
mathematics

Article

Stability of a Monomial Functional Equation on
a Restricted Domain

Yang-Hi Lee

Department of Mathematics Education, Gongju National University of Education, Gongju 32553, Korea;
yanghi2@hanmail.net

Academic Editor: Hari Mohan Srivastava
Received: 24 August 2017; Accepted: 8 October 2017; Published: 18 October 2017
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1. Introduction

Let V and W be real vector spaces, X a real normed space, Y a real Banach space, n ∈ N (the set of
natural numbers), and f : V →W a given mapping. Consider the functional equation

n

∑
i=0

nCi(−1)n−i f (ix + y)− n! f (x) = 0 (1)

for all x, y ∈ V, where nCi := n!
i!(n−i)! . The functional Equation (1) is called an n-monomial functional

equation and every solution of the functional Equation (1) is said to be a monomial mapping of degree
n. The function f : R→ R given by f (x) := axn is a particular solution of the functional Equation (1).
In particular, the functional Equation (1) is called an additive (quadratic, cubic, quartic, and quintic,
respectively) functional equation for the case n = 1 (n = 2, n = 3, n = 4, and n = 5, respectively) and
every solution of the functional Equation (1) is said to be an additive (quadratic, cubic, quartic, and
quintic, respectively) mapping for the case n = 1 (n = 2, n = 3, n = 4, and n = 5, respectively).

A mapping A : V → W is said to be additive if A(x + y) = A(x) + A(y) for all x, y ∈ V. It is
easy to see that A(rx) = rA(x) for all x ∈ V and all r ∈ Q (the set of rational numbers). A mapping
An : Vn → W is called n-additive if it is additive in each of its variables. A mapping An is called
symmetric if An(x1, x2, . . . , xn) = An(xπ(1), xπ(2), . . . , xπ(n)) for every permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n}. If An(x1, x2, . . . , xn) is an n-additive symmetric mapping, then An(x) will denote the
diagonal An(x, x, . . . , x) for x ∈ V and note that An(rx) = rn An(x) whenever x ∈ V and r ∈ Q. Such a
mapping An(x) will be called a monomial mapping of degree n (assuming An 6≡ 0). Furthermore,
the resulting mapping after substitution x1 = x2 = . . . = xl = x and xl+1 = xl+2 = . . . = xn = y
in An(x1, x2, . . . , xn) will be denoted by Al,n−l(x, y). A mapping p : V → W is called a generalized
polynomial (GP) mapping of degree n ∈ N provided that there exist A0(x) = A0 ∈W and i-additive
symmetric mappings Ai : Vi → W (for 1 ≤ i ≤ n) such that p(x) = ∑n

i=0 Ai(x), for all x ∈ V and
An 6≡ 0. For f : V →W, let ∆h be the difference operator defined as follows:

∆h f (x) = f (x + h)− f (x)
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for h ∈ V. Furthermore, let ∆0
h f (x) = f (x), ∆1

h f (x) = ∆h f (x) and ∆h ◦ ∆n
h f (x) = ∆n+1

h f (x) for all
n ∈ N and all h ∈ V. For any given n ∈ N, the functional equation ∆n+1

h f (x) = 0 for all x, h ∈ V is
well studied. In explicit form we can have

∆n
h f (x) =

n

∑
i=0

nCi(−1)n−i f (x + ih).

The following theorem was proved by Mazur and Orlicz [1,2] and in greater generality by
Djoković (see [3]).

Theorem 1. Let V and W be real vector spaces, n ∈ N and f : V →W, then the following are equivalent:

(1) ∆n+1
h f (x) = 0 for all x, h ∈ V.

(2) ∆x1 ◦ ∆x2 ◦ . . . ◦ ∆xn+1 f (x0) = 0 for all x0, x1, x2, . . . , xn+1 ∈ V.
(3) f (x) = An(x) + An−1(x) + · · ·+ A2(x) + A1(x) + A0(x) for all x ∈ V, where A0(x) = A0 is an

arbitrary element of W and Ai(x)(i = 1, 2, . . . , n) is the diagonal of an i-additive symmetric mapping
Ai : Vi →W.

In 2007, L. Cădariu and V. Radu [4] proved a stability of the monomial functional Equation (1)
(see also [5–7]), in particular, the following result is given by the author in [6].

Theorem 2. Let p be a non-negative real number with p 6= n, let θ > 0, and let f : X → Y be a mapping
such that ∥∥∥∥∥ n

∑
i=0

nCi(−1)n−i f (ix + y)− n! f (x)

∥∥∥∥∥ ≤ θ(‖x‖p + ‖y‖p) (2)

for all x, y ∈ X. Then there exist a positive real number K and a unique monomial function of degree n
F : X → Y such that

‖ f (x)− F(x)‖ ≤ K‖x‖p (3)

holds for all x ∈ X. The mapping F : X → Y is given by

F(x) := lim
s→∞

f (2sx)
2ns

for all x ∈ X.

The concept of stability for the functional Equation (1) arises when we replace the functional
Equation (1) by an inequality (2), which is regarded as a perturbation of the equation. Thus, the stability
question of functional Equation (1) is whether there is an exact solution of (1) near each solution of
inequality (2). If the answer is affirmative with inequality (3), we would say that the Equation (1)
is stable.

The direct method of Hyers means that, in Theorem 2, F(x) satisfying inequality (3) is constructed
by the limit of the sequence { f (2sx)

2ns }s∈N as s→ ∞.
Historically, in 1940, Ulam [8] proposed the problem concerning the stability of group

homomorphisms. In 1941, Hyers [9] gave an affirmative answer to this problem for additive mappings
between Banach spaces, using the direct method. Subsequently, many mathematicians came to deal
with this problem (cf. [10–17]).

In 1998, A. Gilányi dealt with the stability of monomial functional equation for the case p = 0
(see [18,19]) and he proved for the case when p is a real constant (see [20]). Thereafter, C.-K. Choi
proved stability theorems for many kinds of restricted domains, but his theorems are mainly connected
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with the case of p = 0. If p < 0 in (2), then the inequality (2) cannot hold for all x ∈ X, so we have to
restrict the domain by excluding 0 from X.

The main purpose of this paper is to generalize our previous result (Theorem 2) by replacing the
real normed space X with a restricted domain S of a real vector space V and by replacing the control
function θ(||x||p + ||y||p) with a more general function ϕ : S2 → [0, ∞).

2. Stability of the Functional Equation (1) on a Restricted Domain

In this section, for a given mapping f : V →W, we use the following abbreviation

Dn f (x, y) :=
n

∑
i=0

nCi(−1)n−i f (ix + y)− n! f (x)

for all x, y ∈ V.

Lemma 1. The equalities
nCi = ∑

j+k=2i
0≤j,k≤n

nCj · nCk(−1)i+k (i = 0, · · · , n) (4)

and

nCi = ∑
j+k=2i−1
0≤j,k≤n

nCj · nCk(−1)n−k (i = 1, · · · , n) (5)

hold.

Proof. From the equalities

n

∑
i=0

nCi(−1)n−ix2i = (x2 − 1)n,

(x2 − 1)n = (x + 1)n(x− 1)n,

(x + 1)n(x− 1)n =

(
n

∑
j=0

nCjxj

)(
n

∑
k=0

nCk(−1)n−kxk

)
=

n

∑
j=0

n

∑
k=0

nCj · nCk(−1)n−kxj+k,

we get the equality

n

∑
i=0

nCi(−1)n−ix2i =
n

∑
j=0

n

∑
k=0

nCj · nCk(−1)n−kxj+k (6)

for all x ∈ R. Since the coefficient of the term x2i of the left-hand side in (6) is nCi(−1)n−i and the
coefficient of the term x2i of the right-hand side in (6) is ∑

j+k=2i
0≤j,k≤n

nCj · nCk(−1)n−k, we get the Equality (4).

We easily know that the coefficient of the term x2i−1 of the left-hand side in (6) is 0 and the coefficient
of the term x2i−1 of the right-hand side in (6) is ∑

j+k=2i−1
0≤j,k≤n

nCj · nCk(−1)n−k. So we get the Equality (5). �

We rewrite a refinement of the result given in [6].

Lemma 2. (Lemma 1 in [6]) The equality

n

∑
j=0

nCjDn f (x, jx + y)− Dn f (2x, y) = n!( f (2x)− 2n f (x)) (7)
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holds for all x, y ∈ V. In particular, if Dn f (x, y) = 0 for all x, y ∈ V, then

f (2x) = 2n f (x) (8)

Proof. By (4), (5), and the equality ∑n
j=0 nCj = 2n, we get the equalities

n

∑
j=0

nCjDn f (x, jx + y)− Dn f (2x, y)

=
n

∑
j=0

nCj

n

∑
k=0

(−1)n−k
nCk f ((j + k)x + y)−

n

∑
j=0

nCjn! f (x)

−
n

∑
i=0

nCi(−1)n−i f (2ix + y) + n! f (2x)

=
n

∑
i=0

∑
j+k=2i
0≤j,k≤n

nCj(−1)n−k
nCk f (2ix + y)

+
n

∑
i=1

∑
j+k=2i−1
0≤j,k≤n

nCj(−1)n−k
nCk f ((2i− 1)x + y)

−
n

∑
j=0

nCjn! f (x)−
n

∑
i=0

nCi(−1)n−i f (2ix + y) + n! f (2x)

=−
n

∑
j=0

nCjn! f (x) + n! f (2x)

for all x, y ∈ V. �

Lemma 3. If f satisfies the functional equation Dn f (x, y) = 0 for all x, y ∈ V\{0} with f (0) = 0, then f
satisfies the functional equation Dn f (x, y) = 0 for all x, y ∈ V.

Proof. Since Dn f (0, 0) = 0, Dn f (0, y) = 0 for all y ∈ V\{0}, and

Dn f (x, 0) = (−1)nDn f (−x, nx)− (−1)nDn f (−x, (n + 1)x) + Dn f (x, x)

for all x ∈ V\{0}, we conclude that f satisfies the functional equation Dn f (x, y) = 0 for all x, y ∈ V. �

We rewrite a refinement of the result given in [7].

Theorem 3. (Corollary 4 in [7]) A mapping f : V → W is a solution of the functional Equation (1) if and
only if f is of the form f (x) = An(x) for all x ∈ V, where An is the diagonal of the n-additive symmetric
mapping An : Vn →W.

Proof. Assume that f satisfies the functional Equation (1). We get the equation ∆n+1
x f (y) = Dn f (x, x +

y)− Dn f (x, y) = 0 for all x, y ∈ V. By Theorem 1, f is a generalized polynomial mapping of degree
at most n, that is, f is of the form f (x) = An(x) + An−1(x) + · · · + A2(x) + A1(x) + A0(x) for all
x ∈ V, where A0(x) = A0 is an arbitrary element of W and Ai(x)(i = 1, 2, . . . , n) is the diagonal of an
i-additive symmetric mapping Ai : Vi → W. On the other hand, f (2x) = 2n f (x) holds for all x ∈ V
by Lemma 2, and so f (x) = An(x).

Conversely, assume that f (x) = An(x) for all x ∈ V, where An(x) is the diagonal of the
n-additive symmetric mapping An : Vn → W. From An(x + y) = An(x) + ∑n−1

i=1 nCi An−i,i(x, y),
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An(rx) = rn An(x), An−i,i(x, ry) = ri An−i,i(x, y) (x, y ∈ V, r ∈ Q), we see that f satisfies (1), which
completes the proof of this theorem. �

Theorem 4. Let S be a subset of a real vector space V and Y a real Banach space. Suppose that for each
x ∈ V\{0} there exists a real number rx > 0 such that rx ∈ S for all r ≥ rx. Let ϕ : S2 → [0, ∞) be a function
such that

∞

∑
k=0

2−nk ϕ(2kx, 2ky) < ∞ (9)

for all x, y ∈ S. If the mapping f : S→ Y satisfies the inequality

‖Dn f (x, y)‖ ≤ ϕ(x, y) (10)

for all x, y ∈ S, then there exists a unique monomial mapping of degree n F : V → Y such that

‖ f (x)− F(x)‖ ≤
∞

∑
k=0

Φ(2kx)
n! · 2(k+1)n

(11)

for all x ∈ S, where

Φ(x) :=
n

∑
j=0

nCj ϕ(x, jx + x) + ϕ(2x, x).

In particular, F is represented by

F(x) = lim
m→∞

f (2mx)
2mn

for all x ∈ V.

Proof. Let x ∈ V\{0} and m be an integer such that 2m ≥ rx. It follows from (7) in Lemma 2
and (10) that

n!
∥∥∥ f (2m+1x)− 2n f (2mx)

∥∥∥ =

∥∥∥∥ n

∑
j=0

nCjDn f (2mx, 2m(jx + x)))− Dn f (2m+1x, 2mx)
∥∥∥∥

≤
n

∑
j=0

∥∥nCjDn f (2mx, 2m(j + 1)x)‖+ ‖Dn f (2m+1x, 2mx)‖

≤
n

∑
j=0

nCj ϕ(2mx, 2m(j + 1)x) + ϕ(2m+1x, 2mx)

= Φ(2mx).

From the above inequality, we get the following inequalities∥∥∥∥∥ f (2mx)
2mn −

f
(
2m+1x

)
2(m+1)n

∥∥∥∥∥ ≤ Φ(2mx)
n! · 2n(m+1)

and ∥∥∥∥∥∥ f (2mx)
2nm −

f
(

2m+m′x
)

2n(m+m′)

∥∥∥∥∥∥ ≤
m+m′−1

∑
k=m

Φ(2kx)
n! · 2n(k+1)

(12)
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for all m′ ∈ N. So the sequence { f (2mx)
2mn }m∈N is a Cauchy sequence for all x ∈ V\{0}. Since

limm→∞
f (2m0)

2mn = 0 and Y is a real Banach space, we can define a mapping F : V → Y by

F(x) = lim
m→∞

f (2mx)
2nm

for all x ∈ V. By putting m = 0 and letting m′ → ∞ in the inequality (12), we obtain the inequality (11)
if x ∈ S.

From the inequality (10), we get∥∥∥∥Dn f (2mx, 2my)
2nm

∥∥∥∥ ≤ ϕ (2mx, 2my)
2nm .

for all x, y ∈ V\{0}, where 2m ≥ rx, ry. Since the right-hand side in the above equality tends to zero as
m → ∞, we obtain that F satisfies the inequality (1) for all x, y ∈ V\{0}. By Lemma 3 and F(0) = 0,
F satisfies the Equality (1) for all x, y ∈ V. To prove the uniqueness of F, assume that F′ is another
monomial mapping of degree n satisfying the inequality (11) for all x ∈ S. The equality F′(x) = F′(2mx)

2nm

follows from the Equality (8) in Lemma 2 for all x ∈ V\{0} and m ∈ N. Thus we can obtain the
inequalities∥∥∥∥F′(x)− f (2mx)

2nm

∥∥∥∥ =

∥∥∥∥ F′ (2mx)
2nm − f (2mx)

2nm

∥∥∥∥ ≤ ∞

∑
k=0

Φ(2k+mx)
n! · 2n(k+m+1)

=
∞

∑
k=m

Φ(2kx)
n! · 2n(k+1)

,

for all x ∈ V\{0}, where 2m ≥ rx. Since ∑∞
k=m

Φ(2kx)
n!·2n(k+1) → 0 as m → ∞ and F′(0) = 0, F′(x) =

limm→∞ 2−nm f (2mx) for all x ∈ V, i.e., F(x) = F′(x) for all x ∈ V. This completes the proof of
the theorem. �

We can give a generalization of Theorems 2 and 5 in [6] as the following corollary.

Corollary 1. Let p and r be real numbers with p < n and r > 0, let X be a normed space, ε > 0, and f : X → Y
be a mapping such that

‖Dn f (x, y)‖ ≤ ε(‖x‖p + ‖y‖p) (13)

for all x, y ∈ X with ‖x‖, ‖y‖ > r. Then there exists a unique monomial mapping of degree n F : X→ Y satisfying

‖ f (x)− F(x)‖ ≤


ε(2p+2n+1+∑n

j=0 nCj(j+1)p)

n!(2n−2p)
‖x‖p (for ‖x‖ > r),

((k+1)p+kp)ε‖x‖p

n + (kp + ∑n
i=2 nCi(ik + i− k)p + n!(k + 1)p)

×
ε(2p+2n+1+∑n

j=0 nCj(j+1)p)

n!n(2n−2p)
‖x‖p (for ‖kx‖ > r).

In particular, if p < 0, then f is a monomial mapping of degree n itself.

Proof. If we set ϕ(x, y) := ε(‖x‖p + ‖y‖p) and S = {x ∈ X|‖x‖ > r}, then there exists a unique
monomial mapping of degree n F : X → Y satisfying

‖ f (x)− F(x)‖ ≤
ε(2p + 2n + 1 + ∑n

j=0 nCj(j + 1)p)

n!(2n − 2p)
‖x‖p (14)
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for all x ∈ X with ‖x‖ > r by Theorem 4. Notice that if F is a monomial mapping of degree n,
then DnF((k + 1)x,−kx) = 0 for all x ∈ X and k ∈ R. Hence the equality

(−1)n · n( f (x)− F(x)) =Dn f ((k + 1)x,−kx) + (−1)n(F− f )(−kx)

+
n

∑
i=2

nCi(−1)n−i(F− f )(i(k + 1)x− kx)

− n!(F− f )((k + 1)x)

holds for all x ∈ X and k ∈ R. So if F : X → Y is the monomial mapping of degree n satisfying (14),
then F : X → Y satisfies the inequality with a real number k

‖ f (x)− F(x)‖ ≤ ((k + 1)p + kp)ε‖x‖p

n
+ (kp +

n

∑
i=2

nCi(ik + i− k)p + n!(k + 1)p)

×
ε(2p + 2n + 1 + ∑n

j=0 nCj(j + 1)p)

n!n(2n − 2p)
‖x‖p (15)

for all ‖kx‖ > r.
Moreover, if p < 0, then limk→∞(kp + ∑n

i=2 Cn
i (ik + i− k)p + n!(k + 1)p) = 0 and limk→∞(kp +

(k + 1)p) = 0. Hence we get
f (x) = F(x)

for all x ∈ X\{0} by (15). Since limk→∞ kp = 0 and the inequality

‖ f (0)− F(0)‖ ≤ 1
n
‖Dn( f − F)(kx,−kx) + (−1)n(F− f )(−kx)

+
n

∑
i=2

nCi(−1)n−i(F− f )((i− 1)kx)− n!(F− f )(kx)‖

≤ 1
n

[
2 +

2p + 2n

n!(2n − 2p)
(1 +

n−1

∑
i=1

nCi+1ip + n!)

]
kpε‖x‖p

holds for any fixed x ∈ X\{0} with ‖x‖ > r and all natural numbers k, we get

f (0) = F(0).

�

Theorem 5. Let S be a subset of a real vector space V and Y a real Banach space. Suppose that for each x ∈ V
there exists a real number rx > 0 such that rx ∈ S for all r ≤ rx. Let ϕ : V2 → [0, ∞) be a function such that

∞

∑
k=0

2nk ϕ(2−kx, 2−ky) < ∞ (16)

for all x, y ∈ S. Suppose that a mapping f : V → Y satisfies the inequality (10) for all x, y ∈ S, where
ix + y ∈ S for all i = 0, 1, . . . , n. Then there exists a unique monomial mapping of degree n F : V → Y
such that

‖ f (x)− F(x)‖ ≤
∞

∑
k=0

2nk

n!
Φ
( x

2k+1

)
(17)

for all x with nx ∈ S, where Φ(x) is defined as in Theorem 4. In particular, F is represented by

F(x) = lim
m→∞

2nm f (2−mx)
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for all x ∈ V.

Proof. Let x ∈ V and m be an integer such that 2−m(n + 1) ≤ rx. It follows from (7) in Lemma 2
and (10) that

n!
∥∥∥ f
( x

2m

)
− 2n f

( x
2m+1

)∥∥∥ =

∥∥∥∥∥ n

∑
j=0

nCjDn f
(

x
2m+1 ,

(j + 1)x
2m+1

)
− Dn f

( x
2m ,

x
2m+1

)∥∥∥∥∥
≤

n

∑
j=0

nCj

∥∥∥∥Dn f
(

x
2m+1 ,

(j + 1)x
2m+1

)∥∥∥∥+ ∥∥∥Dn f
( x

2m ,
x

2m+1

)∥∥∥
≤

n

∑
j=0

nCj ϕ

(
x

2m+1 ,
(j + 1)x

2m+1

)
+ ϕ

( x
2m ,

x
2m+1

)
=Φ

( x
2m+1

)
for all x ∈ V. From the above inequality, we get the inequality∥∥∥∥2nm f

( x
2m

)
− 2n(m+m′) f

(
x

2m+m′

)∥∥∥∥ ≤ m+m′−1

∑
k=m

2nk

n!
Φ
( x

2k+1

)
(18)

for all x ∈ V and m′ ∈ N. So the sequence {2nm f
( x

2m

)
}m∈N is a Cauchy sequence by the inequality (16).

From the completeness of Y, we can define a mapping F : V → Y by

F(x) = lim
m→∞

2nm f
( x

2m

)
for all x ∈ V. Moreover, by putting m = 0 and letting m′ → ∞ in (18), we get the inequality (17) for all
x ∈ S with (n + 1)x ∈ S. From the inequality (10), if m is a positive integer such that ix+y

2m ∈ S for all
i = 0, 1, . . . , n, then we get ∥∥∥2nmDn f

( x
2m ,

y
2m

)∥∥∥ ≤ 2nm ϕ
( x

2m ,
y

2m

)
,

for all x, y ∈ V. Since the right-hand side in this inequality tends to zero as m→ ∞, we obtain that F is
a monomial mapping of degree n. To prove the uniqueness of F assume that F′ is another monomial
mapping of degree n satisfying the inequality (17) for all x ∈ S with (n + 1)x ∈ S. So the equality
F′(x) = 2nmF′

( x
2m

)
holds for all x ∈ V by (8) in Lemma 2. Thus, we can infer that

∥∥∥∥F′(x)− 2nm f
( x

2m

) ∥∥∥∥ =
∥∥∥2nmF′

( x
2m

)
− 2nm f

( x
2m

)∥∥∥
≤

∞

∑
k=0

2n(m+k)Φ
( x

2m+k+1

)
≤

∞

∑
k=m

2nkΦ
( x

2k+1

)

for all positive integers m, where (n+1)x
2m ≤ rx. Since ∑∞

k=m 2nkΦ
(

x
2k+1

)
→ 0 as m→ ∞, we know that

F′(x) = limm→∞ 2nm f
( x

2m

)
for all x ∈ V. This completes the proof of the theorem. �

We can give a generalization of Theorem 3 in [6] as the following corollary.
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Corollary 2. Let p and r be real numbers with p > n and r > 0, and X a normed space. Let f : X → Y be
a mapping satisfying the inequality (13) for all x, y with ‖x‖, ‖y‖ < r. Then there exists a unique monomial
mapping of degree n F : X → Y satisfying

‖ f (x)− F(x)‖ ≤
ε(2p + 2n + 1 + ∑n

j=0 nCj(j + 1)p)

n!(2n − 2p)
‖x‖p

for all x ∈ X with ‖x‖ < r
n+1 .

The following example shows that the assumption p 6= n cannot be omitted in Corollarys 1 and 2.
This example is an extension of the example of Gajda [21] for the monomial functional inequality (13)
(see also [22]).

Example 1. Let ψ : R→ R be defined by

ψ(x) =

{
xn, for |x| < 1,

1, for |x| ≥ 1.
(19)

Consider that the function f : R→ R is defined by

f (x) =
∞

∑
m=0

(n + 1)−nmψ((n + 1)mx) (20)

for all x ∈ R. Then f satisfies the functional inequality∣∣∣∣∣ n

∑
i=0

nCi(−1)i f (ix + y)− n! f (x)

∣∣∣∣∣ ≤ 4 · (n + 1)!(n + 1)2n(|x|n + |y|n). (21)

for all x, y ∈ R, but there do not exist a monomial mapping of degree n F : R→ R and a constant d > 0 such
that | f (x)− F(x)| ≤ d|x|n for all x ∈ R.

Proof. It is clear that f is bounded by 2 on R. If |x|n + |y|n = 0, then f satisfies (21). And if
|x|n + |y|n ≥ 1

(n+1)n , then

|Dn f (x, y)| ≤ 2 · 2 · (n + 1)! ≤ 4 · (n + 1)!(n + 1)n(|x|n + |y|n),

which means that f satisfies (21). Now suppose that 0 < |x|n + |y|n < 1
(n+1)n . Then there exists

a nonnegative integer k such that

1
(n + 1)n(k+2)

≤ |x|n + |y|n <
1

(n + 1)n(k+1)
. (22)

Hence (n + 1)nk|x|n < 1
(n+1)n , (n + 1)nk|y|n < 1

(n+1)n , |(n + 1)m(x + iy)| < 1, and |(n + 1)my| < 1
for all m = 0, 1, . . . , k− 1. Hence, for m = 0, 1, . . . , k− 1,

n

∑
i=0

nCi(−1)iψ((n + 1)m(ix + y))− n!ψ((n + 1)mx) = 0. (23)
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From the definition of f , the inequality (22), and the inequality (23), we obtain that

|Dn f (x, y)| =
∣∣∣∣∣ ∞

∑
m=0

(n + 1)−nm( n

∑
i=0

nCi(−1)iψ((n + 1)m(ix + y))− n!ψ((n + 1)mx)
)∣∣∣∣∣

≤
∞

∑
m=0

(n + 1)−nm

∣∣∣∣∣ n

∑
i=0

nCi(−1)iψ((n + 1)m(ix + y))− n!ψ((n + 1)mx)

∣∣∣∣∣
≤

∞

∑
m=k

(n + 1)−nm

∣∣∣∣∣ n

∑
i=0

nCi(−1)iψ((n + 1)m(ix + y))− n!ψ((n + 1)mx)

∣∣∣∣∣
≤

∞

∑
m=k

(n + 1)−nm2 · (n + 1)! ≤ 4 · (n + 1)−nk(n + 1)!

≤4 · (n + 1)2n(n + 1)!(|x|n + |y|n). (24)

Therefore, f satisfies (21) for all x, y ∈ R. Now, we claim that the functional Equation (1) is not
stable for p = n in Corollarys 1 and 2. Suppose on the contrary that there exists a monomial mapping
of degree n F : R → R and constant d > 0 such that | f (x)− F(x)| ≤ d|x|n for all x ∈ R. Notice that
F(x) = xnF(1) for all rational numbers x. So we obtain that

| f (x)| ≤ (d + |F(1)|)|x|n (25)

for all x ∈ Q. Let k ∈ N with k + 1 > d + |F(1)|. If x is a rational number in (0, (n + 1)−k), then
(n + 1)mx ∈ (0, 1) for all m = 0, 1, . . . , k, and for this x we get

f (x) =
∞

∑
m=0

(n + 1)−nmψ((n + 1)mx) ≥
k

∑
m=0

(n + 1)−nm((n + 1)mx)n

=(k + 1)xn > (d + |F(1)|)xn

which contradicts (25). �

3. Conclusions

The advantage of this paper is that we do not need to prove the stability of additive quadratic,
cubic, and quartic functional equations separately. Instead we can apply our main theorem to prove
the stability of those functional equations simultaneously.
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3. Djoković, D.Z. A representation theorem for (X1− 1)(X2− 1) · · · (Xn− 1) and its applications. Ann. Polon. Math.
1969 22, 189–198.
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