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Abstract: We consider a generalized Langevin equation with regularized Prabhakar derivative
operator. We analyze the mean square displacement, time-dependent diffusion coefficient and
velocity autocorrelation function. We further introduce the so-called tempered regularized Prabhakar
derivative and analyze the corresponding generalized Langevin equation with friction term
represented through the tempered derivative. Various diffusive behaviors are observed. We show the
importance of the three parameter Mittag-Leffler function in the description of anomalous diffusion
in complex media. We also give analytical results related to the generalized Langevin equation for
a harmonic oscillator with generalized friction. The normalized displacement correlation function
shows different behaviors, such as monotonic and non-monotonic decay without zero-crossings,
oscillation-like behavior without zero-crossings, critical behavior, and oscillation-like behavior with
zero-crossings. These various behaviors appear due to the friction of the complex environment
represented by the Mittag-Leffler and tempered Mittag-Leffler memory kernels. Depending on the
values of the friction parameters in the system, either diffusion or oscillations dominate.

Keywords: generalized Langevin equation; regularized Prabhakar derivative; tempered memory
kernel; Mittag-Leffler functions

1. Introduction

The Langevin equation for a Brownian particle with mass m = 1 is represented by the following
equaion [1–3]

ẍ(t) + γẋ(t) = ξ(t), ẋ(t) = v(t), (1)

where x(t) is the particle displacement, v(t) is the particle velocity, γ is the friction coefficient, and ξ(t)
is a stationary random force with zero mean and correlation 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t′− t), where 2γkBT
is the so-called spectral density. By calculation of the mean square displacement (MSD) it has been
shown that such process shows normal diffusive behavior, i.e., linear dependence of the MSD on

time,
〈

x2(t)
〉
= 2kBT

γ t. The corresponding diffusion coefficient D = limt→∞
〈x2(t)〉

2t for the Brownian

motion is given by D =
kBT

γ
, and the normalized velocity autocorrelation function (VACF) by

〈v(t)v(0)〉
〈v2(0)〉 = e−γt [1,3].
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In the work by Lutz [4], a fractional Langevin equation describing non-Markovian stochastic
process is introduced,

ẍ(t) + γµ CDµ
t x(t) = ξ(t), ẋ(t) = v(t), (2)

where

CDµ
t f (t) =

1
Γ(1− µ)

∫ t

0
(t− t′)−µ d

dt′
f (t′) dt′ (3)

is the Caputo fractional derivative of order 0 < µ < 1 [5], and γµ is the generalized friction coefficient.
This equation is a special case of the generalized Langevin equation (GLE) with the power-law
memory kernel γ(t) = γµ t−µ/Γ(1− µ) (see Section 3). Additionally, if the noise is internal, the second
fluctuation-dissipation relation 〈

ξ(t)ξ(t′)
〉
= kbTγ̄µ |t− t′|−µ (4)

holds true, where γ̄µ = γµ/Γ(1− µ). It has been shown that the MSD for the fractional Langevin
Equation (2) is represented in terms of the two parameter Mittag-Leffler (M-L) function [4] (see Section 2
for details), 〈

x2(t)
〉
= 2kBT t2E2−µ,3

(
−γµ t2−µ

)
't→∞

2kBT
γµ

tµ

Γ(1 + µ)
, (5)

which is a proof of existence of anomalous diffusion in the system. Since 0 < µ < 1, it is a subdiffusive
process [6].

In this paper we introduce the GLE with a friction term represented through the regularized
Prabhakar derivative (see Section 2 for details), i.e.,

ẍ(t) + γµ,ρ,δ CD
δ,µ
ρ,−ν,t x(t) = ξ(t), ẋ(t) = v(t), (6)

where 0 < µ, δ < 1, 0 < µ/δ < 1, 0 < µ/δ − ρ < 1, ν = τ−µ, τ is a time parameter, and γµ,ρ,δ
is the generalized friction coefficient. This equation is a generalization of the fractional Langevin
Equation (2) which is recovered by setting δ = 0. We further introduce a GLE with a tempered
regularized Prabhakar friction term and analyze the normalized displacement correlation function in
case of harmonic potential. Tempered fractional equations nowadays attract more and more attention
due to their application in different systems [7–10].

This paper is organized as follows. In Section 2 we give definitions for the Prabhakar derivatives
and integral, and related three parameter Mittag-Leffler function. We also introduce a so-called
tempered regularized Prabhakar derivative and derive its Laplace transform. GLE for a free particle
is considered in Section 3. The MSD, time-dependent diffusion coefficient and VACF are obtained
explicitly. In Section 4 we introduce a GLE with friction term represented via tempered regularized
Prabhakar derivative. Normal diffusive behavior in the long time limit is obtained due to the
exponential truncation in the memory kernel. The case of harmonic oscillator is considered in Section 5,
and the normalized displacement correlation function, which is experimentally measured quantity,
is obtained. Different diffusion regimes have been observed, therefore the considered equations are
of importance for description of anomalous diffusion in complex media. A summary is provided
in Section 6.



Mathematics 2017, 5, 66 3 of 11

2. Prabhakar Derivatives

The Prabhakar integral is defined by [11](
E δ

ρ,µ,−ν,t f
)
(t) =

∫ t

0
(t− t′)µ−1Eδ

ρ,µ
(
−ν(t− t′)ρ

)
f (t′) dt′, (7)

where

Eδ
α,β(z) =

∞

∑
k=0

(δ)k
Γ(αk + β)

zk

k!
, (8)

with (δ)k = Γ(γ + k)/Γ(γ)—the Pochhammer symbol, is the three parameter M-L function [11].
The Laplace transform, L[ f (t)](s) =

∫ ∞
0 f (t)e−st dt, of the three parameter M-L function is given by

L
[
tβ−1Eδ

α,β(−νtα)
]
(s) =

sαδ−β

(sα + ν)δ
, <(s) > |ν|1/α. (9)

The functions Eα,β(z) = E1
α,β(z) and Eα(z) = E1

α,1(z) are the two parameter and one parameter
M-L function, respectively. For δ = 0 the Prabhakar integral becomes the Riemann-Liouville (R-L)
fractional integral, defined by RL Iµ

t f (t) = 1
Γ(µ)

∫ t
0 (t− t′)µ−1 f (t′) dt′. Its Laplace transform is given by

L
[

RL Iµ
t f (t)

]
(s) = s−µL [ f (t)] (s) [5].

The regularized Prabhakar derivative CD
γ,µ
ρ,−ν,t is defined as follows [12]

CD
δ,µ
ρ,−ν,t f (t) =

(
E−δ

ρ,m−µ,−ν,t
dm

dtm f
)
(t), (10)

where µ, ν, γ, ρ ∈ C, <(µ) > 0, <(ρ) > 0, m = [µ] + 1. For δ = 0 one obtains the Caputo fractional
derivative CD

µ
t f (t) = RL Im−µ

t
dm

dtm f (t) [5]. Here we note that the Prabhakar derivative in a form of

R-L is given by RLD
δ,µ
ρ,−ν,t f (t) = dm

dtm

(
E−δ

ρ,m−µ,−ν,t f
)
(t) [12,13] (see also [14]). For δ = 0 it becomes

the R-L fractional derivative RLD
µ
t f (t) = dm

dtm RL Im−µ
t f (t) [5]. These derivatives are applicable in

the fractional Poisson process [12], for description of dielectric relaxation phenomena [15,16], in the
fractional Maxwell model in the linear viscoelasticity [17], in mathematical modeling of fractional
differential filtration dynamics [18], in fractional dynamical systems [19], generalized reaction-diffusion
equations [20], in generalized model of particle deposition in porous media [21], etc.

In our paper we are particularly interested in the case with 0 < µ < 1, so one has

CD
δ,µ
ρ,−ν,t f (t) =

(
E−δ

ρ,1−µ,−ν,t
d
dt

f
)
(t) =

∫ t

0
(t− t′)−µE−δ

ρ,1−µ

(
−ν(t− t′)ρ

) d
dt′

f (t′) dt′. (11)

From here we conclude that the regularized Prabhakar derivative is a special case of the
generalized derivative

(CGγ,t f ) (t) =
∫ t

0
γ(t− t′)

d
dt′

f (t′) dt′, (12)

which has been investigated in different contexts in [10,22,23], where

γ(t) = t−µE−δ
ρ,1−µ (−νtρ) . (13)

We note that the Prabhakar derivative in the R-L form for 0 < µ < 1 is a special case of
the generalized derivative

(
RLGη,t f

)
(t) = d

dt

∫ t
0 η(t − t′) f (t′) dt′, which has been investigated

in [10,22,23], where the memory kernel is given by η(t) = t−µE−δ
ρ,1−µ (−νtρ).
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The Laplace transform of regularized Prabhakar derivative, Equation (11), is given by [12]

L
[

CD
δ,µ
ρ,−ν,t f (t)

]
(s) = sµ (1 + νs−ρ)

δ L [ f (t)] (s)− sµ−1 (1 + νs−ρ)
δ f (0+)

= sµ−1 (1 + νs−ρ)
δ
[sL [ f (t)] (s)− f (0+)] ,

(14)

where <(s) > |ν|1/ρ [12]. For δ = 0, Prabhakar derivative corresponds to the Caputo fractional
derivative of order 0 < µ < 1 with Laplace transform [5]

L
[

CD
µ
t f (t)

]
(s) = sµL [ f (t)] (s)− sµ−1 f (0+) = sµ−1 [sL [ f (t)] (s)− f (0+)] .

Here we note that the regularized Prabhakar derivative, Equation (11), is a special case of the
Hilfer-Prabhakar derivative defined by [12]

HPD
δ,µ,ν̄
ρ,ν,t f (t) =

(
E−δν̄

ρ,ν̄(1−µ),−ν,t
d
dt

(
E−δ(1−ν̄)

ρ,(1−ν̄)(1−µ),−ν,t

)
f
)
(t), 0 < µ < 1, 0 ≤ ν̄ ≤ 1, (15)

for the case with ν̄ = 1. Its Laplace transform reads [12]

L
[

HPD
δ,µ,ν̄
ρ,−ν,t f (t)

]
(s) = sµ

(
1 + νs−ρ

)δ L [ f (t)] (s)− sν̄(µ−1) (1 + νs−ρ
)δν̄

[
E−δ(1−ν̄)

ρ,(1−ν̄)(1−µ),−ν,t f
]∣∣∣

t=0+
.

From this formula we see that the initial value term is given in an integral form. Only the case
with ν̄ = 1 yields the initial value in the natural form f (0+). Therefore, the regularized Prabhakar
derivative (11) is suitable for application in the GLE model. The case with δ = 0 corresponds to the
so-called Hilfer composite fractional derivative of order 0 < µ < 1 and type 0 ≤ ν̄ ≤ 1, which is given
by Dµ,ν̄

t f (t) =
(

RL I ν̄(1−µ)
t

d
dt (RL I(1−ν̄)(1−µ)

t f )
)
(t) [24]. This composite fractional derivative has been

successfully applied in description of dielectric and viscoelastic phenomena [25,26].
Furthermore, in this paper we introduce the tempered regularized Prabhakar derivative in the

following way

TCD
δ,µ
ρ,−ν,t f (t) =

(
TE−δ

ρ,1−µ,−ν,t
d
dt

f
)
(t), (16)

where (
TE δ

ρ,µ,−ν,t f
)
(t) =

∫ t

0
e−b(t−t′)(t− t′)µ−1Eδ

ρ,µ
(
−ν(t− t′)ρ

)
f (t′) dt′, (17)

and b > 0. Other parameters are the same as in the regularized Prabhakar derivative (11). From the
definition we see that this derivative is a special case of the generalized derivative (12) for

γ(t) = e−btt−µE−δ
ρ,1−µ (−νtρ) . (18)

Therefore, for the Laplace transform of the tempered regularized Prabhakar derivative we find

L
[

TCD
δ,µ
ρ,−ν,t f (t)

]
(s) = (s + b)µ−1 (1 + ν(s + b)−ρ

)δ
[sL [ f (t)] (s)− f (0+)] . (19)

We will use this derivative in the GLE and analyze the influence of the exponential truncation on
the particle behavior.

On the other hand, one can introduce the so-called tempered Prabhakar derivative in the R-L form
in a similar way, by introducing exponential truncation in the memory kernel, i.e., TRLD

δ,µ
ρ,−ν,t f (t) =

d
dt

∫ t
0 e−b(t−t′)(t− t′)−µE−δ

ρ,1−µ (−(t− t′)ρ) f (t′) dt′.
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Here we note that different fractional equations have been used for modeling anomalous diffusion
in various systems, including fractional reaction-diffusion equations [27,28] and their application [29],
fractional relaxation and diffusion equations [5,6,9,10,24–26], fractional cable equation [30], etc.

3. Free Particle

We showed in Section 2 that the regularized Prabhakar derivative (11) is a special case of the
generalized derivative (12), therefore we conclude that the Langevin Equation (6) can be written in
a form of the generalized Langevin equation (see [31])

ẍ(t) +
∫ t

0
γ(t− t′)

d
dt′

x(t′)dt′ = ξ(t), ẋ(t) = v(t), (20)

where

γ(t) = γµ,ρ,δ t−µE−δ
ρ,1−µ

(
−
[

t
τ

]ρ)
. (21)

By using the asymptotic expansion of the three parameter M-L function Eδ
α,β(−z) ' z−δ

Γ(β−αδ)
,

which follows from the formula [9] (for details of the three parameter M-L function see [32])

Eδ
α,β(−z) =

z−δ

Γ(δ)

∞

∑
k=0

Γ(δ + k)
Γ(β− α(δ + n))

(−z)−n

n!
, (22)

for 0 < α < 2 and z → ∞, one can show that the assumption limt→∞ γ(t) = 0 [33] is satisfied since
µ > ρδ. Additionally to this equation, we assume that the second fluctuation-dissipation relation

〈
ξ(t)ξ(t′)

〉
= kbTγµ,ρ,δ |t− t′|−µE−δ

ρ,1−µ

(
−
[
|t− t′|

τ

]ρ)
, (23)

holds true.
From the Laplace transform method one finds that

x(t) = 〈x(t)〉+
∫ t

0
G(t− t′)ξ(t′) dt′, v(t) = 〈v(t)〉+

∫ t

0
g(t− t′)ξ(t′) dt′, (24)

where x0 = x(0) and v0 = v(0) are the initial particle displacement and initial particle
velocity, respectively,

〈x(t)〉 = x0 + v0G(t), 〈v(t)〉 = v0g(t), (25)

are the average particle displacement and the average particle velocity, respectively, and the Laplace
pairs of the relaxation functions g(t), G(t) and I(t) are given through L[γ(t)](s) = γ̂(s) by

ĝ(s) =
1

s + γ̂(s)
, Ĝ(s) =

s−1

s + γ̂(s)
, Î(s) =

s−2

s + γ̂(s)
, (26)

respectively. From the relaxation functions one can derive the MSD, time-dependent diffusion
coefficient and VACF, for thermal initial conditions x0 = 0 and v0 = kBT, and under the assumption
limt→∞ γ(t) = lims→0 sγ̂(s) = 0, as follows [33–35]〈

x2(t)
〉
= 2kBTI(t), (27)

D(t) =
1
2

d
dt

〈
x2(t)

〉
= kBTG(t), (28)
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CV(t) =
〈v(t)v(0)〉
〈v2(0)〉 = g(t). (29)

Therefore, for the MSD, D(t) and VACF we find

〈
x2(t)

〉
= 2kBT

∞

∑
n=0

(−γµ,ρ,δ)
nt(2−µ)n+2E−δn

ρ,(2−µ)n+3

(
−
[

t
τ

]ρ)
, (30)

D(t) = kBT
∞

∑
n=0

(−γµ,ρ,δ)
nt(2−µ)n+1E−δn

ρ,(2−µ)n+2

(
−
[

t
τ

]ρ)
, (31)

CV(t) =
∞

∑
n=0

(−γµ,ρ,δ)
nt(2−µ)nE−δn

ρ,(2−µ)n+1

(
−
[

t
τ

]ρ)
, (32)

respectively. Such series in three parameter M-L functions are convergent [36–38].
From Equation (22), for the long time limit we find

〈
x2(t)

〉
' 2kBT t2E2−µ+ρδ,3

(
−γ̄t2−µ+ρδ

)
' 2kBT

γ̄

tµ−ρδ

Γ(1 + µ− ρδ)
, (33)

D(t) ' kBT tE2−µ+ρδ,2

(
−γ̄t2−µ+ρδ

)
(34)

CV(t) ' E2−µ+ρδ

(
−γ̄t2−µ+ρδ

)
, (35)

where γ̄ = γµ,ρ,δτ−ρδ. Therefore, from the MSD we conclude that there exists subdiffusion
〈

x2(t)
〉
' tα

with anomalous diffusion exponent α = µ− ρδ, where 0 < α < δ < 1.
Graphical representation of the MSD (30) is given in Figure 1. From the figure we see that the

MSD shows oscillation-like behavior for intermediate times which can be explained as a result of the
cage effect of the environment represented by the M-L memory kernel (see also Section 5).

0 5 10 15 20

0

1

2

3

4

t

<
x

2
Ht
L>

Figure 1. Graphical representation of the MSD (30) for kBT = 1, γµ,ρ,δ = 1, τ = 1, ρ = 1/2, δ = 3/4,
and µ = 1/2 (blue line), µ = 5/8 (red line).
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Remark 1. The case with high viscous damping, i.e., Equation (20) with vanishing second derivative term
ẍ(t) = 0, yields the following result

〈
x2(t)

〉
=

2kBT
γµ,ρ,δ

tµEδ
ρ,µ+1

(
−
[

t
τ

]ρ)
' 2kBT

γµ,ρ,δ


tµ

Γ(µ+1) , t→ 0
tµ−ρδ

τ−ρδΓ(1+µ−ρδ)
, t→ ∞.

(36)

Since the anomalous diffusion exponent from µ for the short time limit turns to µ− ρδ in the long time limit,
we conclude that decelerating subdiffusion exists in the system.

4. Tempered Friction

We further consider the GLE with a friction term represented through the tempered regularized
Prabhakar derivative. Therefore, we consider

ẍ(t) + γµ,ρ,δ TCD
δ,µ
ρ,−ν,tx(t) = ξ(t), ẋ(t) = v(t), (37)

where b > 0, and all the parameters are the same as in Equation (6). From definition (16) one may
conclude that the memory kernel in GLE is given by

γ(t) = γµ,ρ,δ e−btt−µE−δ
ρ,1−µ

(
−
[

t
τ

]ρ)
. (38)

The second fluctuation-dissipation relation then reads

〈
ξ(t)ξ(t′)

〉
= kbTγµ,ρ,δ e−b|t−t′ ||t− t′|−µE−δ

ρ,1−µ

(
−
[
|t− t′|

τ

]ρ)
. (39)

Following the same procedure as previous, for the MSD we find

〈
x2(t)

〉
=

∞

∑
n=0

(
−γµ,ρ,δ

)n
RL In+3

t

(
e−btt(1−µ)n−1E−δn

ρ,(1−µ)n

(
−
[

t
τ

]ρ))
, (40)

where RL Iα
t is the R-L fractional integral. In the case of no truncation (b = 0), from Equation (40),

by using the formula RL Iζ
t

(
t

β−1
Eδ

α,β (−νtα)
)
= t

ζ+β−1
Eδ

α,ζ+β (−νtα) [14], we recover the result (30) for
the MSD.

Remark 2. In the absence of the inertial term, ẍ(t) = 0 in Equation (37), we find the following result for
the MSD 〈

x2(t)
〉
=

2kBT
γµ,ρ,δ

RL I2
t

(
e−bttµ−2Eδ

ρ,µ−1

(
−
[

t
τ

]ρ))
. (41)

The short time limit yields subdiffusion
〈

x2(t)
〉
' 2kBT

γµ,ρ,δ
tµ/Γ(1 + µ), and the long time limit normal

diffusion
〈

x2(t)
〉
' t. Therefore, there exists accelerating diffusion—from subdiffusion to normal diffusion.

Such crossover from subdiffusion to normal diffusion has been observed, for example, in complex viscoelastic
systems [39].

Graphical representation of the MSD (40) is given in Figure 2. From the figure one observes the
influence of the truncation parameter b on the behavior of the MSD. The case with no truncation shows
subdiffusive behavior (blue line), and the case with truncation (red and green lines) normal diffusion
in the long time limit.



Mathematics 2017, 5, 66 8 of 11
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<
x
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Ht
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Figure 2. Graphical representation of the MSD (40), for kBT = 1, γµ,ρ,δ = 1, τ = 1, ρ = 1/2, µ = 1/2,
δ = 3/4, and b = 0 (blue line), b = 0.1 (red line) and b = 0.5 (green line).

5. Harmonically Bounded Particle in Presence of Prabhakar Friction Term

At the end we consider GLE for a harmonic oscillator with tempered regularized Prabhakar
friction, i.e.,

ẍ(t) + γµ,ρ,δ TCD
δ,µ
ρ,−ν,t x(t) + ω2x(t) = ξ(t), ẋ(t) = v(t), (42)

where ω is the frequency of the oscillator. By Laplace transform method we find exact result for
the MSD. It is given by〈

x2(t)
〉

2kBT
= ∑∞

n=0
(
−γµ,ρ,δ

)n ∫ t
0 (t− t′)n+2En+1

2,n+3
(
−ω2(t− t′)2) e−bt′ t′(1−µ)n−1E−δn

ρ,(1−µ)n

(
−
[

t′
τ

]ρ)
dt′

= ∑∞
n=0

(
−γµ,ρ,δ

)n En+1
2,n+3,−ω2,t

(
e−btt(1−µ)n−1E−δn

ρ,(1−µ)n

(
−
[ t

τ

]ρ
))

,
(43)

where
(
E δ

α,β,−ω2,t f
)
(t) is the Prabhakar integral (7). For the free particle case ω = 0, the Prabhakar

integral corresponds to the R-L fractional integral, therefore, from Equation (43) one finds the
previously obtained result for free particle, Equation (30).

Here we are particularly interested in the normalized displacement correlation function which is
experimental measured quantity related to the GLE [40],

CX(t) =
〈x(t)x0〉〈

x2
0
〉 =

s + γ̂(s)
s2 + sγ̂(s) + ω2 , (44)

under the conditions x2
0 = kBT

ω2 , 〈x0v0〉 = 0, and 〈ξ(t)x0〉 = 0 [41]. From here one concludes that

CX(t) = 1−ω2 I(t), where I(t) = 〈x
2(t)〉

2kBT . Therefore, it is given by

CX(t) = 1−ω2
∞

∑
n=0

(
−γµ,ρ,δ

)n En+1
2,n+3,−ω2,t

(
e−btt(1−µ)n−1E−δn

ρ,(1−µ)n

(
−
[

t
τ

]ρ))
. (45)

The case with no truncation yields

CX(t) = 1−ω2
∞

∑
n=0

(
−γµ,ρ,δ

)n En+1
2,n+3,−ω2,t

(
t(1−µ)n−1E−δn

ρ,(1−µ)n

(
−
[

t
τ

]ρ))
. (46)
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Graphical representation of the CX(t), Equations (46) and (45), is given in Figures 3 and 4,
respectively. From Figure 3 we see that different behaviors of CX(t) appear, monotonic or
non-monotonic decay without zero crossings (for ω < 1.44), critical behavior between the situations
with and without zero crossings (at critical frequency ω ≈ 1.44), and oscillation-like behavior
with zero crossings (for ω > 1.44), which appear due to the cage effect of the environment [8,41].
The friction, depending on the memory kernel parameters, forces either diffusion or oscillations.
In Figure 4 we see that with increasing of tempering, oscillation behavior with zero crossings appears.
Therefore, in comparison to the standard harmonic oscillator (standard Langevin equation in presence
of harmonic potential) where two types of motion are observed for the normalized displacement
correlation function, either monotonic decay without zero crossings or oscillation-like behavior with
zero crossings (that are separated at the critical frequency ωc = γ/2), in case of the GLE with Prabhakar
memory kernel more different complex behaviors of the CX(t) are observed. Thus, the friction
parameters contained in the tempered Prabhakar derivative, by their tuning, increase the versatility to
fit complex experimental data.

0 5 10 15 20

-0.5

0.0

0.5

1.0

t

C
X
Ht
L

Figure 3. Graphical representation of the normalized displacement correlation function, Equation (46),
for γµ,ρ,δ = 1, τ = 1, ρ = 1/5 µ = 1/2, δ = 3/4, and ω = 0.25 (blue line), ω = 0.5 (red line), ω = 1.44
(green line), ω = 3 (brown line).
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Figure 4. Graphical representation of the normalized displacement correlation function, Equation (45),
for γµ,ρ,δ = 1, τ = 1, ρ = 1/2 µ = 1/2, δ = 3/4, ω = 0.5 and b = 0 (blue line), b = 1 (red line), b = 10
(green line), b = 100 (brown line).
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6. Summary

We show that the generalized Langevin equation with a friction represented in terms of the
regularized Prabhakar derivative generates decelerating subdiffusion. We also introduce a tempered
regularized Prabhakar derivative in the friction term and we show that the system from subdiffusion
switches to normal diffusion due to the exponential truncation in the memory kernel. Such model
could be used in the description of diffusive processes in viscoelastic systems, where subdiffusion
turns to normal diffusive behavior. We demonstrate the role of the three parameter Mittag-Leffler
function and the Prabhakar integral in the anomalous dynamics theory. The obtained results are
generalizations of those for the fractional Langevin equation. We also observe various behaviors of the
normalized displacement correlation function in case of harmonic oscillator. The proposed models
in this paper generate various anomalous diffusive realizations; therefore, by adjusting the memory
kernel parameters one could better fit complex experimental data.
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