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Abstract: In this paper, we study weak solutions to the following nonlinear parabolic partial
differential equation ∂tu− div a(x, t,∇u) + λ(|u|p(x,t)−2u) = 0 in ΩT , where λ ≥ 0 and ∂tu denote
the partial derivative of u with respect to the time variable t, while∇u denotes the one with respect to
the space variable x. Moreover, the vector-field a(x, t, ·) satisfies certain nonstandard p(x, t)-growth
and monotonicity conditions. In this manuscript, we establish the existence of a unique weak solution
to the corresponding Dirichlet problem. Furthermore, we prove the stability of this solution, i.e., we
show that two weak solutions with different initial values are controlled by these initial values.
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1. Introduction

The aim of this paper is to establish the existence theory to nonlinear parabolic equations with
nonstandard p(x, t)-growth of the following form

∂tu− div a(x, t,∇u) + λ(|u|p(x,t)−2u) = 0 in ΩT , (1)

where λ ≥ 0 and the vector-field a(x, t, ·) satisfy certain p(x, t)-growth and monotonicity
conditions. More precisely, we will prove that there exists a unique weak solution to the following
Dirichlet problem:


∂tu− div a(x, t,∇u) = −λ(|u|p(x,t)−2u) in ΩT ,

u = 0, on ∂Ω× (0, T),

u(·, 0) = u0, on Ω× {0} .

(2)

Moreover, we will show that two unique weak solutions u and v of (2) with different initial values
u0(x), v0(x) ∈ L2(Ω) satisfy the following stability estimate:∫

Ω
|u(x, t)− v(x, t)|2dx ≤

∫
Ω
|u0(x)− v0(x)|2dx (3)

for a.e. t ∈ [0, T). More precisely, we prove the stability of the unique weak solution to the Dirichlet
problem (2) in the sense that the solutions are controlled by the initial value completely, cf. [1–3].

The motivation of this paper contains several aspects. The first one is that in general parabolic
problems are important for the modelling of space- and time-dependent problems, e.g., problems from
physics or biology. In particular, evolutionary equations and systems can be used to model physical
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processes, e.g., heat conduction or diffusion processes. One example is the Navier–Stokes equation,
the basic equation in fluid mechanics. Furthermore, we want to refer to [4], where fluids in motion are
studied. Applications also include climate modelling and climatology (see [5,6]).

The second interesting aspect of this paper is the nonstandard growth setting. Such setting arises
for example by studying certain classes of non-Newtonian fluids such as electro-rheological fluids or
fluids with viscosity depending on the temperature. Some properties of solutions to systems of such
modified Navier–Stokes equation are studied in [7]. In general, electro-rheological fluids are of high
technological interest because of their ability to change their mechanical properties under the influence
of an exterior electro-magnetic field (see [8–10]). Many electro-rheological fluids are suspensions
consisting of solid particles and a carrier oil. These suspensions change their material properties
dramatically if they are exposed to an electric field (see [11]). Most of the known results concern
the stationary case with p(x)-growth condition (see, e.g., [8,12,13]). Furthermore, for the restoration
in image processing, one also uses some diffusion models with nonstandard growth conditions
(please see [14–17]). Moreover, we want to refer to [18–21] for some numerical aspects regarding
the numerical approximation of problems related to the parabolic p-Laplacian, the p(x)-Laplacian
or electro-rheological fluids, respectively. Finally, we would like to mention the papers [22,23],
where the stability of solutions with respect to continuous perturbations in the growth exponent
p(x) is studied.

In the context of parabolic problems with p(x, t)-growth applications are models for flows
in porous media [24,25] or nonlinear parabolic obstacle problems [26–30]. Moreover, in the last
few years, parabolic problems with p(x, t)-growth arouse more and more interest in mathematics
(see, e.g., [26–33]). Furthermore, we want to highlight that, in the case of certain parabolic equations
with nonstandard growth conditions, several existence results are available (please see [32,34–37]).

The third interesting aspect of the investigation of problems related to (2) is motivated amongst
others by the following observation: In [38] (for the case p(x, t) = const.), the authors explained
where they studied the asymptotic behaviour of the solution u to the homogeneous case of the following
evolutionary p-Laplace equation

∂tu− div(|∇u|p−2∇u) = λ(|u|p−2u) in ΩT

that v(x) = limt→∞ u(x, t) should be a solution to the stationary problem

−div(|Dv|p−2Dv) = λ(|v|p−2v) in Ω.

For this equation, the first eigenvalue is the minimum of the Rayleigh quotient

λ1 = min
v

∫
Ω |Dv|pdx∫

Ω |v|pdx
,

cf. [39] and see also for further details [40]. Similarly, the stationary solution of the appropriate
nonstandard p(x, t)-problem should be the solution of the corresponding eigenvalue problem of
the p(x)-Laplacian (please see [41,42]). Therefore, the study of problems related to (1) are also of
interest, since these problems are associated with the study of long-term behaviour of solutions and
the corresponding eigenvalue problems.

1.1. General Assumptions

In this paper, we consider a bounded domain Ω ⊂ Rn of dimension n ≥ 2 and we write
ΩT : = Ω× (0, T) for the space-time cylinder over Ω of height T > 0. Here, ut or ∂tu, respectively,
denote the partial derivative with respect to the time variable t and ∇u denotes the one with respect
to the space variable x. Moreover, we denote by ∂PΩT = (Ω̄× {0}) ∪ (∂Ω× (0, T)) the parabolic
boundary of ΩT and we write z = (x, t) for points in Rn+1. Furthermore, we consider vector-fields a:



Mathematics 2017, 5, 50 3 of 14

ΩT ×Rn → Rn that are assumed to be Carathéodory functions—i.e., a(z, w) is measurable in the first
argument for every w ∈ Rn and continuous in the second one for a.e. z ∈ ΩT—and satisfy the following
nonstandard growth and monotonicity properties, for some growth exponent p: ΩT → ( 2n

n+2 , ∞) and
structure constants 0 < ν ≤ 1 ≤ L and µ ∈ [0, 1]:

|a(z, w)| ≤ L(1 + |w|)p(z)−1, (4)

(a(z, w)− a(z, w0)) · (w− w0) ≥ ν(µ2 + |w|2 + |w0|2)
p(z)−2

2 |w− w0|2, (5)

for all z ∈ ΩT and w, w0 ∈ Rn. Furthermore, the growth exponent function p: ΩT → ( 2n
n+2 , ∞) satisfies

the following conditions: there exist constants γ1 < ∞ and γ2 < ∞, such that

2n
n + 2

< γ1 ≤ p(z) ≤ γ2 and |p(z1)− p(z2)| ≤ ω(dP (z1, z2)) (6)

hold for any choice of z1, z2 ∈ ΩT , where ω: [0, ∞) → [0, 1] denotes a modulus of continuity.
More precisely, we assume that ω(·) is a concave, non-decreasing function with

lim
ρ↓0

ω(ρ) = 0 = ω(0).

Moreover, the parabolic distance is given by dP (z1, z2): = max{|x1 − x2|,
√
|t1 − t2|} for

z1 = (x1, t1), z2 = (x2, t2) ∈ Rn+1. In addition, for the modulus of continuity ω(·), we assume
the following weak logarithmic continuity condition

lim sup
ρ↓0

ω(ρ) log
(

1
ρ

)
< +∞. (7)

Finally, we point out that the monotonicity condition (5) implies, by using the growth condition (4)
and Young’s inequality, the coercivity property

a(z, w) · w ≥ ν

c(γ1, γ2)
|w|p(z) − c(γ1, γ2, ν, L) (8)

for all z ∈ ΩT and w ∈ Rn.

1.2. The Function Spaces

The spaces Lp(Ω), W1,p(Ω) and W1,p
0 (Ω) denote the usual Lebesgue and Sobolev spaces, while

the nonstandard p(z)-Lebesgue space Lp(z)(ΩT ,Rk) is defined as the set of those measurable functions
v: ΩT → Rk for k ∈ N, which satisfy |v|p(z) ∈ L1(ΩT ,Rk), i.e.,

Lp(z)(ΩT ,Rk) : =

{
v : ΩT → Rk is measurable in ΩT :

∫
ΩT

|v|p(z)dz < +∞
}

.

The set Lp(z)(ΩT ,Rk) equipped with the Luxemburg norm

‖v‖Lp(z)(ΩT)
: = inf

{
δ > 0 :

∫
ΩT

∣∣∣v
δ

∣∣∣p(z) dz ≤ 1
}

becomes a Banach space. This space is separable and reflexive (see [34,35]). For elements of
Lp(z)(ΩT ,Rk), the generalized Hölder’s inequality holds in the following form: if f ∈ Lp(z)(ΩT ,Rk)

and g ∈ Lp′(z)(ΩT ,Rk), where p′(z) = p(z)
p(z)−1 , we have∣∣∣∣∫ΩT

f gdz
∣∣∣∣ ≤ ( 1

γ1
+

γ2 − 1
γ2

)
‖ f ‖Lp(z)(ΩT)

‖g‖Lp′(z)(ΩT)
(9)
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(see also [35]). Moreover, the norm ‖ · ‖Lp(z)(ΩT)
can be estimated as follows

−1 + ‖v‖γ1
Lp(z)(ΩT)

≤
∫

ΩT

|v|p(z)dz ≤ ‖v‖γ2
Lp(z)(ΩT)

+ 1. (10)

Notice that we will use also the abbreviation p(·) for the exponent p(z). Next, we introduce
nonstandard Sobolev spaces for fixed t ∈ (0, T). From assumption (6), we know that p(·, t) satisfies

|p(x1, t)− p(x2, t)| ≤ ω(|x1 − x2|)

for any choice of x1, x2 ∈ Ω and for every t ∈ (0, T). Then, we define for every fixed t ∈ (0, T)
the Banach space W1,p(·,t)(Ω) as

W1,p(·,t)(Ω) := {u ∈ Lp(·,t)(Ω,R) | ∇u ∈ Lp(·,t)(Ω,Rn)}

equipped with the norm

‖u‖W1,p(·,t)(Ω) := ‖u‖Lp(·,t)(Ω) + ‖∇u‖Lp(·,t)(Ω).

In addition, we define W1,p(·,t)
0 (Ω) as the closure of C∞

0 (Ω) in W1,p(·,t)(Ω) and we denote by

W1,p(·,t)(Ω)′ its dual. For every t ∈ (0, T), the inclusion W1,p(·,t)
0 (Ω) ⊂W1,γ1

0 (Ω) holds true.

Furthermore, we consider more general nonstandard Sobolev spaces without fixed t. By Wp(·)
g (ΩT),

we denote the Banach space

Wp(·)
g (ΩT) : =

{
u ∈ [g + L1(0, T; W1,1

0 (Ω))] ∩ Lp(·)(ΩT) | ∇u ∈ Lp(·)(ΩT ,Rn)
}

equipped by the norm

‖u‖Wp(·)(ΩT)
: = ‖u‖Lp(·)(ΩT)

+ ‖∇u‖Lp(·)(ΩT)
.

If g = 0, we write Wp(·)
0 (ΩT) instead of Wp(·)

g (ΩT). Here, it is worth mentioning that the notion

(u− g) ∈ Wp(·)
0 (ΩT) or u ∈ g + Wp(·)

0 (ΩT), respectively, indicate that u agrees with g on the lateral

boundary of the cylinder ΩT , i.e., u ∈Wp(·)
g (ΩT).

Our next aim is to introduce the dual space of Wp(·)
0 (ΩT). Therefore, we denote by Wp(·)(ΩT)

′

the dual of the space Wp(·)
0 (ΩT). Assume that v ∈ Wp(·)(ΩT)

′. Then, there exist functions
vi ∈ Lp′(·)(ΩT), i = 0, 1, ..., n, such that

〈〈v, w〉〉ΩT
=
∫

ΩT

(
v0w +

n

∑
i=1

viDiw

)
dz (11)

for all w ∈Wp(·)
0 (ΩT). Furthermore, if v ∈Wp(·)(ΩT)

′, we define the norm

‖v‖Wp(·)(ΩT)′
= sup{〈〈v, w〉〉ΩT

|w ∈Wp(·)
0 (ΩT), ‖w‖Wp(·)

0 (ΩT)
≤ 1}.

Notice that whenever (11) holds, we can write v = v0−∑n
i=1 Divi, where Divi has to be interpreted

as a distributional derivate. By

w ∈W(ΩT) : =
{

w ∈Wp(·)(ΩT)|wt ∈Wp(·), (ΩT)
′
}
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we mean that there exists wt ∈Wp(·)(ΩT)
′, such that

〈〈wt, ϕ〉〉ΩT
= −

∫
ΩT

w · ϕtdz for all ϕ ∈ C∞
0 (ΩT)

(see also [34]). The previous equality makes sense due to the inclusions

Wp(·)(ΩT) ↪→ L2(ΩT) ∼= (L2(ΩT))
′ ↪→Wp(·)(ΩT)

′,

which allow us to identify w as an element of Wp(·)(ΩT)
′.

Finally, we are in the situation to give the definition of a weak solution to the parabolic
nonstandard growth equation (1):

Definition 1. We identify a function u ∈ L1(ΩT) as a weak solution of the parabolic equation (1), if and only
if u ∈ C0([0, T]; L2(Ω)) ∩Wp(·)(ΩT) and∫

ΩT
[u · ϕt − a(z,∇u) · ∇ϕ]dz = λ

∫
ΩT

|u|p(x,t)−2u · ϕdz (12)

holds, whenever ϕ ∈ C∞
0 (ΩT).

Remark 1. In this paper, we consider certain initial value problems. Therefore, we should also mention
the meaning when referring to an initial condition of the type u(·, 0) = u0 a.e. on Ω. Here, we shall always mean

1
h

∫ h

0

∫
Ω
|u− u0|2dxdt→ 0 as h ↓ 0. (13)

In particular, when u ∈ C0([0, T]; L2(Ω)), then (13) is obviously equivalent with saying u(·, 0) = u0.

1.3. Statement of the Result and Plan of the Paper

In the following, we mention our main result and we briefly describe the strategy of the proof
to these results and the novelties of the paper. We start with some useful and important preliminary
results (see Section 2). In Section 3, we prove the existence of a unique weak solution to (2) and we
investigate its stability. The approach to prove the existence of weak solutions to the Dirichlet problem
is to construct a solution, which solves the problem (2). We start by constructing a sequence of the
Galerkin’s approximations, where the limit of this sequence is equal to the solution in (2). Then, we
show that this approximate solution converges to a general solution. Finally, we will use this existence
result to derive the desired stability estimate (3). This yields the following.

Theorem 1. Let λ ≥ 0, Ω ⊂ Rn be an open, bounded Lipschitz domain and p : ΩT → [γ1, γ2] satisfies (6)
and (7). Then, suppose that the vector-field a: ΩT ×Rn → Rn is a Carathéodory function and satisfies the
growth condition (4) and the monotonicity condition (5). Moreover, let u0 ∈ L2(Ω). Then, there exists a unique
weak solution u ∈ C0([0, T]; L2(Ω)) ∩Wp(·)

0 (ΩT) with ∂tu ∈ Wp(·)(ΩT)
′ of (2) and this solution satisfies

the following estimate:

sup
0≤t≤T

∫
Ω
|u(·, t)|2dx +

∫
ΩT

|u|p(·)dz +
∫

ΩT

|∇u|p(·)dz ≤ c
(
‖u0‖2

L2(Ω) + |ΩT |
)

, (14)

with u(·, 0) = u0 and a constant c = c(γ1, γ2, ν, L) if λ ≥ 1 or λ = 0 and c = c(γ1, γ2, ν, L, 1
λ ) if λ ∈ (0, 1).

Furthermore, for two weak solutions u, v ∈ C0([0, T]; L2(Ω)) ∩Wp(·)
0 (ΩT) with ∂tu, ∂tv ∈Wp(·)(ΩT)

′ and
different initial values u0, v0 ∈ L2(Ω) (i.e., u0 6= v0) of (2) the stability estimate (3), i.e.,

‖u(x, t)− v(x, t)‖2
L2(Ω) ≤ ‖u0 − v0‖2

L2(Ω)
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holds true for a.e. t ∈ [0, T).

Remark 2. Please note that we can conclude from (3) and Hölder’s inequality that

−
∫

Ω
|u(x, t)− v(x, t)|dx ≤

(
−
∫

Ω
|u0(x)− v0(x)|2dx

) 1
2

for a.e. t ∈ [0, T)—where −
∫

Ω f dx : = 1
|Ω|
∫

Ω f dx—or

‖u(x, t)− v(x, t)‖L1(Ω) ≤ |Ω|
1
2 ‖u0(x)− v0(x)‖L2(Ω)

for a.e. t ∈ [0, T), respectively.

Remark 3. Moreover, we want to emphasise that we can also prove the existence of a unique weak solution
to (2), if we assume that a(·) satisfies the growth condition (4), coercivity condition (8) and the monotonicity
condition (a(z, w)− a(z, w0)) · (w− w0) ≥ 0 for all z ∈ ΩT and w, w0 ∈ Rn. Furthermore, the existence of
solutions to the initial value problem (2) can be extended to general boundary value problems and, moreover, we
are also able to prove the statement of Theorem 1 if we consider further inhomogeneities on the right-hand side of
(1), i.e., f − div(|F|p(x,t)−2F) satisfying f ∈ Lγ′1(ΩT) and F ∈ Lp(x,t)(ΩT) (please see the approach in [32]).

2. Preliminaries

In the following, we will refer to some useful tools, which we will need for our proof. First of all,
we refer to two lemmas, which are useful tools when dealing with p-growth problems. To this aim, we
define a function Vµ,p : Rk → Rk by

Vµ,p(A) : = (µ2 + |A|2)
p
2 A

for A ∈ Rk, p > −1 and µ ≥ 0. Moreover, we cite the following lemma from ([43], Lemma 2.1),
which is established for the case p ≥ 0 in [44] and in the case 0 > p > −1 in [43].

Lemma 1. Suppose that µ ≥ 0. Then, there exists a positive constant c, depending on p > −1, such that for all
A, B ∈ Rk with A 6= B, we have

c−1(µ2 + |A|2 + |B|2)
p
2 |A− B| ≤ |Vµ,p(A)−Vµ,p(B)| ≤ c(µ2 + |A|2 + |B|2)

p
2 |A− B|.

Since p(·) > 2n
n+2 , we are able to choose p = p(·)− 2 > −1. Then, choosing µ = 0 and k = n ≥ 2

we consider V(A) = |A|p(·)−2 A. This allows us to conclude from Lemma 1 ((cf. [45], Lemma 2.2) in
the case p(·) > 2 and ([46], Lemma 2) in the case 1 < p(·) < 2) the following lemma.

Lemma 2. There exists a constant c: = c(n, γ1, γ2), such that for any A, B ∈ Rn, there holds

(|A|2 + |B|2)
p(·)−2

2 |A− B|2 ≤ c (V(A)−V(B)) · (A− B),

where A 6= B.

Finally, we need the following Theorem ([32], Theorem 1.3), since this Theorem implies the strong
convergence in p(z)-Lebesgue spaces and therefore, it is important for our existence result.

Theorem 2. Let Ω ⊂ Rn an open, bounded Lipschitz domain with n ≥ 2 and p(·) > 2n
n+2 satisfying (6) and

(7). Furthermore, define p̂(·) : = max {2, p(·)}. Then, the inclusion W(ΩT) ↪→ L p̂(·)(ΩT) is compact.
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3. Proof of the Main Result

First of all, we will prove the existence of a unique weak solution to the Dirichlet problem (2).
Then, we are able to derive the desired stability estimate (3) immediately. The proof reads as follows:

Proof of Theorem 1. We start by constructing a sequence of the Galerkin’s approximations, where
the limit of this sequence is equal to the solution in (2). Therefore, we consider {φi(x)}∞

i=1 ⊂W1,γ2
0 (Ω),

which is an orthonormal basis in L2(Ω). Since W1,γ2
0 (Ω) is separable, it is a span of a countable

set of linearly independent functions {φk} ⊂ W1,γ2
0 (Ω). Moreover, we have the dense embedding

W1,γ2
0 (Ω) ⊂ L2(Ω) for any γ2 > 2n

n+2 (see, e.g., [47,48]). Thus, without loss of generality, we may
assume that this system forms an orthonormal basis of L2(Ω). Now, we fix a positive integer m and
define the approximate solution to (2) as follows:

u(m)(z) : =
m

∑
i=1

c(m)
i (t)φi(x),

where the coefficients c(m)
i (t) are defined via the identity∫

Ω

(
u(m)

t φi(x) + a(x, t,∇u(m))Dφi(x) + λ|u(m)|p(x,t)−2u(m)φi(x)
)

dx = 0, (15)

for i = 0, ..., m and t ∈ (0, T) with the initial condition

c(m)
i (0) =

∫
Ω

u0φidx, i = 1, . . . , m. (16)

Then, Equation (15) together with the initial condition (16) generates a system of m ordinary
differential equations 

(
c(m)

i

)′
(t) = Fi

(
t, c(m)

1 (t), . . . , c(m)
m (t)

)
,

c(m)
i (0) =

∫
Ω

u0φidx, i = 1, . . . , m,
(17)

since {φi(x)} is orthonormal in L2(Ω). By ([49], Theorem 1.44, p. 25), we know that there is, for every
finite system (17), a solution c(m)

i (t), i = 1, . . . , m on the interval (0, Tm) for some Tm > 0. Therefore,

we multiply Equation (15) by the coefficients c(m)
i (t), i = 1, . . . , m. Then, we need a priori estimates

that permit us to extend the solution to the whole domain (0, T). Thus, we integrate the equation over
(0, τ) for an arbitrarily τ ∈ (0, Tm). Next, we sum the resulting equation over i = 1, ..., m. Therefore,
it follows ∫

Ωτ

∂tu(m) · u(m) + a(z,∇u(m)) · ∇u(m) + λ|u(m)|p(x,t)−2u(m) · u(m)dz = 0 (18)

for a.e. τ ∈ (0, Tm). Furthermore, we use∫
Ωτ

∂tu(m) · u(m)dz ≥ 1
2

∫
Ω
|u(m)(·, τ)|2dx− 1

2

∫
Ω
|u0|2dx

for a.e. τ ∈ (0, Tm), since u0 ∈ L2(Ω), {φi}∞
i=1 ⊂ L2(Ω) and ‖u(m)(·, 0)‖2

L2(Ω)
≤ ‖u0‖2

L2(Ω)
, cf. [32].

Then, we derive at

1
2

∫
Ω
|u(m)(·, τ)|2dx +

∫
Ωτ

a(z,∇u(m)) · ∇u(m) + λ|u(m)|p(·)dz ≤ 1
2
‖u0‖2

L2(Ω) (19)
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for a.e. τ ∈ (0, Tm). Using the coercivity condition (8) on the left-hand side of (19), this yields

1
2

∫
Ω
|u(m)(·, τ)|2dx +

ν

c(γ1, γ2)

∫
Ωτ

|∇u(m)|p(·) + λ|u(m)|p(·)dz ≤ c
(
‖u0‖2

L2(Ω) + |ΩT |
)

,

where c = c(γ1, γ2, ν, L). This estimate holds for a.e. τ ∈ (0, Tm). Therefore, we have shown that u(m)

is uniformly bounded in Wp(·)(ΩTm) and L∞(0, Tm; L2(Ω)) independently of m. Thus, the solution of
system (17) can be continued to the maximal interval (0, T) and we have

sup
0≤τ≤T

∫
Ω
|u(m)(·, τ)|2dx +

∫
ΩT

|∇u(m)|p(·) + |u(m)|p(·)dz ≤ c
(
‖u0‖2

L2(Ω) + |ΩT |
)

. (20)

Please notice that, if λ ≥ 1, we can estimate the left-hand side of the second last inequality from
below by choosing λ = 1, while if λ = 0 the term depending on λ disappears. If λ ∈ (0, 1), we first of
all divide the second last equation by λ, then the constant c depends on λ, i.e., c = c(γ1, γ2, ν, L, 1

λ ),
and, finally, we estimate the left-hand side of the resulting estimate from below by using 1

λ ≥ 1.
Next, we want to derive a uniform bound for ∂tu(m) in Wp(·)(ΩT)

′. Therefore, we define
a subspace of the set of admissible test functions

Wm(ΩT) : =

{
η : η =

m

∑
i=1

diφi, di ∈ C1([0, T])

}
⊂Wp(·)

0 (ΩT).

Then, we choose a test function

ϕ(z) =
m

∑
i=1

di(t)φi(x) ∈ Wm(ΩT) with di(0) = di(T) = 0.

Note that ∂t ϕ exists, since the coefficients di(t) lie in C1([0, T]). Moreover, we know that
C1([0, T], W1,γ2

0 (ΩT)) ⊂ Wp(·)
0 (ΩT), and, therefore, we have also ϕ ∈ Wp(·)

0 (ΩT). Thus, we can
conclude by the definition of u(m) and (15) that

−
∫

ΩT

u(m)ϕtdz =
∫

ΩT

u(m)
t ϕdz = −

∫
ΩT

a(z,∇u(m)) · ∇ϕ + λ|u(m)|p(·)−2u(m) · ϕdz.

Then, we derive by utilizing the growth condition (4) and the generalized Hölder’s inequality (9)
the following estimate∣∣∣∣∫ΩT

u(m)ϕtdz
∣∣∣∣ ≤ ∫ΩT

(
|a(z,∇u(m))|+ λ|u(m)|p(·)−1

)
· (|∇ϕ|+ |ϕ|)dz

≤ θ
∫

ΩT

(
|a(z,∇u(m))|+ |u(m)|p(·)−1

)
· (|∇ϕ|+ |ϕ|)dz

≤ c
[
‖(1 + |∇u(m)|p(·)−1 + |u(m)|p(·)−1)‖Lp′(·)(ΩT)

]
× ‖ϕ‖Wp(·)(ΩT)

,

where c = c(γ1, γ2, L, θ) with θ: = max {1, λ}. Using (10) and (20), we have for every
ϕ ∈ Wm(ΩT) ⊂ Wp(·)

0 (ΩT) and any m that∣∣∣∣∫ΩT

u(m)ϕtdz
∣∣∣∣ ≤ c‖ϕ‖Wp(·)(ΩT)

with a constant c = c(γ1, γ2, ν, L, θ, ‖u0‖L2 , |ΩT |), where c is independent of m. This shows that
u(m)

t ∈Wp(·)(ΩT)
′ with

‖u(m)
t ‖Wp(·)(ΩT)′

≤ c(γ1, γ2, ν, L, θ, ‖u0‖L2 , |ΩT |).
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Therefore, we have a uniform bound of u(m)
t in Wp(·)(ΩT)

′ and it follows that{
u(m) ∈Wp(·)

0 (ΩT) ⊆ Lγ1(0, T; W1,γ1
0 (Ω)),

u(m)
t ∈Wp(·)(ΩT)

′ ⊆ Lγ′2(0, T; W−1,γ′2(Ω))

are bounded. This implies the following weak convergences for the sequence
{

u(m)
}

(up to
a subsequence): 

u(m) ⇀∗ u weakly* in L∞(0, T; L2(Ω)),

∇u(m) ⇀ ∇u weakly in Lp(·)(ΩT ,Rn),

u(m)
t ⇀ ut weakly in Wp(·)(ΩT)

′.

Moreover, by Theorem 2, we can conclude that the sequence
{

u(m)
}

(up to a subsequence)

converges strongly in L p̂(·)(ΩT) with p̂(·) := max {2, p(·)} to some function u ∈W(ΩT). Thus, we get
the desired convergences {

u(m) → u strongly in L p̂(·)(ΩT),

u(m) → u a.e. in ΩT

for the sequence
{

u(m)
}

(up to a subsequence).
Furthermore, the growth assumption of a(z, ·) and the estimate (20) imply that the sequence{

a(z,∇u(m))
}

m∈N
is bounded in Lp′(·)(ΩT ,Rn). Consequently, after passing to a subsequence once

more, we can find a limit map A0 ∈ Lp′(·)(ΩT ,Rn) with

a(z,∇u(m))→ A0 as m→ ∞. (21)

Our next aim is to show that A0 = a(z,∇u) for almost every z ∈ ΩT . First of all, we should
mention that each of u(m) satisfies the identity (15) with a test function ϕ ∈ Wm(ΩT). This follows by
the method of construction (see [36]). Then, we fix an arbitrary m ∈ N. Thus, we have for every s ≤ m
the following equation

−
∫

ΩT

u(m)
t ϕ + a(z,∇u(m))∇ϕ + λ(|u(m)|p(x,t)−2u(m))ϕdz = 0

for all test functions ϕ ∈ Ws(ΩT). Passing to the limit m → ∞, we can conclude that, for all test
functions ϕ ∈ Ws(ΩT), we have

−
∫

ΩT

ut ϕ + A0∇ϕ + λ(|u|p(x,t)−2u)ϕdz = 0 (22)

with an arbitrary s ∈ N, by the convergence from above. Therefore, it follows that the identity (22)
holds for every ϕ ∈ Wp(·)

0 (ΩT). According to monotonicity assumption (5), we know that for every
w ∈ Ws(ΩT) and every s ≤ m, the following holds

∫
ΩT

[a(z,∇u(m))− a(z,∇w)]∇(u(m) − w)dz ≥ 0. (23)
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Moreover, it follows from (15) the conclusion from above and the choice of an admissible test
function ϕ = u(m) − w with w ∈ Ws(ΩT) that

−
∫

ΩT

u(m)
t ϕ + a(z,∇u(m))∇ϕ + λ(|u(m)|p(x,t)−2u(m))ϕdz = 0. (24)

Adding (23) and (24), we then have

−
∫

ΩT

u(m)
t ϕ + a(z,∇u(m))∇ϕ + λ(|u(m)|p(x,t)−2u(m))ϕdz +

∫
ΩT

[a(z,∇u(m))− a(z,∇w)]∇ϕdz ≥ 0

with a test function ϕ = u(m) − w. This yields

−
∫

ΩT

u(m)
t (u(m) − w) + a(z,∇w)∇(u(m) − w) + λ(|u(m)|p(x,t)−2u(m))(u(m) − w)dz ≥ 0.

Then, we test Equation (22) with ϕ = u(m) − w, subtract the resulting equation from the last
estimate and finally pass to the limit m→ ∞, yielding

−
∫

ΩT

[A0 − a(z,∇w)]∇(u− w)dz ≥ 0

for all w ∈ Ws(ΩT). SinceWs(ΩT) ⊂ Wp(·)
0 (ΩT) is dense, we are allowed to choose w ∈ Wp(·)

0 (ΩT).

Hence, we choose w = u± εζ with an arbitrary ζ ∈Wp(·)
0 (ΩT). This yields

−ε
∫

ΩT

[A0 − a(z,∇(u± εζ))]∇ζdz ≥ 0.

Then, passing to the limit ε ↓ 0, we can conclude that∫
ΩT

[A0 − a(z,∇u)]∇ζdz = 0

for all ζ ∈Wp(·)
0 (ΩT). This shows that

A0 = a(z,∇u) for almost every z ∈ ΩT .

Moreover, we have to show that u(·, 0) = u0. First of all, we should mention that we get from (22)
and the integration by parts the following equation∫

ΩT

uϕt − a(z,∇u)∇ϕ− λ(|u|p(x,t)−2u)ϕdz =
∫

Ω
(u · ϕ)(·, 0)dx

for all ϕ ∈Wp(·)
0 (ΩT) with ϕ(·, T) = 0. Moreover, we can conclude from (24)—similar to the previous

estimate—that∫
ΩT

u(m)ϕt − a(z,∇u(m))∇ϕ− λ(|u(m)|p(x,t)−2u(m))ϕdz =
∫

Ω
(u(m) · ϕ)(·, 0)dx

for all ϕ ∈Wp(·)
0 (ΩT) with ϕ(·, T) = 0. Passing to the limit m→ ∞ and using the convergences from

above, we get

∫
ΩT

uϕt − a(z,∇u)∇ϕ− λ(|u|p(x,t)−2u)ϕdz =
∫

Ω
u0 · ϕ(·, 0)dx,
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where u(m)(·, 0)→ u0 as m→ ∞, since

u(m)(·, 0) =
m

∑
i=1

c(m)
i (0)φi(x) =

m

∑
i=1

∫
Ω

u0φi(x)dxφi(x)→
∞

∑
i=1

∫
Ω

u0φi(x)dxφi(x) = u0 as m→ ∞.

Furthermore, ϕ(·, 0) is arbitrary. Therefore, we can conclude that u(·, 0) = u0. This shows that
there exists a weak solution to the Dirichlet problem (2).

Next, we prove the uniqueness of the weak solution. Therefore, we assume that there exist
two weak solutions u and u∗ ∈ C0([0, T]; L2(Ω)) ∩Wp(·)

0 (ΩT) with ∂tu, ∂tu∗ ∈ Wp(·)(ΩT)
′ of

the Dirichlet problem (2). Thus, we have the following weak formulations∫
ΩT

[u · ϕt − a(z,∇u) · ∇ϕ]dz = λ
∫

ΩT

|u|p(x,t)−2u · ϕdz

and ∫
ΩT

[u∗ · ϕt − a(z,∇u∗) · ∇ϕ]dz = λ
∫

ΩT

|u∗|p(x,t)−2u∗ · ϕdz

with the admissible test function ϕ = u− u∗ ∈Wp(·)
0 (ΩT), since Wp(·)

0 (ΩT)
′ is the dual of Wp(·)

0 (ΩT).
Hence, we can conclude by subtracting the second equation from the first one that∫

ΩT

(u− u∗)(u− u∗)t − (a(z,∇u)− a(z,∇u∗))∇(u− u∗)dz

=
∫

ΩT

λ(|u|p(x,t)−2u− |u∗|p(x,t)−2u∗)(u− u∗)dz.

Using the monotonicity condition (5) and Lemma 2, we derive at

0 ≥
∫

ΩT

(u− u∗) · (u− u∗)tdz =
1
2

∫
ΩT

∂t(u− u∗)2dz.

Therefore, we have that 0 ≥ 1
2‖u(t) − u∗(t)‖2

L2(Ω)
≥ 0 for every t ∈ (0, T),

since u(·, 0) = u∗(·, 0) = u0.
Finally, we prove the stability of the weak solution to the Dirichlet problem (2). To this aim, we

consider the unique weak solution u ∈ C0([0, T]; L2(Ω)) ∩Wp(·)
0 (ΩT) with ∂tu ∈ Wp(·)(ΩT)

′ to (2)

and the unique weak solution v ∈ C0([0, T]; L2(Ω)) ∩Wp(·)
0 (ΩT) with ∂tv ∈Wp(·)(ΩT)

′ to
∂tv− div a(z,∇v) = −λ(|v|p(x,t)−2v) in ΩT ,

v = 0 on ∂Ω× (0, T),

v(·, 0) = v0 on Ω× {0} ,

where the initial values u0, v0 ∈ L2(Ω) of both problems are different, i.e., u0 6= v0. The existence
is guaranteed by Theorem 1. Moreover, we know that u − v ∈ Wp(·)

0 (ΩT). Therefore, we choose

ϕ = u− v ∈Wp(·)
0 (ΩT) as an admissible test function in both weak formulations∫

ΩT
[u · ϕt − a(z,∇u) · ∇ϕ]dz = λ

∫
ΩT

|u|p(x,t)−2u · ϕdz

and ∫
ΩT

[v · ϕt − a(z,∇v) · ∇ϕ]dz = λ
∫

ΩT

|v|p(x,t)−2v · ϕdz,
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since Wp(·)
0 (ΩT)

′ is the dual of Wp(·)
0 (ΩT). Now, we subtract the second equation from the first one.

This yields ∫
ΩT

[(u− v) · (u− v)t − (a(z,∇u)− a(z,∇v)) · ∇(u− v)]dz

= λ
∫

ΩT

[|u|p(x,t)−2u− |v|p(x,t)−2v] · (u− v)dz.

Using the monotonicity condition (5) and Lemma 2, we derive at

0 ≥
∫

ΩT

(u− v)t · (u− v)dz =
1
2

∫ T

0
∂t‖(u− v)‖L2(Ω)dt,

which implies the stability estimate (3), i.e.,∫
Ω
|u(x, t)− v(x, t)|2dx ≤

∫
Ω
|u0(x)− v0(x)|2dx

for a.e. t ∈ [0, T). This shows the conclusion of the Theorem.

4. Conclusions

In this manuscript we proved the existence of a unique weak solution to the Dirichlet problem (2).
Moreover, we mentioned that we can also use this approach to show the existence of a unique weak
solution to more general problems, please see Remark 3. Furthermore, we studied the stability of the
unique weak solution to the Dirichlet problem (2). To this aim, we established the stability estimate (3)
for two unique weak solutions to (2) with different initial values.Therefore, it turns out that these weak
solutions are controlled by their initial value completely.
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