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1. Introduction

Recently, fractional differential equations (FDEs) arise naturally in various fields, such as
economics, engineering, and physics. For some existence results of FDEs we refer the reader to [1–6]
and the references cited therein.

Bonilla et al. [1] studied linear systems of the same order linear FDEs and obtained an explicit
representation of the solution. However, there are very few works on the study of mixed order
nonlinear fractional differential equations (MOFDEs), which is a natural extension of [1].

This paper is devoted to the study of MOFDEs of the form

Dqi
0+xi = fi(t, x1, · · · , xn), xi(0) = ui, i = 1, · · · , n (1)

where Dqi
0+ denotes the Caputo derivative with the lower limit at 0, qi ∈ (0, 1], f : R+ ×Rn → Rn are

continuous, specified below and ui ∈ Rn. We may suppose q1 ≥ · · · ≥ qn. Here R+ = [0, ∞). We are
interested in the existence of solutions of (1), then their stability and asymptotic properties under
reasonable conditions on fi. FDEs with equal order (i.e., q1 = · · · = qn) are widely studied, and we
refer the reader to the basic books describing FDEs, such as [7,8]. On the other hand, there are many
MOFDEs with interesting applications—for example, to economic systems in [9]. In fact, (1) formulates
a model of the national economies in a case of the study of n commonwealth countries, which cannot
be simply divided into clear groups of independent and dependent variables. The purpose of this
paper is to set a rigorous theoretical background for (1).

The main contributions are stated as follows:
We give some existence and uniqueness results for solutions of (1) when the nonlinear term

satisfies global and local Lipschitz conditions.
We analyze the upper bound for Lyapunov exponents of solutions of (1).
We show that the zero solution of an autonomous version system of (1) is asymptotically stable.

2. Existence Results

First we prove an existence and uniqueness result for globally Lipschitzian f = ( f1, · · · , fn).
Let ‖x‖∞ = maxi=1,··· ,n |xi| for x = (x1, · · · , xn). By C(J,Rn) we denote the Banach space of all
continuous functions from a compact interval J ⊂ R to Rn with the uniform convergence topology on J.
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Theorem 1. Let T > 0 and suppose the existence of L > 0 such that

‖ f (t, x)− f (t, y)‖∞ ≤ L‖x− y‖∞ ∀(t, x), (t, y) ∈ [0, T]×Rn. (2)

Then (1) has a unique solution x ∈ C(I,Rn), I = [0, T].

Proof of Theorem 1. Note that (2) implies

‖ f (t, x)‖∞ ≤ L‖x‖∞ + M f ∀(t, x) ∈ I ×Rn (3)

for M f = maxt∈I ‖ f (t, 0)‖∞. Next, (1) is equivalent to the fixed point problem

x = F(x, u),

x(t) = (x1(t), · · · , xn(t)), u = (u1, · · · , un), F(x, u) = (F1(x, u), · · · , Fn(x, u)),

Fi(x, u)(t) = ui +
1

Γ(qi)

∫ t

0
(t− s)qi−1 fi(s, x1(s), · · · , xn(s))ds, i = 1, · · · , n.

(4)

Fix α ≥ 0 and set ‖x‖α = maxt∈[0,T] ‖x(t)‖∞e−αt for any x ∈ C(I,Rn). Let x ∈ C(I,Rn) be a solution
of (1). For α > 0, (3) and (4) give

|xi(t)| ≤ |ui|+
1

Γ(qi)

∫ t

0
(t− s)qi−1

(
L‖x(s)‖∞ + M f

)
ds

≤ ‖u‖∞ +
M f Tqi

Γ(qi + 1)
+

L‖x‖α

Γ(qi)

∫ t

0
(t− s)qi−1eαsds ≤ ‖u‖∞ +

M f Tqi

Γ(qi + 1)
+

L‖x‖α

αqi
eαt,

which implies

‖x‖α ≤ ‖u‖∞ + M f Θ +
L‖x‖α

αqm

for α > 1 and

Θ = max
i=1,··· ,m

Tqi

Γ(qi + 1)
.

Hence

‖x‖α ≤
‖u‖∞ + M f Θ

1− L
αqm

,

for
α > max{1, L1/qm}. (5)

So

|xi(t)| ≤
‖u‖∞ + M f Θ

1− L
αqm

eαT , t ∈ I, i = 1, · · · , n. (6)

Similarly, we derive

‖F(x, u)− F(y, u)‖α ≤
L

αqm
‖x− y‖α, ∀x, y ∈ C(I,Rn).

Consequently, assuming (5), we can apply the Banach fixed point theorem to get a unique solution
x ∈ C(I,Rn) of (1), which also satisfies (6). The proof is finished.

Now we prove an existence and uniqueness result for locally Lipschitzian f .

Theorem 2. Suppose that for any r > 0 there is an Lr > 0 such that

‖ f (t, x)− f (t, y)‖∞ ≤ Lr‖x− y‖∞ ∀(t, x), (t, y) ∈ [0, T]×Rn, max{‖x‖∞, ‖y‖∞} ≤ r. (7)
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Then (1) has a unique solution x ∈ C(I0,Rn), I0 = [0, T0] for some 0 < T0 ≤ T.

Proof of Theorem 2. Set r0 = ‖u‖∞ + M f Θ + 1 and B(r0) = {x ∈ Rn | ‖x‖∞ ≤ r0}. Then we extend f
from the set I × B(r0) to f̃ on I ×Rn such that f̃ satisfies (2) for some L > 0. This extension is given by

f̃ (t, x) =

{
χ(‖x‖∞/(r0 + 1)) f (t, x) for t ∈ I, ||x|| ≤ 2(r0 + 1)

0 for t ∈ I, ||x|| ≥ 2(r0 + 1)

for a Lipschitz function χ : R+ → [0, 1] with χ(r) = 1 for r ∈ [0, 1] and χ(r) = 0 for r ≥ 2.
Applying Theorem 1 to

Dqi
0+xi = f̃i(t, x1, · · · , xn), xi(0) = ui, i = 1, · · · , n, (8)

there is a unique solution x ∈ C(I,Rn) of (8) which also satisfies (6) for α satisfying (5). Note M f = M f̃ .
Let us take T ≥ T0 > 0, α > 0 satisfying (5) and

‖u‖∞ + M f Θ

1− L
αqm

eαT0 < r0.

Then the unique solution x ∈ C(I,Rn) of (8) satisfies

‖x(t)‖∞ ≤ r0 ∀t ∈ I0.

However, this is also a unique solution of (1) on I0. The proof is finished.

Remark 1. Let us denote by xu the solution from Theorem 1. Then, following the proof of Theorem 1, for any
u, v ∈ Rn, we derive

‖xu − xv‖α = ‖F(xu, u)− F(xv, v)‖α ≤
L

αqm
‖xu − xv‖α + ‖F(xv, u)− F(xv, v)‖α

≤ L
αqm
‖xu − xv‖α + ‖u− v‖∞,

which implies

‖xu − xv‖α ≤
‖u− v‖∞

1− L
αqm

,

i.e.,

‖xu(t)− xv(t)‖∞ ≤
‖u− v‖∞

1− L
αqm

∀t ∈ I,

provided that (5) holds. So, the continuous dependence of the solution of (1) is shown on the initial value u
under conditions of Theorem 1 or Theorem 2.

3. Asymptotic Results

We find the upper bound for Lyapunov exponents of solutions of (1).

Theorem 3. Suppose assumptions of Theorem 2 are satisfied. Moreover, we suppose the existence of a
nonnegative n× n-matrix M = {mij}n

i,j≥1 and a nonegative vector v = (v1, · · · , vn) such that

| fi(t, x)| ≤
n

∑
j=1

mij|xj|+ vi ∀(t, x) ∈ R+ ×Rn, i = 1, · · · , n. (9)
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Then the Lyapunov exponent

Λ(u) = lim sup
t→∞

ln ‖x(t)‖∞

t

of the unique solution x ∈ C(R+,Rn) of (1) satisfies

Λ(u) ≤ ρ(M)maxi=1,··· ,n 1/qi ,

where ρ(M) is the spectral radius of M. Note x(0) = u, so we consider as usually Λ : Rn → R+ (see [10]).

Proof. Clearly (9) implies

‖ f (t, x)‖∞ ≤
(

max
i=1,··· ,n

n

∑
j=1

mij

)
‖x‖∞ + ‖v‖∞ ∀(t, x) ∈ R+ ×Rn.

Then, like in the proof of Theorem 1, for any T > 0 there is a unique solution of (1) on I. However,
since T > 0 is arbitrary, we get a unique solution x(t) on R+. Then, we compute

|xi(t)| ≤ |ui|+
1

Γ(qi)

∫ t

0
(t− s)qi−1

n

∑
j=1

(
mij|xj(s)|+ vj

)
ds

= |ui|+
tqi

Γ(qi + 1)

n

∑
j=1

mijvj +
1

Γ(qi)

n

∑
j=1

mij

∫ t

0
(t− s)qi−1e−αs|xj(s)|eαsds

≤ |ui|+
tqi

Γ(qi + 1)

n

∑
j=1

mijvj +
1

Γ(qi)

n

∑
j=1

mij‖xj‖α
Γ(qi)eαt

αqi

= |ui|+
tqi

Γ(qi + 1)

n

∑
j=1

mijvj +
eαt

αqi

n

∑
j=1

mij‖xj‖α

≤ |ui|+ Υαeαt
n

∑
j=1

mijvj +
eαt

αqi

n

∑
j=1

mij‖xj‖α

for

Υα = max
i=1,··· ,n,t∈R+

tqi e−αt

Γ(qi + 1)
= max

i=1,··· ,n

qqi
i e−qi

αqi Γ(qi + 1)
.

Consequently, we arrive at

‖xi‖α ≤ |ui|+ Υα

n

∑
j=1

mijvj +
1

αqi

n

∑
j=1

mij‖xj‖α,

or setting wα = (‖x1‖α, · · · , ‖xm‖α) and |u| = (|u1|, · · · , |un|), we obtain

wαε ≤ |u|+ Υαε Mv +
1

ρ(M) + ε
Mwαε , (10)

for αε = maxi=1,··· ,n(ρ(M) + ε)1/qi and ε > 0 is fixed. (10) is considered component-wise. From (10),
we get (

I − 1
ρ(M) + ε

M
)

wαε ≤ |u|+ Υαε Mv (11)

for the n× n identity matrix I. By the Neumann lemma, we have(
I − 1

ρ(M) + ε
M
)−1

=
∞

∑
i=0

(
1

ρ(M) + ε
M
)i

,
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which is a positive matrix. Consequently, (11) implies

wαε ≤
(

I − 1
ρ(M) + ε

M
)−1

(|u|+ Υαε Mv) .

Letting ε→ 0, we get

wα0 ≤
(

I − 1
ρ(M)

M
)−1

(|u|+ Υα0 Mv)

for α0 = maxi=1,··· ,n ρ(M)1/qi . So we arrive at

|xi(t)| ≤ eα0twi ∀t ∈ R+, i = 1, · · · , n

for w = (w1, · · · , wn) =
(

I − 1
ρ(M)

M
)−1

(|u|+ Υα0 Mv), which implies

Λ(u) = lim sup
t→∞

ln ‖x(t)‖∞

t
≤ lim sup

t→∞

ln(eα0t‖w‖∞)

t

= lim sup
t→∞

ln eα0t

t
+ lim sup

t→∞

‖w‖∞

t
= α0.

The proof is finished.

4. Stability Result

This section is devoted to an autonomous version of (1)

Dqi
0+xi =

n

∑
j=1

aijxj + gi(x1, · · · , xn), xi(0) = ui, i = 1, · · · , n (12)

where ai,j ∈ R, g = (g1, · · · , gn) : Rn → Rn is locally Lipschitz with g(0) = 0 and limx→0
‖g(x)‖∞
‖x‖∞

= 0.
We already know that (12) has a locally unique solution. First, we prove the following

Lemma 1. Let λ > 0 and q, p ∈ (0, 1] with q ≥ p. Then, it holds

S(λ, q, p) = sup
t≥0

(t + 1)p
∫ t

0
(t− s)q−1Eq,q(−(t− s)qλ)(s + 1)−pds < ∞. (13)

Note that Eq,q(−t) ≥ 0 for any t ∈ R+ by ([11] p. 85), where Eq,q(t) is the two-parametric Mittag-Leffler
function ([11] p. 56) .

Proof. By ([5] Proposition 2.4(i))or ([11] Formula (4.4.17)), there is a positive constant M(q, λ) such that

tq−1Eq,q(−tqλ) ≤ M(q, λ)

(t + 1)q+1 ∀t ≥ 1.

Here we note that one can use ([6] Lemma 3) to compute M(q, λ). First, using ([11] Formula (4.4.4)),
we derive

sup
t∈[0,1]

(t + 1)p
∫ t

0
(t− s)q−1Eq,q(−(t− s)qλ)(s + 1)−pds

≤ sup
t∈[0,1]

(t + 1)p
∫ t

0
(t− s)q−1Eq,q(−(t− s)qλ)ds

= sup
t∈[0,1]

(t + 1)p
∫ t

0
zq−1Eq,q(−zqλ)dz = sup

t∈[0,1]
(t + 1)ptqEq,q+1(−λtq) = 2pEq,q+1(−λ),
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since applying ([11] Formula (5.1.15)), we derive

d
dt
(t + 1)ptqEq,q+1(−λtq) = p(t + 1)p−1tqEq,q+1(−λtq) + (t + 1)ptq−1Eq,q(−λtq) ≥ 0

for t > 0. Next, for t ≥ 1, we derive

sup
t≥1

(t + 1)p
∫ t

0
(t− s)q−1Eq,q(−(t− s)qλ)(s + 1)−pds

≤ sup
t≥1

(t + 1)p
∫ t−1

0
(t− s)q−1Eq,q(−(t− s)qλ)(s + 1)−pds

+ sup
t≥1

(t + 1)p
∫ t

t−1
(t− s)q−1Eq,q(−(t− s)qλ)(s + 1)−pds

≤ sup
t≥1

(t + 1)p
∫ t−1

0

M(q, λ)

(t− s + 1)q+1(s + 1)p ds + sup
t≥1

(t + 1)p

tp

∫ 1

0
zq−1Eq,q(−zqλ)dz

≤ sup
t≥1

(t + 1)p
∫ t/2

0

M(q, λ)

(t− s + 1)q+1 ds + sup
t≥1

2p(t + 1)p

(t + 2)p

∫ t

t/2

M(q, λ)

(t− s + 1)q+1 ds + 2pEq,q+1(−λ)

≤ sup
t≥1

2q(t + 1)p M(q, λ)

q(t + 2)q + sup
t≥1

2p(t + 1)p M(q, λ)

q(t + 2)p + 2pEq,q+1(−λ)

≤ (2q + 2p)M(q, λ)

q
+ 2pEq,q+1(−λ)

Summarizing, we arrive at the estimate

S(λ, q, p) ≤ (2q + 2p)M(q, λ)

q
+ 2pEq,q+1(−λ).

The proof is finished.

Theorem 4. Suppose aii = −λi < 0, i = 1, · · · , n. If

γ = max
i=1,··· ,n

S(λi, qi, qn)
n

∑
i 6=j=1

|aij| < 1, (14)

then the zero solution of (12) is asymptotically stable.

Proof. The proof is motivated by the well-known Geršgoring type method [12,13]. Like above,
we modify (12) outside of the unit ball B(1) such that the modified system is globally Lipschitz.
Then, the solution of the modified (12) has a global unique solution on R+ by Theorem 1. This solution
of (12) has the fixed point form [8]

xi(t) = Gi(x, u), i = 1, · · · , n,

Gi(x, u) = Eqi (−tqi λi)ui +
∫ t

0
(t− s)qi−1Eqi ,qi (−(t− s)qi λi)(

n

∑
i 6=j=1

aijxj(s) + gi(x1(s), · · · , xn(s)))ds,
(15)

where Eq(t) and Eq,q(t) are the classical and two-parametric Mittag-Leffler functions,
respectively ([11] p. 56). Fix T > 0 and set |||x||| = maxt∈I |x(t)|∞(t + 1)qn for x ∈ C(I,Rn).
Then, (15) implies
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|Gi(x, u)(t)|(t + 1)qn ≤ κ|ui|+ (t + 1)qn

∫ t

0
(t− s)qi−1Eqi ,qi (−(t− s)qi λi)(s + 1)−qn ds

×(
n

∑
i 6=j=1

|aij|+ h(‖x(s)‖∞))|||x|||)

≤ κ‖u‖∞ + S(λi, qi, qn)(
n

∑
i 6=j=1

|aij|+ h(|||x|||))|||x|||)

for
κ = max

i=1,··· ,n
sup
t≥0

Eqi (−tqi λi)(t + 1)qn < ∞

(see ([11] Formula (3.4.30)) and h(r) = max‖x‖∞≤r
||g(x)||∞
‖x‖∞

. Consequently, we obtain

|||G(x, u)||| ≤ κ‖u‖∞ + (γ + ωh(|||x|||))|||x|||) (16)

for G(x, u) = (G1(x, u), · · · , Gn(x, u)) and

ω = max
i=1,··· ,n

n

∑
i 6=j=1

S(λi, qi, qn).

Taking r1 ∈ (0, 1) such that γ + ωh(r1) ≤ 1+γ
2 , then (16) implies

|||G(x, u)||| ≤ κ‖u‖∞ +
1 + γ

2
|||x||| (17)

for any x ∈ BT(r1) = {x ∈ C(I,Rn) | |||x||| ≤ r1}. So, supposing

‖u‖ ≤ 1− γ

2κ
r1, (18)

(17) gives
G : BT(r1) ⊂ BT(r1).

It is well-known that G : C(I,Rn)→ C(I,Rn) is continuous and compact [8]. Since BT(r1) is convex
and bounded, by the Schauder fixed point theorem, G has a fixed point x ∈ BT(r1). However, this
a solution of a modified (12), which has a unique solution on R+. So, this unique solution satisfies
x ∈ BT(r1) for any t > 0; i.e.,

‖x(t)‖∞ ≤
r1

(t + 1)qn
∀t ≥ 0. (19)

Certainly (19) gives ‖x(t)‖∞ ≤ 1, so x(t) is also a unique solution of the original (12).
Moreover, (17) leads to

‖x(t)‖∞ ≤
2κ‖u‖∞

(1− γ)(t + 1)qn
∀t ≥ 0,

which determines the asymptotic stability of (12) at 0. The proof is finished.

Remark 2. Condition (14) is a Geršgoring type assumption [12,13]. Even for q1 = · · · = qn, condition (14) is
new, since the general stability assumption (see [5] Theorem 2.2) is difficult to check. The above approach can be
extended to FDEs on infinite lattices like in [14].

5. Examples

In this section, we give examples to demonstrate the validity of our theoretical results.
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Example 1. Consider 
cD0.6

0+ x1 = sin(x1 + 2x2), t ∈ [0, 1],
cD0.5

0+ x2 = arctan(2x1 + x2),
x1(0) = u1, x2(0) = u2.

(20)

Set q1 = 0.6 > 0.5 = q2, T = 1, f1(t, x1, x2) = sin(x1 + 2x2) and f2(t, x1, x2) = arctan(2x1 + x2).
Clearly, f = ( f1, f2) satisfying the uniformly Lipschitz condition with a Lipschitz constant L = 2. By Theorem
1 or 2, (20) has a unique solution x ∈ C([0, 1], R2).

Next, | f1(t, x1, x2)| ≤ m11|x1| + m12|x2| and | f2(t, x1, x2)| ≤ m21|x1| + m22|x2| where
m11 = 1 = m22 and m12 = m21 = 2 Set M = (mij) ∈ R2×2, so

M =

(
1 2
2 1

)
,

is a nonnegative matrix and ρ(M) = 3. By Theorem 3, Λ(u) = 3
5
3 .

Example 2. Consider{ cD0.6
0+ x1 = −x1 − 0.5x2 +

x1+x2
1+(x1+x2)2 sin(x1 + x2), t ≥ 0,

cD0.5
0+ x2 = 0.5x1 − x2 +

x1+x2
1+(x1+x2)2 arctan(x1 + x2).

(21)

Set q1 = 0.6 > 0.5 = q2, λ1 = λ2 = 1, a11 = a22 = −1 and a12 = −0.5, a21 = 0.5,
g1(x1, x2) =

x1+x2
1+(x1+x2)2 sin(x1 + x2), g2(x1, x2) = x1+x2

1+(x1+x2)2 arctan(x1 + x2) and u1 = u2 = 0.
Clearly, g = (g1, g2) satisfies the uniformly Lipschitz condition with a Lipschitz constant L = 2 and
g((0, 0)) = (0, 0) and lim(x1,x2)→(0,0)

‖g(x1,x2)‖∞
‖(x1,x2)‖∞

= 0. We numerically derive

S(1, 0.6, 05) .
= 1.0051, S(1, 0.5, 0, 5) .

= 1

so γ ≤ 0.503 < 1. By Theorem 4, the zero solution of (21) is asymptotically stable.

6. Conclusions

The existence and uniqueness of solutions of (1) are shown along with their stability and
asymptotic properties. Theorems 1 and 2 extended the partial case of qi = q, i = 1, 2, · · · , n which are
known in the related literature. Theorems 3 and 4 are original results. Moreover, Theorems 1, 2, and
3 can be directly extended to infinite dimensional cases. The next step should be to derive an exact
solution for scalar linear systems (i.e., (12) with g = 0) and to find an explicit variation of constant
formula for nonhomogeneous systems. Of course, a more general stability criterion would also be
interesting to find by generalizing ([5] Theorem 2.2), which is just for q1 = · · · = qn. Then, a derivation
of a Gronwall-type inequality associated to MOFDEs would be challenging as well. This should extend
Theorem 4 to infinite dimensional cases.
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