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Abstract: We consider the Gauss–Manin differential equations for hypergeometric integrals associated
with a family of weighted arrangements of hyperplanes moving parallel to themselves. We reduce
these equations modulo a prime integer p and construct polynomial solutions of the new differential
equations as p-analogs of the initial hypergeometric integrals. In some cases, we interpret the
p-analogs of the hypergeometric integrals as sums over points of hypersurfaces defined over the finite
field Fp. This interpretation is similar to the classical interpretation by Yu. I. Manin of the number
of points on an elliptic curve depending on a parameter as a solution of a Gauss hypergeometric
differential equation. We discuss the associated Bethe ansatz.
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1. Introduction

We consider an arrangement of affine hyperplanes (Hj)
n
j=1 in Ck. Let f j(t1, . . . , tk) be a first-degree

polynomial on Ck whose kernel is Hj. Let (aj)
n
j=1, κ be nonzero complex numbers. An associated

multidimensional hypergeometric integral is an integral of the form:

I =
∫

γ
∏n

j=1 f j(t1, . . . , tk)
aj
κ dt1 ∧ · · · ∧ dtk

where γ is a cycle in the complement to the union of the hyperplanes. We assume that the hyperplanes
depend on parameters z1, . . . , zn and move parallel to themselves when the parameters change.
Then the integral extends to a multivalued holomorphic function of the parameters. The holomorphic
function is called a multidimensional hypergeometric function and is associated with this family of
arrangements. The simplest example of such a function is the classical hypergeometric function.

The multidimensional hypergeometric functions can be combined into collections so that
the functions of a collection satisfy a system of first-order linear differential equations called the
Gauss–Manin differential equations.

If all polynomials ( f j)
n
j=1 have integer coefficients and the numbers (aj), κ are integers, then the

Gauss–Manin differential equations can be reduced modulo a prime integer p large enough. The goal
of this paper is to construct polynomial solutions of the Gauss–Manin differential equations over
the field Fp with p elements. Our solutions are p-analogs of the multidimensional hypergeometric
integrals. The construction of the solutions is motivated by the classical paper [1] by Yu. I. Manin
(cf. section “Manin’s Result: The Unity of Mathematics” in [2]; see also [3,4]).

The paper is organized as follows. In Section 2, we recall the basic notions associated with an affine
arrangement of hyperplanes in Ck. In Section 3, we consider a family of arrangements of hyperplanes
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in Ck whose hyperplanes move parallel to themselves when the parameters of the family change.
We introduce the Gauss–Manin differential equations and multidimensional hypergeometric integrals.
We show that the multidimensional hypergeometric integrals satisfy the Gauss–Manin differential
equations (see Theorem 3). In Section 4, we consider the reduction of this situation modulo p and
construct polynomial solutions of the Gauss–Manin differential equations over Fp (see Theorem 5),
which is the main result of this paper. We interpret our solutions as integrals over Fk

p under certain
conditions (see Theorem 6). Such integrals could be considered as p-analogs of the multidimensional
hypergeometric integrals. In Section 5, we consider examples. Under certain conditions, we interpret
our polynomial solutions as sums over points on some hypersurfaces over Fp (see Theorem 10).
This statement is analogous to the interpretation in Manin’s paper [1] of the number of points on an
elliptic curve depending on a parameter as a solution of a Gauss hypergeometric differential equation.
In Section 6, we briefly discuss the associated Bethe ansatz. We introduce a system of the Bethe ansatz
equations and construct a common eigenvector to geometric Hamiltonians out of every solution of
the Bethe ansatz equations (see Theorem 11). We show that the Bethe eigenvectors corresponding
to distinct solutions are orthogonal with respect to the associated symmetric contravariant form
(see Corollary 3).

2. Arrangements

We recall some facts about hyperplane arrangements, Orlik–Solomon algebras and flag
complexes from [5].

2.1. An Affine Arrangement

Let k and n be positive integers, where k < n. Denote J = {1, . . . , n}.
Let C = (Hj)j∈J , be an arrangement of n affine hyperplanes in Ck. Denote U = Ck −∪j∈J Hj as the

complement. An edge Xα ⊂ Ck of the arrangement C is a nonempty intersection of some hyperplanes
of C. Denote by Jα ⊂ J the subset of indices of all hyperplanes containing Xα. Denote lα = codimCk Xα.

We always assume that the arrangement C is essential; that is, C has a vertex, an edge that is
a point.

An edge is called dense if the subarrangement of all hyperplanes containing it is irreducible:
the hyperplanes cannot be partitioned into nonempty sets, so that, after a change of coordinates,
hyperplanes in different sets are in different coordinates. In particular, each hyperplane of C is a
dense edge.

2.2. Flag Complex

For ` = 0, . . . , k, let Flag`(C) denote the set of all flags:

Ck = L0 ⊃ L1 ⊃ · · · ⊃ L`

where each Lj is an edge of C of codimension j. Let F `(C,Z) denote the quotient of the free abelian
group on Flag`(C) by the following relations. For every flag with a gap:

F̂ = (L0 ⊃ L1 ⊃ Li−1 ⊃ Li+1 ⊃ · · · ⊃ Lk), i < k

We impose:

∑F⊃F̂F = 0 (1)

in F `(C,Z), where the sum is over all flags F = (L̃0 ⊃ L̃1 ⊃ . . . ⊃̃L`) ∈ Flag`(C), such that L̃j = Lj for
all j 6= i. The abelian group F `(C,Z) is a free abelian group (see [5], Theorem 2.9.2).

There is an “extension of flags” differential d : F `(C,Z)→ F `+1(C,Z) defined by:

d(L0 ⊃ L1 ⊃ · · · ⊃ L`) = ∑L`+1(L0 ⊃ L1 ⊃ · · · ⊃ L` ⊃ L`+1)
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where the sum is over all edges L`+1 of C of codimension ` + 1 contained in L`. It follows from
Equation (1) that d2 = 0. Thus we have a complex, the flag complex, (F •(C,Z), d).

2.3. Orlik–Solomon Algebra

Define abelian groups A`(C,Z), ` = 0, 1, . . . , k as follows. For ` = 0, set A0(C,Z) = Z. For ` > 0,
A`(C,Z) is generated by `-tuples (H1, . . . , H`) of hyperplanes Hi ∈ C, subject to the relations:

(i) (H1, . . . , H`) = 0 if H1, . . . , H` are not in general position (i.e., if codim H1 ∩ · · · ∩ H` 6= `).
(ii) (Hσ(1), . . . , Hσ(`)) = (−1)|σ|(H1, . . . , H`) for every permutation σ ∈ Σ`.
(iii) For any `+ 1 hyperplanes H1, . . . , H`+1 that have a non-empty intersection, H1 ∩ · · · ∩ H`+1 6= ∅,

and that are not in general position:

∑`+1
i=1 (−1)i(H1, . . . , Ĥi, . . . , H`+1) = 0

where Ĥi denotes omission.

The abelian group A`(C,Z) is a free abelian group, (see [6]; [5], Theorem 2.9.2).
The Orlik–Solomon algebra of the arrangement C is the direct sum A•(C,Z) = ⊕k

`=0A
`(C,Z)

endowed with the product given by (H1, . . . , Hi) ∧ (H′1, . . . , H′j) = (H1, . . . , Hi, H′1, . . . , H′j). It is a
graded skew-commutative algebra over Z.

2.4. Orlik–Solomon Algebra as an Algebra of Differential Forms

For each hyperplane H ∈ C, pick a polynomial fH of degree 1 on Ck whose zero set is H; that is,
let fH = 0 be an affine equation for H. Consider the logarithmic differential form:

ι(H) := d log fH =
d fH
fH

on Ck. We note that ι(H) does not depend on the choice of fH but only on H. Let Ā•(C,Z) be the
Z-algebra of differential forms generated by 1 and ι(H), H ∈ C. The assignment H 7→ ι(H) defines an
isomorphism A•(C,Z) ∼−→ Ā•(C,Z) of graded algebras. Henceforth we shall not distinguish between
A and Ā.

2.5. Duality—See [5] (cf. [7], Section 2.5)

The vector spaces A`(C,Z) and F `(C,Z) are dual. The pairing A`(C,Z) ⊗ F `(C,Z) → Z is
defined as follows. For Hj1 , ..., Hj` in general position, set F(Hj1 , ..., Hj`) = (L̃0 ⊃ · · · ⊃ L̃`) ∈ F `(C,Z),
where L̃0 = Ck and:

L̃i = Hj1 ∩ · · · ∩ Hji , i = 1, . . . , `

For any F = (L0 ⊃ · · · ⊃ L`) ∈ F `(C,Z), define 〈(Hj1 , ..., Hj`), F〉 = (−1)|σ|, if
F = F(Hjσ(1) , ..., Hjσ(`)) for some σ ∈ S`, and 〈(Hj1 , ..., Hj`), F〉 = 0 otherwise.

2.6. Flag and Orlik–Solomon Spaces over a Field F

For any field F and ` = 0, . . . , k, we define:

F `(C,F) = F `(C,Z)⊗Z F, A`(C,F) = A`(C,Z)⊗Z F (2)

2.7. Weights

An arrangement C is weighted if a map a : J → C×, j 7→ aj, is given; aj is called the weight of Hj.
For an edge Xα, define its weight as aα = ∑j∈Jα

aj.
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2.8. Contravariant Form and Map—See [5]

The weights determine a symmetric bilinear form S(a) on F `(C,C), given by:

S(a)(F1, F2) = ∑{j1,...,jp}⊂J aj1 · · · aj` 〈(Hj1 , . . . , Hj`), F1〉〈(Hj1 , . . . , Hj`), F2〉

where the sum is over all unordered `-element subsets. The form is called the contravariant form.
It defines a homomorphism:

S (a) : F `(C,C)→ F `(C,C)∗ ' A`(C,C), (L0 ⊃ · · · ⊃ L`) 7→ ∑ aj1 · · · aj` (Hj1 , . . . , Hj`)

where the sum is taken over all `-tuples (Hj1 , ..., Hj`), such that:

Hj1 ⊃ L1, . . . , Hj` ⊃ L`

Theorem 1 ([5], Theorem 3.7). For ` = 1, . . . , k, choose a basis of the free abelian group F `(C,Z). Then with
respect to that basis, the determinant of the contravariant form S(a) on F `(C,Z) equals the product of suitable
non-negative integer powers of the weights of all dense edges of C of codimension not greater than `.

Corollary 1. If the weights of all dense edges of C are nonzero, then the contravariant map S (a) : F `(C,C)→
A`(C,C) is an isomorphism for all `.

2.9. Aomoto Complex

Define:
ν(a) = ∑j∈J aj(Hj) ∈ A1(C,C) (3)

Multiplication by ν(a) defines a differential:

d(a) : A`(C,C) → A`+1(C,C), x 7→ x ∧ ν(a)

on A•(C,C), (d(a))2 = 0. The complex (A•(C,C), d(a)) is called the Aomoto complex. The master
function corresponding to the weighted arrangement (C, a) is the function:

Φ = ΦC,a = ∏j∈J f
aj
Hj

(4)

where each fHj = 0 is an affine equation for the hyperplane Hj. Then ν(a) = dΦ/Φ.

Theorem 2 ([5], Lemma 3.2.5; and [8], Lemma 5.1). The Shapovalov map is a homomorphism of complexes:

S (a) : (F •(C,Z), d)→ (A•(C,Z), d(a))

2.10. Singular Vectors

An element v ∈ F k(C,C) is called singular if 〈d(a)A`−1(C,C), v〉 = 0. Denote by:

SingF k(C,C) ⊂ F k(C,C)

the subspace of all singular vectors.

2.11. Arrangements with Normal Crossings Only

An essential arrangement C is with normal crossings only, if exactly k hyperplanes meet at every
vertex of C. Assume that C is an essential arrangement with normal crossings only.

A subset {j1, . . . , j`} ⊂ J is called independent if the hyperplanes Hj1 , . . . , Hj` intersect transversally.
A basis of A`(C,C) is formed by (Hj1 , . . . , Hj`), where {j1 < · · · < j`} are independent `-element
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subsets of J. The dual basis of F `(C,C) is formed by the corresponding vectors F(Hj1 , . . . , Hj`).
These bases of A`(C,C) and F `(C,C) are called standard.

In F `(C,C), we have:

F(Hj1 , . . . , Hj`) = (−1)|σ|F(Hjσ(1) , . . . , Hjσ(`)) (5)

for any permutation σ ∈ S`. For an independent subset {j1, . . . , j`}, we have
S(a)(F(Hj1 , . . . , Hj`), F(Hj1 , . . . , Hj`)) = aj1 · · · aj` and S(a)(F(Hj1 , . . . , Hj`), F(Hi1 , . . . , Hi`)) = 0
for any distinct elements of the standard basis.

3. A Family of Parallelly Transported Hyperplanes

3.1. An Arrangement in Cn ×Ck

Recall that J = {1, . . . , n}. Consider Ck with coordinates t1, . . . , tk, Cn with coordinates z1, . . . , zn,
the projection Cn ×Ck → Cn. Fix n nonzero linear functions on Ck, gj = b1

j t1 + · · ·+ bk
j tk, j ∈ J, where

bi
j ∈ C. Define n linear functions on Cn ×Ck:

f j = zj + gj = zj + b1
j t1 + · · ·+ bk

j tk, j ∈ J (6)

In Cn ×Ck, define the arrangement:

C̃ = {H̃j | f j = 0, j ∈ J}

Denote Ũ = Cn ×Ck −∪j∈J H̃j.
For every fixed z0 = (z0

1, . . . , z0
n), the arrangement C̃ induces an arrangement C(z0) in the fiber over

z0 of the projection. We identify every fiber with Ck. Then C(z0) consists of hyperplanes Hj(z0), j ∈ J,
defined in Ck by the same equations, f j = 0. Denote:

U(C(z0)) = Ck −∪j∈J Hj(z0) (7)

as the complement to the arrangement C(z0).
We assume that for any z0, the arrangement C(z0) has a vertex. This means that the span of (gj)j∈J

is k-dimensional.
A point z0 ∈ Cn is called good if C(z0) has normal crossings only. Good points form the

complement in Cn to the union of suitable hyperplanes called the discriminant.

3.2. Discriminant

The collection (gj)j∈J induces a matroid structure MC on J. A subset C = {i1, . . . , ir} ⊂ J
is a circuit in MC if (gi)i∈C are linearly dependent but any proper subset of C gives linearly
independent gi’s.

For a circuit C = {i1, . . . , ir}, let (λi
C)i∈C be a nonzero collection of complex numbers such that

∑i∈C λi
Cgi = 0. Such a collection is unique up to multiplication by a nonzero number.

For every circuit C, we fix such a collection and denote fC = ∑i∈C λi
Czi. The equation fC = 0

defines a hyperplane HC in Cn. It is convenient to assume that λi
C = 0 for i ∈ J − C and write

fC = ∑i∈J λi
Czi.

For any z0 ∈ Cn, the hyperplanes (Hi(z0))i∈C in Ck have a nonempty intersection if and only if
z0 ∈ HC. If z0 ∈ HC, then the intersection has codimension r− 1 in Ck.

Denote by CC the set of all circuits inMC. Denote ∆ = ∪C∈CC HC. The arrangement C(z0) in Ck

has normal crossings only, if and only if z0 ∈ Cn − ∆.
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3.3. Good Fibers

For any z1, z2 ∈ Cn −∆, the spaces F `(C(z1),C), F `(C(z2),C) are canonically identified. Namely,
a vector F(Hj1(z

1), . . . , Hj`(z
1)) of the first space is identified with the vector F(Hj1(z

2), . . . , Hj`(z
2))

of the second.
Assume that weights a = (aj)j∈J are given. Then each arrangement C(z) is weighted.

The identification of spaces F `(C(z1),C), F `(C(z2),C) for z1, z2 ∈ Cn−∆ identifies the corresponding
subspaces SingF k(C(z1),C) and SingF k(C(z2),C) and the corresponding contravariant forms.

For a point z0 ∈ Cn − ∆, denote VC = F k(C(z0),C), SingVC = SingF k(C(z0),C). The triple
(VC, SingVC, S(a)) does not depend on z0 ∈ Cn − ∆ under the above identification.

3.4. Geometric Hamiltonians (cf. [9,10])

For any circuit C = {i1, . . . , ir}, we define a linear operator LC : VC → VC in terms of the standard
basis of VC (see Section 2.11).

For m = 1, . . . , r, denote Cm = C − {im}. Let {j1 < · · · < jk} ⊂ J be an independent
ordered subset and F(Hj1 , . . . , Hjk ) be the corresponding element of the standard basis. Define
LC : F(Hj1 , . . . , Hjk ) 7→ 0 if |{j1, . . . , jk} ∩ C| < r− 1. If {j1, . . . , jk} ∩ C = Cm for some 1 6 m 6 r, then
using the skew-symmetry property of Equation (5), we can write:

F(Hj1 , . . . , Hjk ) = ± F(Hi1 , Hi2 , . . . , Ĥim , . . . , Hir−1 Hir , Hs1 , . . . , Hsk−r+1)

with {s1, . . . , sk−r+1} = {j1, . . . , jk} − Cm. Define:

LC : F(Hi1 , . . . , Ĥim , . . . , Hir , Hs1 , . . . , Hsk−r+1) 7→
(−1)m∑r

l=1(−1)lail F(Hi1 , . . . , Ĥil , . . . , Hir , Hs1 , . . . , Hsk−r+1)

Lemma 1 ([9]). The operator LC is symmetric with respect to the contravariant form.

Consider the logarithmic differential one-forms:

ωj =
d f j

f j
, j ∈ J, ωC =

d fC
fC

, C ∈ CC

in variables t1, . . . , tk, z1, . . . , zn. For any circuit C = {i1, . . . , ir}, we have:

ωi1 ∧ · · · ∧ωir = ωC ∧∑r
l=1(−1)l−1ωi1 ∧ · · · ∧ ω̂il ∧ · · · ∧ωir

Lemma 2 ([9], Lemma 4.2; and [10], Lemma 5.4). We have:

∑ independent
{j1<···<jk}⊂J

(
∑j∈J ajωj

)
∧ωj1 ∧ · · · ∧ωjk ⊗ F(Hj1 , . . . , Hjk ) = (8)

∑ independent
{j1<···<jk}⊂J

∑C∈CC
ωC ∧ωj1 ∧ · · · ∧ωjk ⊗ LCF(Hj1 , . . . , Hjk )

Proof. The lemma is a direct corollary of the definition of the maps LC.

The identity in Equation (8) is called the key identity.

Recall that ωC = d fC/ fC and fC = ∑j∈J λi
Czi. For i ∈ J, we introduce the EndC(VC)-valued

rational functions in z1, . . . , zn by the formula:

Ki(z) = ∑C∈CC

λi
C

fC(z)
LC , i ∈ J (9)
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Then:

∑C∈CC
ωC ⊗ LC = ∑i∈Jdzi ⊗ Ki(z) (10)

The functions Ki(z) are called geometric Hamiltonians.

Corollary 2. The geometric Hamiltonians are symmetric with respect to the contravariant form,
S(a)(Ki(z)x, y) = S(a)(x, Ki(z)y) for i ∈ J, x, y ∈ VC.

3.5. Gauss–Manin Differential Equations

The Gauss–Manin differential equations with parameter κ ∈ C× are given by the following
system of differential equations on a VC-valued function I(z1, . . . , zn):

κ
∂I
∂zi

(z) = Ki(z)I(z), i ∈ J (11)

where Ki(z) are the geometric Hamiltonians defined in Equation (9).
We introduce the master function:

Φ(z, t, a) = ∏j∈J f j(z, t)aj (12)

on Ũ ⊂ Cn ×Ck. The function Φ(z, t, a)1/κ defines a rank-one local system Lκ on Ũ, whose horizontal
sections over open subsets of Ũ are univalued branches of Φ(z, t, a)1/κ multiplied by complex numbers.

For z0 ∈ Cn − ∆ and an element γ(z0) ∈ Hk(U(C(z0)),Lκ |U(C(z0))), we interpret the integration
map Ak(C(z0),C) = V∗ → C, ω 7→

∫
γ(z0) Φ(z0, t, a)1/κω as an element of F k(C(z0),C) = VC.

The vector bundle:
∪z0∈Cn−∆ Hk(U(C(z0)),Lκ |U(C(z0)))→ Cn − ∆

has a canonical flat Gauss–Manin connection. A locally constant section γ : z 7→ γ(z) ∈
Hk(U(C(z)),Lκ |U(C(z))) of the Gauss–Manin connection defines a VC-valued function:

I(γ)(z1, . . . , zn) = ∑
independent
{j1<···<jk}⊂J

(∫
γ(z)

Φ(z, t, a)1/κωj1 ∧ · · · ∧ωjk

)
F(Hj1 , . . . , Hjk ) (13)

The integrals:

I(γ)j1,...,jk
(z1, . . . , zn) =

∫
γ(z)

Φ(z, t, a)1/κωj1 ∧ · · · ∧ωjk

are called the multidimensional hypergeometric integrals associated with the master function Φ(z, t, a).

Theorem 3 ([10]). The function I(γ) takes values in SingVC and gives solutions of the Gauss–Manin
differential equations.

The condition that the function I(γ) takes values in SingVC may be reformulated as the system
of equations:

∑j∈J aj I
(γ)
j,j2,...,jk

= 0, for j2, . . . , jk ∈ J (14)

3.6. Proof of Theorem 3

We sketch the proof following [3,5]. The intermediate statements of this sketch are used further
when constructing solutions of the Gauss–Manin differential equations over a finite field Fp. The proof
of Theorem 3 is based on the following cohomological relations, Equations (21) and (24).
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For any j1, . . . , jk ∈ J, denote:

dj1,...,jk = detk
i,l=1(b

i
jl ), Wj1,...,jk (z, t) =

dj1,...,jk

∏k
l=1 f jl (z, t)

(15)

We have:
ωj1 ∧ · · · ∧ωjk = Wj1,...,jk (z, t) dt1 ∧ · · · ∧ dtk + . . . (16)

where the dots denote the terms having differentials dzj1 , . . . , dzjk . We note that the rational function
Wj1,...,jk (z, t) has the form:

Pj1,...,jk (z, t)∏j∈J f j(z, t)−1 (17)

where Pj1,...,jk (z, t) is a polynomial with integer coefficients in variable z1, . . . , zn, t1, . . . , tk and bi
j, j ∈ J,

i = 1, . . . , n (see Equation (6)). For any j2, . . . , jk ∈ J, we write:

ωj2 ∧ · · · ∧ωjk = ∑k
l=1Wj2,...,jk ;l(z, t) dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk + . . . (18)

where the dots denote the terms having differentials dzj2 , . . . , dzjk , and Wj1,...,jk ;l are rational functions
in z, t of the form:

Pj1,...,jk ;l(z, t)∏j∈J f j(z, t)−1 (19)

Here, Pj1,...,jk ;l(z, t) are polynomials with integer coefficients in variable z1, . . . , zn, t1, . . . , tk and bi
j,

j ∈ J, i = 1, . . . , n (see Equation (6)). The formula:

ν(a) ∧ωj2 ∧ · · · ∧ωjk = ∑j∈J aj ωj ∧ωj2 ∧ · · · ∧ωjk (20)

implies the identity:

κ dt

(
Φ(z, t, a)1/κ∑k

l=1Wj2,...,jk ;l(z, t) dt1 ∧ · · · ∧ d̂tl ∧ . . . dtk

)
(21)

= ∑j∈J ajΦ(z, t, a)1/κWj,j2,...,jk (z, t) dt1 ∧ · · · ∧ dtk

where dt denotes the differential with respect to the variables t.
Now we deduce a corollary of the key identity, Equation (8). Choose i ∈ J. For any independent

{j1 < . . . < jk} ⊂ J, we write:

Φ(z, t, a)1/κωj1 ∧ · · · ∧ωjk = Φ(z, t, a)1/κWj1,...,jk (z, t) dt1 ∧ · · · ∧ dtk (22)

+ dzi ∧
(

Φ(z, t, a)1/κ∑k
l=1Wj1,...,jk ;i,l(z, t) dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk

)
+ . . .

where the dots denote the terms that contain dzj with j 6= i, and the coefficients Wj1,...,jk ;i,l(z, t) are
rational functions in z, t of the form:

Pj1,...,jk ;i,l(t, z)∏j∈J f j(z, t)−1 (23)

Here, Pj1,...,jk ;i,l(z, t) are polynomials with integer coefficients in variable z1, . . . , zn, t1, . . . , tk and
bi

j, j ∈ J, i = 1, . . . , n (see Equation (6)).
Equation (8) implies that for any i ∈ J, we have:

κ∑ independent
{j1<···<jk}⊂J

( ∂

∂zi

(
Φ(z, t, a)1/κWj1,...,jk (z, t)

)
dt1 ∧ · · · ∧ dtk (24)

+ dt

(
Φ(z, t, a)1/κ∑n

l=1Wj1,...,jk ;i,l(t, z) dt1 ∧ · · · ∧ d̂tl ∧ · · · ∧ dtk

))
F(Hj1 , . . . , Hjk )

= Ki(z)∑ independent
{j1<···<jk}⊂J

Φ(z, t, a)1/κWj1,...,jk (z, t) dt1 ∧ · · · ∧ dtk F(Hj1 , . . . , Hjk )
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where dt denotes the differential with respect to the variables t.
Integrating both sides of Equations (21) and (24) over γ(z) and using Stokes’ theorem, we obtain

Equations (14) and (11) for the vector I(γ)(z) in Equation (13). Theorem 3 is proved.

3.7. Remarks

It is known from [5] that for generic κ, all SingVC-valued solutions of the Gauss–Manin
Equation (11) are given by Equation (13). Hence, we have the following statement.

Theorem 4 ([10]). The geometric Hamiltonians Hi(z), i ∈ J preserve SingVC and commute on SingVC,
namely, [Hi(z0)

∣∣
SingVC

, Hj(z0)
∣∣
SingVC

] = 0 for all i, j ∈ J and z0 ∈ Cn − ∆.

4. Reduction Modulo p of a Family of Parallelly Transported Hyperplanes

4.1. An Arrangement in Cn ×Ck over Z

Similarly to Section 3.1, we consider Ck with coordinates t1, . . . , tk, Cn with coordinates z1, . . . , zn,
the projection Cn ×Ck → Cn. Fix n nonzero linear functions on Ck, gj = b1

j t1 + · · ·+ bk
j tk, j ∈ J, with

integer coefficients bi
j ∈ Z. Define n linear functions on Cn ×Ck:

f j = zj + gj = zj + b1
j t1 + · · ·+ bk

j tk (25)

where j ∈ J.
Recall the matroid structureMC on J, the set CC of all circuits inMC, and the linear functions

fC = ∑i∈J λi
Czi labeled by C ∈ CC, where the functions are defined in Section 3.2. Each of these

functions is determined up to multiplication by a nonzero constant.

Definition 1. We fix the coefficients (λi
C)i∈J to be integers such that the greatest common divisor of (λi

C)i∈J
equals 1.

This is possible as all bi
j are integers. This choice of the coefficients defines the function fC uniquely

up to multiplication by ±1.
Let p be a prime integer and Fp be the field with p elements. Let [ ] : Z → Fp be the natural

projection. We introduce the following linear functions in z, t with coefficients in Fp:

[g]j : = ∑k
i=1[b

i
j]ti, [ f ]j := zj + [g]j, j ∈ J (26)

[ f ]C : = ∑i∈J [λ
i
C]zi, C ∈ CC

The collection ([g]j)j∈J induces a matroid structureMFp on J. A subset C = {i1, . . . , ir} ⊂ J is
a circuit inMFp if ([g]i)i∈C are linearly dependent over Fp but any proper subset of C gives linearly
independent [g]i’s.

Definition 2. We say that a prime integer p is good with respect to the collection of linear functions (gj)j∈J if
all linear functions in Equation (26) are nonzero and the matroid structuresMC andMFp on J are the same.

In the following, we always assume that p is good with respect to the collection of linear
functions (gj)j∈J .

We have logarithmic differential forms:

[ω]j =
d[ f ]j
[ f ]j

, j ∈ J, [ω]C =
d[ f ]C
[ f ]C

, C ∈ CFp = CC
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in variables t1, . . . , tk, z1, . . . , zn with coefficients in Fp. For any circuit C = {i1, . . . , ir}, we have:

[ω]i1 ∧ · · · ∧ [ω]ir = [ω]C ∧∑r
l=1(−1)l−1[ω]i1 ∧ · · · ∧ [̂ω]il ∧ · · · ∧ [ω]ir

Assume that the nonzero integer weights a = (aj)j∈J are given, where aj ∈ Z, aj 6= 0.
The constructions of Section 3 give us the following:

(i) A vector space VFp over Fp with standard basis (F(Hj1 , . . . , Hjk )) indexed by all independent
subsets {j1 < · · · < jk} of J.

(ii) A vector subspace SingVFp ⊂ VFp consisting of all linear combinations
∑ independent
{j1<···<jk}⊂J

Ij1,...,jk F(Hj1 , . . . , Hjk ) satisfying the equations:

∑j∈J [aj]Ij,j2,...,jk = 0, for j2, . . . , jk ∈ J (27)

(iii) A symmetric bilinear Fp-valued contravariant form [S](a) on VFp defined by the formulas:

[S](a)(F(Hj1 , . . . , Hjk ), F(Hj1 , . . . , Hjk )) = [aj1 ] · · · [ajk ]

for any independent {j1 < · · · < jk} and [S](a)(F(Hj1 , . . . , Hj`), F(Hi1 , . . . , Hi`)) = 0 for any
distinct elements of the standard basis.

For any circuit C = {i1, . . . , ir}, we define a linear operator [L]C : VFp → VFp by the formula of
Section 3.4, in which the numbers ail are replaced with [ail ]. We have the key identity:

∑ independent
{j1<···<jk}⊂J

(
∑j∈J [aj][ω]j

)
∧ [ω]j1 ∧ · · · ∧ [ω]jk ⊗ F(Hj1 , . . . , Hjk ) = (28)

∑ independent
{j1<···<jk}⊂J

∑C∈CFp
[ω]C ∧ [ω]j1 ∧ · · · ∧ [ω]jk ⊗ [L]CF(Hj1 , . . . , Hjk )

For i ∈ J, we define the EndFp(VFp)-valued rational functions in z1, . . . , zn by the formula:

[K]i(z) = ∑C∈CFp

[λi
C]

[ f ]C(z)
[L]C , i ∈ J (29)

We call the functions [K]i(z) the geometric Hamiltonians. The geometric Hamiltonians are
symmetric with respect to the contravariant form [S(a)]([K]i(z)x, y) = [S](a)(x, [K]i(z)y) for i ∈ J,
x, y ∈ VFp .

The Gauss–Manin differential equations over Fp with parameter [κ] ∈ F×p are given by the
following system of differential equations:

[κ]
∂I
∂zi

(z) = [K]i(z)I(z), i ∈ J (30)

The goal of this paper is to construct polynomial SingVFp -valued solutions of these
differential equations.

4.2. Polynomial Solutions

Let a prime integer p be good with respect to (gj)j∈J . Let a = (aj)j∈J be nonzero integer weights
aj ∈ Z, aj 6= 0.

Choose positive integers A = (A1, . . . , An), such that:

[Aj] =
[aj]

[κ]
(31)
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in Fp. Introduce the master polynomial:

Φ(z, t, A) = ∏j∈J f j(z, t)Aj ∈ Z[z1, . . . , zn, t1, . . . , tk] (32)

where f j(z, t) are defined in Equation (25). For any j1, . . . , jk, the function Xj1,...,jk (z, t, A) :=

Φ(z, t, A)
dj1,...,jk

∏k
l=1 f jl

(z,t)
is a polynomial in z, t with integer coefficients. For fixed q = (q1, . . . , qk) ∈ Zk,

consider the Taylor expansion:

Xj1,...,jk (z, t, A) = ∑i1,...,ik>0 Ii1,...,ik
j1,...,jk

(z, q, A) (t1 − q1)
i1 . . . (tk − qk)

ik (33)

where Ii1,...,ik
j1,...,jk

(z, q, A) ∈ Z[z1, . . . , zn] for any i1, . . . , ik. We denote by [I]i1,...,ik
j1,...,jk

(z, q, A) the projection of

Ii1,...,ik
j1,...,jk

(z, q, A) to Fp[z1, . . . , zn]. Denote:

[I]i1,...,ik (z, q, A) (34)

= ∑ independent
{j1<···<jk}⊂J

[I]i1,...,ik
j1,...,jk

(z, q, A) F(Hj1 , . . . , Hjk ) ∈ VFp ⊗ Fp[z1, . . . , zn]

Theorem 5. Let a prime integer p be good with respect to (gj)j∈J . Then for any integers A = (A1, . . . , An)

satisfying Equation (31), any integers q = (q1, . . . , qk), and any positive integers ł = (l1, . . . , lk), the polynomial
function I(z) = [I]l1 p−1,...,lk p−1(z, q, A) satisfies the algebraic equations in Equation (27) and the Gauss–Manin
differential equations in Equation (30).

The parameters A, q, l1 p− 1, . . . , lk p− 1 of the solution I(z) are analogs of the locally constant
cycles γ(z) in Section 3.5.

We note that the space of polynomial solutions of Equations (27) and (30) is a module over the

ring Fp[z
p
1 , . . . , zp

n], as ∂zp
i

∂zj
= 0.

Proof. To prove that I(z) satisfies Equations (27) and (30), consider the Taylor expansions at t = q of
both sides of Equations (21) and (24) divided by dt1 ∧ · · · ∧ dtk. We note that the Taylor expansions
are well defined as a result of Equations (17), (19) and (23). We project the Taylor expansions to
VFp ⊗ Fp[z1, . . . , zn]. Then the terms coming from the dt-summands equal zero, as d(tli p

i )/dti =

li ptli p−1
i ≡ 0 (mod p).

4.3. Relation of Solutions to Integrals over Fk
p

For a polynomial F(t1, . . . , tk) ∈ Fp[t1, . . . , tk] and a subset γ ⊂ Fk
p, we define the integral:

∫
γ

F(t1, . . . , tk) dt1 ∧ · · · ∧ dtk := ∑(t1,...,tk)∈γ
F(t1, . . . , tk)

We consider the vector of polynomials:

F(x, t, A) (35)

= ∑
independent
{j1<···<jk}⊂J

∏j∈J

(
[ f ]j(x, t)

)Aj
[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

F(Hj1 , . . . , Hjk ) ∈ VFp ⊗ Fp[t1, . . . , tk]

Theorem 6. Let x = (x1, . . . , xn) ∈ Fp. Let [I]p−1,...,p−1(z, q, A) be the solution of Equations (27) and (30)
considered in Theorem 5 for (l1, . . . , lk) = (1, . . . , 1).
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(i) If degti
F(x, t, A) < 2p− 2 for i = 1, . . . , k, then:

[I](p−1,...,p−1)(x, q, A) = (−1)k
∫
Fk

p

F(x, t, A) dt1 ∧ · · · ∧ dtk (36)

(ii) If the integers A = (Aj)j∈J are such that:

A1 + · · ·+ An − k < (k + 1)(p− 1) (37)

then Equation (36) holds.

Proof. Part 1 follows from the statement that for a positive integer i,

∑
t∈Fp

ti equals −1 if (p− 1)
∣∣i and equals zero otherwise (38)

Part 2 also follows from Equation (38) by the following reason. The polynomial

P = ∏j∈J
(
[ f ]j(x, t)

)Aj [dj1,...,jk
]

∏k
l=1[ f ]jl (x,t)

is a product of A1 + · · ·+ An− k linear functions in t. If Equation (37)

holds, then (t1 . . . tk)
p−1 is the only monomial tm1

1 . . . tmk
k of the Taylor expansion of that polynomial,

such that ml > 0 and (p− 1)
∣∣ml for l = 1, . . . , k.

The integral in Equation (36) is a p-analog of the hypergeometric integral of Equation (13) (see also
Section 5).

5. Examples

5.1. Case k = 1—See [3]

Let κ, a = (a1, . . . , an) be nonzero complex numbers. We consider the master function of
complex variables:

Φ(t1, z1, . . . , zn, a) = ∏n
i=1(t1 + zi)

ai (39)

Let z0 = (z0
1, . . . , z0

n) ∈ Cn be a vector with distinct coordinates. We consider the
n-vector I(γ)(z0) = (I1(z0), . . . , In(z0)), where:

Ij =
∫

γ(z0)
Φ(t1, z0

1, . . . , z0
n, a)1/κ dt1

t1 + z0
j

, j = 1, . . . , n (40)

The integrals are over a closed (Pochhammer) curve γ(z0) in C−{z0
1, . . . , z0

n} on which one fixes a
uni-valued branch of the master function to make the integral well-defined. Starting from such a curve
chosen for a given {z0

1, . . . , zn
n} ⊂ C, the vector I(γ)(z0) can be analytically continued as a multivalued

holomorphic function of z to the complement in Cn to the union of the diagonal hyperplanes zi = zj.

Theorem 7. The vector I(γ)(z) satisfies the algebraic equation:

a1 I1(z) + · · ·+ an In(z) = 0 (41)

and the differential equations:

κ
∂I
∂zi

= ∑
j 6=i

Ωi,j

zi − zj
I, i = 1, . . . , n (42)
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where:

Ωi,j =



...
i ...

j

i · · · −aj · · · aj · · ·
...

...
j · · · ai · · · −ai · · ·

...
...


and all the remaining entries equal zero, (see [5]; [11], Section 1.1).

Example 1. Let κ = 2, n = 3, and a1 = a2 = a3 = −1. Then I(γ)(z) = (I1(z), I2(z), I3(z)), where:

Ij(z) =
∫

γ(z)

1√
(t + z1)(t + z2)(t + z3)

dt
t + zj

(43)

In this case, the curve γ(z) may be thought of as a closed path on the elliptic curve:

y2 = (t + z1)(t + z2)(t + z3)

Each of these integrals is an elliptic integral. Such an integral is a branch of an analytic continuation of a suitable
Euler hypergeometric function up to a change of variables.

Example 2. Let p > 3 be a prime integer. Let κ = 2, and a1 = · · · = an = −1 (cf. Example 1). For such κ

and aj, the algebraic Equation (41) and the differential Equation (42) are well-defined when reduced modulo p.
Choose the master polynomial:

Φ(t1, z1, . . . , zn) = ∏n
i=1(t1 + zi)

p−1
2 (44)

Consider the Taylor expansion of the polynomial (see (35)):

F(t1, z) = ∏n
i=1(t1 + zi)

p−1
2

( 1
t1 + z1

, . . . ,
1

t1 + zn

)
= ∑i I

i(z)ti
1 (45)

Let [I]i(z) be the projection of Ii(z) to (Fp[z])n. Then the vector I(z) := [I]p−1(z) is a solution of the differential
Equation (42) over Fp[z] and I1(z) + · · ·+ In(z) = 0 (see Theorem 5).

If n 6 4 and x = (x1, . . . , xn) ∈ Fn
p, then:

I(x) =
∫
Fp

F(t1, x) dt1

by Theorem 6.
Let x = (x1, . . . , xn) ∈ Fk

p. Let Γ(x) be the affine curve:

y2 = (t1 + x1) . . . (t1 + xn) (46)

over Fp. For a rational function h : Γ(x)→ Fp, define the integral:∫
Γ(x)

h = ∑′
P∈Γ(x)h(P) (47)

as the sum over all points P ∈ Γ(x), where h(P) is defined.
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Theorem 8. Let n equal 3 or 4. Let [I]p−1(x) = ([I]p−1
1 (x), . . . , [I]p−1

n (x)) be the vector of polynomials
obtained from Equation (45). Then:∫

Γ(x)

1
t1 + xj

= − [I]p−1
j (x), j = 1, . . . , n (48)

Remark 1. Theorems 5 and 8 say that the integrals
∫

Γ(x1,...,xn)
1

t1+xj
are polynomials in x1, . . . , xn ∈ Fp and

the tuple of polynomials: (∫
Γ(x1,...,xn)

1
t1 + x1

, . . . ,
∫

Γ(x1,...,xn)

1
t1 + xn

)
in these discrete variables satisfies the system of Gauss–Manin differential equations (cf. Example 1).

Remark 2. In [1], Section 2 and in [2], an equation analogous to Equation (48) for n = 3 is considered, where
the left-hand side is the number of points on Γ(x1, x2, x3) over Fp and the right-hand side is the reduction
modulo p of a solution of a second-order Gauss hypergeometric differential equation. We note that the number of
points on Γ(x1, x2, x3) is the discrete integral over Γ(x1, x2, x3) of the constant function h = 1.

Proof of Theorem 8. The proof is analogous to the reasoning in [1], Section 2 and [2]. It is easy to
see that: ∫

Γ(x1,...,xn)

1
t1 + xj

= ∑t1∈Fp , t1 6=xj

1
t1 + xj

+ ∑t1∈Fp

1
t1 + xj

∏n
s=1(t1 + xs)

p−1
2

= ∑t1∈Fp
(t1 + xj)

p−2 + ∑t1∈Fp ∑
i
[I]ij(x1, . . . , xn)ti

1 = −[I]p−1
j (x1, . . . , xn)

We note that ∑t1∈Fp ∑i[I]ij(x1, . . . , xn)ti
1 = −[I]p−1

j (x1, . . . , xn), as for n = 3, 4, the degree of the
left-hand side is less than 2p− 2 (see Theorem 6).

See more examples with k = 1 in ([3], Section 1).

5.2. Counting on Two-Folded Covers

As in Section 4.1, we consider n nonzero linear functions on Ck, gj = b1
j t1 + · · ·+ bk

j tk, j ∈ J, with

integer coefficients bi
j ∈ Z. Let a prime integer p > 3 be good with respect to (gj)j∈J .

Assume that all weights (aj)j∈J are equal to −1 and κ = 2. Under these assumptions, consider the
algebraic Equation (27) and differential Equation (30). To construct a solution of these equations, choose

a master polynomial Φ(z, t) = ∏j∈J f j(z, t)
p−1

2 , and consider the Taylor expansion of the polynomial:

F(z, t) = ∑ independent
{j1<···<jk}⊂J

Φ(z, t)
dj1,...,jk

f j1(z, t) . . . f jk (z, t)
F(Hj1 , . . . , Hjk ) (49)

at t = 0, to obtain the solution:

[I]p−1,...,p−1(z) = ∑ independent
{j1<···<jk}⊂J

[I]p−1,...,p−1
j1,...,jk

(z) F(Hj1 , . . . , Hjk ) (50)

of the algebraic Equation (27) and differential Equation (30) by taking the coefficient of (t1 . . . tk)
p−1 of

the Taylor expansion (see Theorem 5).
Let x = (x1, . . . , xn) ∈ Fn

p. Let Γ(x) be the affine hypersurface:

y2 = ∏j∈J [ f ]j(x, t) (51)

over Fp. Recall that [ f ]j(x, t) = [b1
j ]t1 + · · ·+ [bk

j ]tk + xj, where [ ] : Z→ Fp is the natural projection.
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For a rational function h : Γ(x)→ Fp define the integral:∫
Γ(x)

h = ∑′
P∈Γ(x)h(P) (52)

as the sum over all points P ∈ Γ(x) with well-defined h(P).

Theorem 9. Let:
n

p− 1
2
− k < (k + 1)(p− 1) (53)

Let [I]p−1,...,p−1(x) be the vector in Equation (50) at z = x. Then for any independent {j1 < · · · < jk} ⊂
J, we have:

∫
Γ(x)

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

= (−1)k[I]p−1,...,p−1
j1,...,jk

(x) (54)

This theorem is a generalization of Theorem 8. Theorem 9 states that the integrals in the left-hand
side of Equation (48) are polynomials in x1, . . . , xn ∈ Fp and satisfy the algebraic Equation (27) and
differential Equation (30).

Proof. It is easy to see the following cf. [1,2]:

∫
Γ(x)

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

(55)

= ∑ t∈Fk
p ,

∏k
l=1 [ f ]jl

(x,t) 6=0

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

+ ∑t∈Fk
p

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

(
∏j∈J [ f ]j(x, t)

) p−1
2

Lemma 3. The first sum in the right-hand side of Equation (55) equals zero.

Proof. Because p is good and {j1, . . . , jk} is independent, we have [dj1,...,jk ] 6= 0. Hence we may choose
sl := [ f ]jl (x, t), l = 1, . . . , k, to be affine coordinates on Fk

p. Then:

∑ t∈Fk
p ,

∏k
l=1 [ f ]jl

(x,t) 6=0

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

= ∑ s∈Fk
p ,

s1...sk 6=0

[dj1,...,jk ]

s1 . . . sk
= ∑s∈Fk

p
[dj1,...,jk ](s1 . . . sk)

p−2 = 0

Lemma 4. The second sum in the right-hand side of Equation (55) equals (−1)k[I]p−1,...,p−1
j1,...,jk

(x).

Proof. The inequality of Equation (37) takes the form of Equation (53). Now the lemma follows from
Theorem 6.

Theorem 9 is proved.

Remark 3. The inequality of Equation (53) holds if n 6 2k + 2 independently of p.

5.3. Counting on κ-Folded Covers

Let κ > 2 be a positive integer. As in Sections 4.1 and 5.2, we consider n nonzero linear functions
on Ck, gj = b1

j t1 + · · ·+ bk
j tk, j ∈ J, with integer coefficients bi

j ∈ Z. Let a prime integer p be good with
respect to (gj)j∈J and κ

∣∣(p− 1).
Assume that all weights (aj)j∈J are equal to −(κ − 1). Under these assumptions, consider the

algebraic Equation (27) and differential Equation (30). To construct a solution of these equations, choose
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a master polynomial Φ(z, t) = ∏j∈J f j(z, t)(κ−1) p−1
κ , and consider the Taylor expansion at t = 0 of the

polynomial F(z, t) in Equation (49) to obtain the solution [I]p−1,...,p−1(z) of the algebraic Equation (27)
and differential Equation (30) by taking the coefficient of (t1 . . . tk)

p−1 of the Taylor expansion (see
Theorem 5 and Formula (50)).

Let x = (x1, . . . , xn) ∈ Fn
p. Let Γ(x) be the affine hypersurface:

yκ = ∏j∈J [ f ]j(x, t) (56)

over Fp (cf. Section 5.2).

Theorem 10. Let a prime integer p be good with respect to (gj)j∈J . Let κ
∣∣(p− 1) and κ 6= p− 1. Let:

n(κ − 1)
p− 1

κ
− k < (k + 1)(p− 1), n(κ − 2)

p− 2
κ
− k < k(p− 1) (57)

Then for any independent {j1 < · · · < jk} ⊂ J we have:

∫
Γ(x)

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

= (−1)k[I]p−1,...,p−1
j1,...,jk

(x) (58)

This theorem is a generalization of [3], Example 1.7 and Theorem 9.

Proof. It is easy to see that:

∫
Γ(x)

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

= ∑ t∈Fk
p ,

∏k
l=1 [ f ]jl

(x,t) 6=0

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

(59)

+ ∑κ−1
`=1∑t∈Fk

p

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

(
∏j∈J [ f ]j(x, t)

)` p−1
κ

The first sum on the right-hand side equals zero by Lemma 3.

Consider the Taylor expansion of the polynomial
[dj1,...,jk

]

∏k
l=1[ f ]jl (x,t)

(
∏j∈J [ f ]j(x, t)

)` p−1
κ

. Consider the

monomials of the form tl1(p−1)
1 . . . tlk(p−1)

k , where l1, . . . , lk are positive integers. If ` 6 κ − 2, the
second inequality in Equation (57) implies that the coefficients of such monomials in the Taylor

expansion are all equal to zero, and hence the sum ∑t∈Fk
p

[dj1,...,jk
]

∏k
l=1[ f ]jl (x,t)

(
∏j∈J [ f ]j(x, t)

)` p−1
κ

equals zero

for ` 6 κ − 2. If ` = κ − 1, the first inequality in Equation (57) implies that among the monomials
of the form tl1(p−1)

1 . . . tlk(p−1)
k , only tp−1

1 . . . tp−1
k may appear with a nonzero coefficient in the Taylor

expansion. Hence:

∑t∈Fk
p

[dj1,...,jk ]

∏k
l=1[ f ]jl (x, t)

(
∏j∈J [ f ]j(x, t)

)(κ−1) p−1
κ

= (−1)k[I]p−1,...,p−1
j1,...,jk

(x)

by Theorem 6. The theorem is proved.

Remark 4. The inequalities of Equation (57) are implied by the system of inequalities:

κ

κ − 1
(k + 1) > n,

κ

κ − 2
k > n (60)

independently of p. If k > κ − 2, then the inequality κ
κ−1 (k + 1) > n implies inequality, κ

κ−2 k > n, and is
enough for Theorem 10 to hold. In particular, if k > κ − 2, then n = k + 2 is admissible.
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6. Bethe Ansatz

The goal of the Bethe ansatz is to construct mutual eigenvectors of the geometric Hamiltonians
([K]i(x))i∈J defined in Equation (29).

As in Sections 4.1, 5.2 and 5.3, we consider n nonzero linear functions on Ck, gj = b1
j t1 + · · ·+

bk
j tk, j ∈ J, with integer coefficients bi

j ∈ Z. Let a prime integer p be good with respect to (gj)j∈J .
Let a = (aj)j∈J be nonzero integer weights aj ∈ Z, aj 6= 0.

Recall the functions [ f ]C(z) = ∑i∈J [λ
i
C]zi with C ∈ CFp . Assume that x = (x1, . . . , xn) ∈ Fn

p is
such that fC(x) 6= 0 for any C ∈ CFp . Then ([Ki](x))i∈J are well-defined linear operators on VFp .

Introduce the system of the Bethe ansatz equations:

∑j∈Jb
i
j

[aj]

[ f ]j(x, t)
= 0, i = 1, . . . , k (61)

with respect to the unknown t = (t1, . . . , tk) ∈ Fk
p.

Theorem 11. If t0 ∈ Fk
p is a solution of Equation (61), then the vector:

F(x, t0) = ∑ independent
{j1<···<jk}⊂J

[dj1,...,jk ]

[ f ]j1(x, t0) . . . [ f ]jk (x, t0)
F(Hj1 , . . . , Hjk ) (62)

satisfies Equation (27) and is an eigenvector of the geometric Hamiltonians:

[K]i(x)F(x, t0) =
[ai]

[ f ]i(x, t0)
F(x, t0), i = 1, . . . , n (63)

Proof. Equation (27) for F(x, t0) follows from Equations (20) and (21) reduced modulo p. Because
t0 is a solution of Equation (61), the left-hand side of Equation (21) equals zero. Equation (63) is a
straightforward corollary of the key identity of Equation (28) (see the proof of [4], Theorem 2.1).

Corollary 3. Let t0 and t1 be distinct solutions of the Bethe ansatz Equation (61); then
[S](a)(F(x, t0), F(x, t1)) = 0.

Proof. Because t0 6= t1, there exists i such that [ f ]i(x, t0) 6= [ f ]i(x, t1). Hence [K]i(x) has distinct
eigenvalues on F(x, t0), F(x, t1), but [Ki](x) is symmetric:

[S](a)([K]i(x)F(x, t0), F(x, t1)) = [S](a)(F(x, t0), [K]i(x)F(x, t1))
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