and periodization 444T in S ′. While discretization is an operation ⊥⊥⊥T : OM → S ′, f 7→ ⊥⊥⊥T f :=
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IIIT · f , periodization is an operation 444T : OC
′ → S ′, g 7→ 444T g := IIIT ∗ g, respectively. Starting

from these two definitions, we proved that

F ( ⊥⊥⊥ f ) = 444(F f ) and (1)

F (444g) = ⊥⊥⊥(Fg) (2)

hold in S ′, both being expressions of Poisson’s Summation Formula. We shortly write ⊥⊥⊥ and 444
instead of ⊥⊥⊥T and 444T if Tν = 1 for all 1 6 ν 6 n.

Moreover, recall that these rules are a consequence of the Fourier duality

F (α · f ) = Fα ∗ F f and (3)

F (g ∗ f ) = Fg · F f in S ′ (4)

for any α ∈ OM, g ∈ OC
′ and f ∈ S ′ which is, according to Laurent Schwartz’ theory of generalized

functions, the widest possible comprehension of both multiplication and convolution within the space
of tempered distributions [24,26,30]. It lies at the very heart of S ′. Many calculation rules in S ′,
including Equations (1), (2), (7), (8), (11), (12) and Lemmas 1, 2, 3, 4 rely on it.

5. Feasibilities

The following two lemmas provide justifications for the way we will define regularizations and
localizations in S ′ below. They will allow us to invert discretizations and periodizations in S ′.

Lemma 3 (Regularization). Let ϕ ∈ S . Then, for any f ∈ S ′, ϕ ∗ f can be sampled.

Proof. This is a consequence of the fact that S ∗ S ′ ⊂ OM [7,24,26,30] and Lemma 1.

An equivalent statement is the following lemma.

Lemma 4 (Localization). Let ϕ ∈ S . Then for any f ∈ S ′, ϕ · f can be periodized.

Proof. It follows from the fact that S · S ′ ⊂ OC
′ [24,30], which is the Fourier dual F (S ∗ S ′) = F (OM)

of S ∗ S ′ ⊂ OM, and Lemma 2.

It is interesting to observe that ϕ ∗ and ϕ · stretch and compress f ∈ S ′, respectively. Moreover,
this property is independent of the actual choice of ϕ ∈ S . It can therefore be attributed to the
operations of convolution and multiplication themselves.

6. Definitions

“One of the main applications of convolution is the regularization of a distribution” [26] or the
regularization of ordinary functions which are not infinitely differentiable in the conventional functions
sense. Its actual importance lies in the fact that it is the reversal of discretization.

Regularization (see Figure 1) is usually understood as the approximation of generalized functions
via approximate identities [2,5–7,26,32–34]. In this paper, however, we extend this idea by allowing
any ϕ ∈ S and also any f ∈ S ′ , i.e., even ordinary functions (either smooth or not smooth) can be
regularized. This approach naturally includes the special case of choosing approximate identities
without unnecessarily restricting our theorem below.

Lemmas 3 and 4 above justify the following two definitions.

Definition 1 (Regularization). Let ϕ ∈ S . Then, for any tempered distribution f ∈ S ′ we define another
tempered distribution by

∩ϕ f := ϕ ∗ f (5)



Mathematics 2017, 5, 41 6 of 14

which is a regular, slowly growing function in OM ⊂ S ′. The operation ∩ϕ is called regularization,
approximation, interpolation or smoothing of f by means of ϕ. It is a linear continuous operation ∩ϕ :
S ′ → OM, f 7→ ∩ϕ f . The result of ∩ϕ is called regular function of f in S ′.
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Regular functions (according to this definition) are functions in the ordinary functions sense
which are smooth (infinitely differentiable) in the ordinary functions sense, a function property that
is of immense value in many branches of mathematics. Regular functions belong to OM because
S ∗ S ′ ⊂ OM, see e.g., [7,24,30]. They maintain the ‘tempered’ property, i.e., they do not grow faster
than polynomials, which is common to all tempered distributions but add the regularity of ϕ to f .
It follows that regularized functions can always be sampled according to Lemma 1.

Regularizations of type (5), where f as a member in some distribution space X′ is singular (i.e.,
there is no locally integrable function representing f ) and ϕ as a member in its corresponding space
of test functions X is used for its regularization, are usually called “singular convolution” [35,36]
and with f replaced by a sequence fε converging towards f , they become so-called "discrete singular
convolutions (DSCs)“, a standard technique today for the regularization of singular distributions.

Regularizations are treated in many mathematical textbooks [2,11,25–27,32] and
scientific papers [1,35–43]. They are also known in terms of “smooth cutoff functions” [2,8],
“regularizers” [1,35,36,38], “distributed approximating functionals (DAFs)” [39–43] and
“mollifiers” [29,44–48], a term that goes back (see [29], p. 63) to K.O. Friedrichs [44]. Regularized rect
functions (characteristic functions of an interval) are known as “mesa function”, “tapered box” [11]
or “tapered characteristic function” and “taper function” [49] or as “C∞ bell” or “smoothed top hat”
function in [50]. Mostly, regularizations are required “to obtain regularized interpolating kernels” such
as in [38], finally to speed up convergences (e.g. in [51]). They are closely linked to the “regularity
theorem for tempered distributions” [13].

Away from the generalized functions literature, we also encounter regularizations in terms
of “smoothings”, “interpolations”, “zero-paddings” or “approximations” because they are not only
applied to generalized functions, they are also applied to ordinary functions, usually to obtain better
“regularity” properties for functions, i.e., better differentiability. Regularity is also a topic discussed in
[52], for example. It is closely related to localization (see Figure 2).

Definition 2 (Localization). Let ϕ ∈ S . Then, for any tempered distribution f ∈ S ′, we define another
tempered distribution by

uϕ f := ϕ · f (6)

which is a generalized function of rapid descent in OC
′ ⊂ S ′. The operation uϕ is called localization or

restriction of f by means of ϕ. It is a linear continuous operation uϕ : S ′ → OC
′, f 7→ uϕ f . If ϕ ∈ D ⊂ S ,

it is also called finitization. The result of uϕ is called local function of f in S ′.
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Local functions (according to this definition) belong toOC
′ because S ′ · S ⊂ OC

′ [24,26]. They add
the ‘rapid descent’ property of Schwartz functions ϕ ∈ S to f ∈ S ′. It follows that localized functions
can always be periodized according to Lemma 2.

The term “local” and the treatment of localizations have a long history in mathematics.
It culminated, however, in the term “localization operator”. It appears in 1988 for the first time
(see [53], p. 133 in [54]) in Daubechies’ article [55] and later in Daubechies’ 1992 standard textbook [52].
Meanwhile, “localizations” occur in many publications [2,52,54–63], amongst others as “localized
trigonometric functions” or “localized sine basis” [52,57,64], as “localized frames” [65], “local
trigonometric bases”, as “local representations” [6] or simply in terms of “locally integrable” functions.

7. Calculation Rules

“One of the basic principles in classical Fourier analysis is the impossibility to find a function f
that is arbitrarily well localized together with its Fourier transform F f ” [66]. This, in particular, can
easily be seen if one tries to localize the function that is constantly 1.

Lemma 5 (Localization Balance). Let ϕ ∈ S and let ϕ̂ := Fϕ. Then

F ( ∩ϕδ) = u ϕ̂1 ∈ OC
′ and (7)

F ( u ϕ̂1) = ∩ϕδ ∈ OM in S ′. (8)

In (8), we see that by localizing 1, we delocalize δ, i.e., 1 and its Fourier transform δ

cannot be both arbitrarily well localized. This phenomenon is known as Heisenberg’s uncertainty
principle [6,7,11,66–68]. Vice versa, in (7), we see that by regularizing δ we increasingly deregularize 1.
The entity ∩ϕδ is also known as an “approximate identity” of δ, usually denoted as δε where ε is a
parameter describing the proximity to δ (see e.g., [26] p. 316, p. 401 or [32] p. 5). Convolving any
f ∈ S ′ with δε, it creates an approximate identity fε of f which is a function in the ordinary sense
being infinitely differentiable.

Proof. According to (4), δ ∈ OC
′ can be convolved with ϕ ∈ S ⊂ S ′ and, equivalently, 1 ∈ OM can be

multiplied with ϕ̂ ∈ S ⊂ S ′, hence

F ( ∩ϕδ) = F (ϕ ∗ δ) = Fϕ · Fδ = ϕ̂ · 1 = u ϕ̂1

holds in S ′. The second formula is shown in an analogous manner.

It is also interesting to observe that in analogy to the Dirac comb identity [16]

444δ ≡ III ≡ ⊥⊥⊥1

the following identity, let’s say a “localization balance”

∩ϕδ ≡ Ω ≡ u ϕ̂1
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holds a balance in S ′ if ϕ ≡ ϕ̂ is satisfied for ϕ ∈ S , which obviously is the best achievable compromise
in localizing 1 and thereby delocalizing δ. It is true for the Gaussian Ω(t) ≡ e−πt2

and herewith
expresses Hardy’s uncertainty principle [69]. However, it is also true for the Hyperbolic secant
Ω(t) ≡ 2/(et + e−t), see e.g., [11], and for every fourth Hermite function H, i.e., all H satisfying
FH ≡ H. A connection between Gaussians and Hyperbolic Secants is that both belong to a class
of “Pólya frequency functions” [70,71]. Gaussians, Hyperbolic Secants and Hermite functions are
treated in [72,73] for example. Hermite polynomials are also known for their very important role in
distribution theory [13,35,36,43]. Hyperbolic Secants may also replace Gaussians in Gabor systems; see
e.g., Janssen and Strohmer [74]. A link between Gaussians and Hyperbolic Secants is also known in
soliton physics where the “initial Gaussian beam reshapes to a squared hyperbolic secant profile” [75].
Studying fixpoints Ω of the Fourier transform in S is therefore a worthwhile goal.

Another calculation rule that we need to prove for the theorem below is the following. It holds in
analogy to already shown properties of discretizations and periodizations [16].

Lemma 6. Let ϕ ∈ S , α ∈ OM, g ∈ OC
′ and f ∈ S ′. Then, α· f and g∗ f exist in S ′ and

α · ( uϕ f ) = uϕ(α· f ) = ( uϕα) · f ∈ OC
′ and (9)

g ∗ ( ∩ϕ f ) = ∩ϕ(g∗ f ) = ( ∩ϕg) ∗ f ∈ OM in S ′. (10)

Proof. We may allow that at most one of the operands in ϕ ∗ g ∗ f is not an element in OC
′. This is

indeed true as ϕ ∈ S ⊂ OC
′, g ∈ OC

′ and f is an arbitrary element in S ′. It follows that ϕ ∗ g ∗ f
exists in S ′ and, hence, operands may be interchanged arbitrarily. Using OC

′ ∗ S ′ ⊂ S ′ twice and (5),
we obtain

g ∗ ( ∩ϕ f ) = g ∗ (ϕ ∗ f ) = ϕ ∗ g ∗ f = ∩ϕ(g ∗ f )

in S ′. The other half of this equation results from the fact that the roles of f and g can be exchanged
due to commutativity. The second formula is then shown in an analogous manner.

8. A Regularization–Localization Duality

The interaction between regularizations and localizations is ubiquitous in the literature today,
for example as “regularization” and multiplication with smooth “cutoff functions” in Hörmander [2],
as “two components of the approximation procedure” in S ′, see Strichartz [8], or as “approximation
by cutting and regularizing” in Trèves [27], p. 302, or as “cutting out” one period of f and
applying “(quasi-)interpolation” [63] or in terms of ”zero-padding in the time domain corresponds to
interpolation in the frequency domain” [76]. Detailed studies of the interaction of both regularizations
and localizations, can be found for example in [49,53,54,77] and in engineering literature, we encounter
these interactions in terms of the interplay between “windowing” on one hand and “interpolation”
on the other. An equivalent is the so-called “zero-padding” technique (e.g. in [76,78–83]) found in
engineering textbooks as a way to implement interpolations. It corresponds to the regularization of a
discrete function by embedding it into a higher-dimensional space where it is smooth. However, we
may summarize this regularization–localization duality in the following way.

Theorem 1 (Regularization vs. Localization). Let ϕ ∈ S , f ∈ S ′ and let ϕ̂ := Fϕ. Then

F ( ∩ϕ f ) = u ϕ̂(F f ) ∈ OC
′ and (11)

F ( u ϕ̂ f ) = ∩ϕ(F f ) ∈ OM in S ′. (12)

So, this duality asserts that regularizing a function means to localize its Fourier transform and, vice
versa, localizing a function means to regularize its Fourier transform. It is the one-to-one counterpart
of a discretization–periodization duality in S ′, given in (1) and (2).
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Proof. Formally, according to the calculation rules shown above, the following equalities hold

F ( ∩ϕ f ) = F ∩ϕ(δ∗ f ) = F ( ∩ϕδ ∗ f ) = F ( ∩ϕδ) · F f

= u ϕ̂1 · F f = u ϕ̂(1·F f ) = u ϕ̂(F f )

in S ′. We start using f = δ ∗ f where δ ∈ OC
′ ⊂ S ′ is the identity element with respect to convolution

in S ′. Then, we apply Equations (10), (4), (7) and (9), in this order. Finally, with F f = g ∈ S ′, we use
g = 1 · g where 1 ∈ OM ⊂ S ′ is the identity element with respect to multiplication in S ′. The second
formula is now shown in an analogous manner.
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An immediate consequence of the theorem is that f and its Fourier transform F f cannot both
be arbitrarily well localized, a fact that is known as Heisenberg’s uncertainty principle. Also note
that Floc , as shown in Figure 3, is the Short-Time Fourier Transform (STFT) with window function
ϕ ∈ S and it is the Gabor transform if ϕ is a Gaussian. Consequently, the result of Gabor transforms
will be smooth, i.e., they cannot be discrete for example. In contrast, its Fourier dual, the Fourier
transform of regular functions F reg , as shown in Figure 3, corresponds first to regularizing functions
before Fourier transforming them. Consequently, the result of such transforms will be local, i.e., they
cannot be periodic for example.

Obviously, by looking at these interactions, one may think of discrete functions as the ‘opposite’
of regular functions and, equivalently, one may think of periodic functions as the ‘opposite’ of local
functions. This is examined more closely in the next section.

9. Four Subspaces

Let {OM be the complement of regular functions OM in S ′. It is the space of all ordinary or
generalized functions in S ′ which are not infinitely differentiable in the ordinary functions sense.
Furthermore, let {OC

′ be the complement of local functions OC
′ in S ′. It consists of all ordinary or

generalized functions in S ′ which either do not fade to zero as |t| increases (periodic functions for
example) or they fall to zero but too slowly (with polynomial decay rather than with exponential decay).

Then, the following diagram (Figure 4) holds in S ′.

OM ∩OC
′ OM ∩ {OC

′

{OM ∩OC
′ {OM ∩ {OC

′

6∩
ϕ 6∩

ϕ

?

⊥⊥
⊥

?

⊥⊥⊥

6u ϕ̂

?

444

6

u ϕ̂

?444

Figure 4. Four subspaces in S ′, linked via operations ⊥⊥⊥, 444, ∩ϕ, u ϕ̂.
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This diagram can also be expressed in a slightly more “human readable” form (Figure 5) by
recalling that OM are “regular functions” and {OM are “generalized functions” (in the sense that they
are not “regular”) and OC

′ are “local functions” and {OC
′ are “global functions” (in the sense that

they are not “local”).
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Apparently, the Schwartz space S ≡ OM ∩ OC
′, the “smooth world”, in some sense, is the

‘opposite’ of {OM ∩ {OC
′, the “discrete world”. One may also note that no additional information is

used yet beside pure operator definitions. There is also no statement yet on the reversibility of our
operations ⊥⊥⊥ and 444 and ∩ϕ and u ϕ̂ in S ′. Such inversions will be treated from a more quantitative
point of view in a follow-on study.

10. Conclusions and Outlook

It is shown that in analogy to a discretization–periodization duality in S ′, there is also a
regularization–localization duality in S ′. Proving these dualities even follows the same pattern.
In addition, the two dualities are inverse of each other in the sense that the first one maps towards
discreteness and the latter one maps towards smoothness. In total, we derived several calculation
rules that are suitable to symbolically calculate with operations of discretization, periodization,
regularization and localization in order to describe transitions from smoothness towards discreteness,
even finite discreteness, and back from discreteness towards smoothness in a mathematically rigorous
and formally correct way. We may replace, for example, discretizations by periodizations or
regularizations by localizations whenever it is advantageous to do so. Our rules can, for example, be
used to derive higher-level theorems in S ′. They can also be implemented in symbolic calculation
environments such as Wolfram Mathematica or Python SymPy and thereby become a very useful
toolbox for algorithm design.

Acknowledgments: This paper is primarily based on studies conducted in the years 1995–1997 at the Institute
of Mathematics, Ludwig Maximilians University (LMU), Munich. The author is, in particular, very grateful to
Professor Otto Forster. The author would also like to thank his colleagues at the Microwaves and Radar Institute,
German Aerospace Center (DLR), for deep insights into practised signal processing and a great cooperation for
many years.

Conflicts of Interest: The author declares no conflicts of interest.



Mathematics 2017, 5, 41 11 of 14

References

1. Wei, G.W.; Gu, Y. Conjugate filter approach for solving Burgers’ equation. J. Comput. Appl. Math. 2002, 149,
439–456.

2. Hörmander, L. The Analysis of Linear Partial Differential Operators I; Die Grundlehren der mathematischen
Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1983.

3. Lighthill, M.J. An Introduction to Fourier Analysis and Generalised Functions; Cambridge University Press:
Cambridge, NY, USA, 1958.

4. Woodward, P.M. Probability and Information Theory, with Applications to Radar; Pergamon Press Ltd.: Oxford,
UK, 1953.

5. Benedetto, J.J. Harmonic Analysis and Applications; CRC Press Inc.: Boca Raton, FL, USA, 1996.
6. Feichtinger, H.G.; Strohmer, T. Gabor Analysis and Algorithms: Theory and Applications; Birkhäuser: Boston,

MA, USA, 1998.
7. Gasquet, C.; Witomski, P. Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets;

Springer: New York, NY, USA, 1999; Volume 30.
8. Strichartz, R.S. A Guide to Distribution Theorie and Fourier Transforms; World Scientific Publishing Co. Pte Ltd.:

Singapore, 2003.
9. Brandwood, D. Fourier Transforms in Radar and Signal Processing; Artech House, Inc.: Norwood, MA,

USA, 2003.
10. Rahman, M. Applications of Fourier Transforms to Generalized Functions; WIT Press: Southampton, UK, 2011.
11. Kammler, D.W. A first Course in Fourier Analysis; Cambridge University Press: New York, NY, USA, 2007.
12. Messiah, A. Quantum Mechanics—Two Volumes Bound as One; Dover Publications, Inc.: Mineola, NY,

USA, 1999.
13. Simon, B. Distributions and their Hermite expansions. J. Math. Phys. 1971, 12, 140–148.
14. Gracia-Bondía, J.M.; Varilly, J.C. Algebras of Distributions Suitable for Phase-Space Quantum Mechanics. I.

J. Math. Phys. 1988, 29, 869–879.
15. Becnel, J.; Sengupta, A. The Schwartz Space: Tools for Quantum Mechanics and Infinite Dimensional

Analysis. Mathematics 2015, 3, 527–562.
16. Fischer, J.V. On the duality of discrete and periodic functions. Mathematics 2015, 3, 299–318.
17. Wolfram Mathematica. Available online: http://reference.wolfram.com/language/tutorial/SymbolicCalculations.

html (accessed on 7 August 2017).
18. Python SymPy. Available online: https://en.wikipedia.org/wiki/SymPy (accessed on 7 August 2017).
19. Fischer, J. Calculation Rules for Discrete Functions, Periodic Functions and Discrete Periodic Functions.

ResearchGate 2017, doi:10.13140/rg.2.2.21779.07201. Available online: https://www.researchgate.net/
publication/316582622_Calculation_Rules_for_Discrete_Functions_Periodic_Functions_and_Discrete_
Periodic_Functions (accessed on 7 August 2017).

20. Fischer, J. There is only one Fourier Transform. ResearchGate 2017, doi:10.13140/rg.2.2.30950.83521.
Available online: https://www.researchgate.net/publication/316855293_There_is_only_one_Fourier_
Transform (accessed on 7 August 2017).

21. Fischer, J. A Formula Connecting Fourier Series and Fourier Transform. ResearchGate 2017,
doi:10.13140/rg.2.2.24295.65445. Available online: https://www.researchgate.net/publication/316659619_
A_Formula_Connecting_Fourier_Series_and_Fourier_Transform (accessed on 7 August 2017).

22. Fischer, J. Fourier Transforms and Fourier Series and Their Interrelations. ResearchGate 2017,
doi:10.13140/rg.2.2.32053.47840. Available online: https://www.researchgate.net/publication/316140184_
Fourier_Transforms_and_Fourier_Series_and_Their_Interrelations (accessed on 7 August 2017).

23. Fischer, J.; Molkenthin, T.; Chandra, M. SAR Image Formation as Wavelet Transform. In Proceedings of
the European Conference on Synthetic Aperture Radar (EUSAR), VDE Verlag GmbH, Berlin, Germany,
18–26 May 2006.

24. Schwartz, L. Théorie des Distributions, Tome II; Hermann: Paris, France, 1959.
25. Zemanian, A. Distribution Theory and Transform Analysis—An Introduction to Generalized Functions, with

Applications; McGraw-Hill Inc.: New York, NY, USA, 1965.
26. Horváth, J. Topological Vector Spaces and Distributions; Addison-Wesley Publishing Company: Reading, MA,

USA, 1966.

http://reference.wolfram.com/language/tutorial/SymbolicCalculations.html
http://reference.wolfram.com/language/tutorial/SymbolicCalculations.html
https://en.wikipedia.org/wiki/SymPy
https://www.researchgate.net/publication/316582622_Calculation_Rules_for_Discrete_Functions_Periodic_Functions_and_Discrete_Periodic_Functions
https://www.researchgate.net/publication/316582622_Calculation_Rules_for_Discrete_Functions_Periodic_Functions_and_Discrete_Periodic_Functions
https://www.researchgate.net/publication/316582622_Calculation_Rules_for_Discrete_Functions_Periodic_Functions_and_Discrete_Periodic_Functions
https://www.researchgate.net/publication/316855293_There_is_only_one_Fourier_Transform
https://www.researchgate.net/publication/316855293_There_is_only_one_Fourier_Transform
https://www.researchgate.net/publication/316659619_A_Formula_Connecting_Fourier_Series_and_Fourier_Transform
https://www.researchgate.net/publication/316659619_A_Formula_Connecting_Fourier_Series_and_Fourier_Transform
https://www.researchgate.net/publication/316140184_Fourier_Transforms_and_Fourier_Series_and_Their_Interrelations
https://www.researchgate.net/publication/316140184_Fourier_Transforms_and_Fourier_Series_and_Their_Interrelations


Mathematics 2017, 5, 41 12 of 14

27. Trèves, F. Topological Vector Spaces, Distributions and Kernels: Pure and Applied Mathematics; Academic Press
Inc.: Mineola, NY, USA, 1967.

28. Bracewell, R.N. Fourier Transform and its Applications; McGraw-Hill Book Company: New York, NY,
USA, 1965.

29. Grubb, G. Distributions and Operators; Springer Science+Business Media: New York, NY, USA, 2009;
Volume 252.

30. Dubois-Violette, M.; Kriegl, A.; Maeda, Y.; Michor, P.W. Smooth*-Algebras. Prog. Theor. Phys. Supp. 2002,
144, 54–78.

31. Nguyen, H.Q.; Unser, M.; Ward, J.P. Generalized Poisson Summation Formulas for Continuous Functions of
Polynomial Growth. J. Fourier Anal. Appl. 2017, 23, 442–461.

32. Walter, W. Einführung in die Theorie der Distributionen; BI-Wissenschaftsverlag, Bibliographisches Institut &
FA Brockhaus: Mannheim, Germany, 1994.

33. Hunter, J.K.; Nachtergaele, B. Applied Analysis; World Scientific Publishing Company: Singapore, 2001.
34. Beals, R. Advanced Mathematical Analysis: Periodic Functions and Distributions, Complex Analysis, Laplace

Transform and Applications; Springer: New York, NY, USA, 1973; Volume 12.
35. Wei, G. Wavelets generated by using discrete singular convolution kernels. J. Phys. A Math. Gen. 2000,

33, 8577.
36. Wei, G. Discrete singular convolution for the solution of the Fokker–Planck equation. J. Chem. Phys. 1999,

110, 8930–8942.
37. Estrada, R.; Kanwal, R.P. Regularization, pseudofunction, and Hadamard finite part. J. Math. Anal. Appl.

1989, 141, 195–207.
38. Wei, G. Quasi wavelets and quasi interpolating wavelets. Chem. Phys. Lett. 1998, 296, 215–222.
39. Wei, G.; Wang, H.; Kouri, D.J.; Papadakis, M.; Kakadiaris, I.A.; Hoffman, D.K. On the mathematical

properties of distributed approximating functionals. J. Math. Chem. 2001, 30, 83–107.
40. Hoffman, D.K.; Kouri, D.J. Distributed approximating function theory for an arbitrary number of particles

in a coordinate system-independent formalism. J. Phys. Chem. 1993, 97, 4984–4988.
41. Hoffman, D.K.; Kouri, D.J. Distributed approximating functionals: A new approach to approximating

functions and their derivatives. In Proceedings of the Third International Conference on Mathematical and
Numerical Aspects of Wave Propagation (SIAM), edited by Gary Cohen, Mandelieu-La Napoule, France,
24–28 April 1995; p. 56–83.

42. Hoffman, D.; Wei, G.; Zhang, D.; Kouri, D. Shannon—Gabor wavelet distributed approximating functional.
Chem. Phys. Lett. 1998, 287, 119–124.

43. Bodmann, B.G.; Hoffman, D.K.; Kouri, D.J.; Papadakis, M. Hermite distributed approximating functionals
as almost-ideal low-pass filters. Sampl. Theory Signal Image Process. 2008, 7, 15.

44. Friedrichs, K.O. On the differentiability of the solutions of linear elliptic differential equations. Commun. Pure
Appl. Math. 1953, 6, 299–326.

45. Schechter, M. Modern Methods in Partial Differential Equations: An Introduction; McGraw-Hill Inc.: New York,
NY, USA, 1977.

46. Yosida, K. Functional Analysis, Reprint of the Sixth (1980) Edition; Springer-Verlag: Berlin, Germany, 1995;
Volume 11.

47. Gaffney, M.P. A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. 1954, 60, 140–145.
48. Ni, L.; Markenscoff, X. The self-force and effective mass of a generally accelerating dislocation I: Screw

dislocation. J. Mech. Phys. Solids 2008, 56, 1348–1379.
49. Ashino, R.; Desjardins, J.S.; Heil, C.; Nagase, M.; Vaillancourt, R. Pseudo-differential operators, microlocal

analysis and image restoration. In Advances in Pseudo-Differential Operators; Birkhäuser Verlag: Basel,
Switzerland, 2004; pp. 187–202.

50. Boyd, J.P. Asymptotic Fourier Coefficients for a C∞ Bell (Smoothed-Top-Hat) and the Fourier Extension
Problem. J. Sci. Comput. 2006, 29, 1–24.

51. Termonia, P.; Voitus, F.; Degrauwe, D.; Caluwaerts, S.; Hamdi, R. Application of Boyds periodization and
relaxation method in a spectral atmospheric limited-area model. Part I: Implementation and reproducibility
tests. Mon. Weather Rev. 2012, 140, 3137–3148.

52. Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics (SIAM): Philadelphia,
PA, USA, 1992; Volume 61.



Mathematics 2017, 5, 41 13 of 14

53. Cordero, E.; Tabacco, A. Localization operators via time-frequency analysis. In Advances in Pseudo-Differential
Operators; Birkhäuser Verlag: Basel, Switzerland, 2004; pp. 131–147.

54. Ashino, R.; Boggiatto, P.; Wong, M.W. Advances in Pseudo-Differential Operators; Birkhäuser Verlag: Basel,
Switzerland, 2004; Volume 155.

55. Daubechies, I. Time-frequency localization operators: A geometric phase space approach. IEEE Trans.
Inf. Theory 1988, 34, 605–612.

56. Oberguggenberger, M.B. Multiplication of Distributions and Applications to Partial Differential Equations;
Longman Scientific & Technical: Harlow, Essex, UK, 1992; Volume 259.

57. Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory
1992, 38, 713–718.

58. Triebel, H. A localization property for Bs
pq and Fs

pq spaces. Stud. Math. 1994, 109, 183–195.
59. Feichtinger, H.G.; Gröchenig, K. Gabor frames and time-frequency analysis of distributions. J. Funct. Anal.

1997, 146, 464–495.
60. Skrzypczak, L. Heat and Harmonic Extensions for Function Spaces of Hardy–Sobolev–Besov Type on

Symmetric Spaces and Lie Groups. J. Approx. Theory 1999, 96, 149–170.
61. Feichtinger, H.G. Modulation spaces: Looking back and ahead. Sampl. Theory Signal Image Process.

2006, 5, 109.
62. Nguyen, H.Q.; Unser, M. A sampling theory for non-decaying signals. Appl. Comput. Harmon. Anal. 2017,

doi:10.1016/j.acha.2015.10.006.
63. Feichtinger, H.G. Thoughts on Numerical and Conceptual Harmonic Analysis. In New Trends in Applied

Harmonic Analysis; Birkhäuser: Cham, Switzerland 2016; pp. 301–329.
64. Daubechies, I. The Wavelet Transform, Time-Frequency Localization and Signal Analysis. IEEE Trans.

Inf. Theory 1990, 36, 961–1005.
65. Gröchenig, K. Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier

Anal. Appl. 2004, 10, 105–132.
66. Wilczok, E. New uncertainty principles for the continuous Gabor transform and the continuous wavelet

transform. Doc. Math. 2000, 5, 201–226.
67. Mallat, S. A Wavelet Tour of Signal Processing; Academic Press, Elsevier: Burlington, MA, USA, 1999.
68. Higgins, J.R. Sampling Theory in Fourier and Signal Analysis: Foundations; Oxford University Press: New York,

NY, USA, 1996.
69. Gröchenig, K.; Zimmermann, G. Hardy’s theorem and the short-time Fourier transform of Schwartz

functions. J. Lond. Math. Soc. 2001, 63, 205–214.
70. Schoenberg, I.J. On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pólya-Schur

type. Proc. Natl. Acad. Sci. USA 1947, 33, 11–17.
71. Schoenberg, I. On variation-diminishing integral operators of the convolution type. Proc. Natl. Acad.

Sci. USA 1948, 34, 164–169.
72. Boyd, J.P. Asymptotic coefficients of Hermite function series. J. Comput. Phys. 1984, 54, 382–410.
73. Boyd, J.P. Chebyshev and Fourier Spectral Methods; Dover Publications: Mineola, NY, USA, 2001.
74. Janssen, A.; Strohmer, T. Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 2002, 12,

259–267.
75. Fazio, E.; Renzi, F.; Rinaldi, R.; Bertolotti, M.; Chauvet, M.; Ramadan, W.; Petris, A.; Vlad, V.

Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides.
Appl. Phys. Lett. 2004, 85, 2193–2195.

76. Smith, J.O.; Serra, X. PARSHL: An Analysis/Synthesis Program for Non-Harmonic Sounds Based on a
Sinusoidal Representation. Technical Report CCRMA STAN-M-43. Available online: https://ccrma.stanford.
edu/STANM/stanms/stanm43/stanm43.pdf (accessed on 7 August 2017).

77. Boggiatto, P. Localization operators with L p symbols on modulation spaces. In Advances in Pseudo-differential
Operators; Birkhäuser Verlag: Basel, Switzerland, 2004; pp. 149–163.

78. Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data; Artech house, Inc.: Norwood,
MA, USA, 2005.

79. Yaroslavsky, L. Efficient algorithm for discrete sinc interpolation. Appl. Opt. 1997, 36, 460–463.
80. Guichard, F.; Malgouyres, F. Total variation based interpolation. In Proceedings of the 9th European Signal

Processing Conference, Rhodes, Greece, 8–11 September 1998; pp. 1–4.

https://ccrma.stanford.edu/STANM/stanms/stanm43/stanm43.pdf
https://ccrma.stanford.edu/STANM/stanms/stanm43/stanm43.pdf


Mathematics 2017, 5, 41 14 of 14

81. Coleri, S.; Ergen, M.; Puri, A.; Bahai, A. Channel estimation techniques based on pilot arrangement in OFDM
systems. IEEE Trans. Broadcast. 2002, 46, 223–229.

82. Serra, X.; Smith, J. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic
plus stochastic decomposition. Comput. Music J. 1990, 14, 12–24.

83. Muquet, B.; Wang, Z.; Giannakis, G.B.; De Courville, M.; Duhamel, P. Cyclic prefixing or zero padding for
wireless multicarrier transmissions? IEEE Trans. Commun. 2002, 50, 2136–2148.

c© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Generalized Functions
	Symbolic Calculation

	Idea
	Preliminaries
	Feasibilities
	Definitions
	Calculation Rules
	A Regularization–Localization Duality
	Four Subspaces
	Conclusions and Outlook

