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Abstract: One major concern of channel engineering in nanotransistors is the coupling
of the conduction channel to the source/drain contacts. In a number of previous publications,
we have developed a semiempirical quantum model in quantitative agreement with three series
of experimental transistors. On the basis of this model, an overlap parameter 0 ≤ C ≤ 1 can
be defined as a criterion for the quality of the contact-to-channel coupling: A high level of C
means good matching between the wave functions in the source/drain and in the conduction
channel associated with a low contact-to-channel reflection. We show that a high level of C leads
to a high saturation current in the ON-state and a large slope of the transfer characteristic in the
OFF-state. Furthermore, relevant for future device miniaturization, we analyze the contribution of
the tunneling current to the total drain current. It is seen for a device with a gate length of 26 nm
that for all gate voltages, the share of the tunneling current becomes small for small drain voltages.
With increasing drain voltage, the contribution of the tunneling current grows considerably showing
Fowler–Nordheim oscillations. In the ON-state, the classically allowed current remains dominant for
large drain voltages. In the OFF-state, the tunneling current becomes dominant.

Keywords: nanotransistor; channel engineering; quantum transport; contact-to-channel coupling;
wave function overlap; tunneling current

1. Introduction

At this time, transistors in integrated circuits are projected with channel lengths below 10 nm.
At this length scale quantum transport plays a substantial role. Microscopic modeling of the drain
current of such a nanotransistor thus requires the evaluation of the wave functions of the charge
carriers [1–10] or the evaluation of Greens functions [11–22]. Because of the considerable effort for such
microscopic calculations, there is a need for more flexible compact modeling like BSIM (Berkeley
Short-channel IGFET Model) [23–27], the virtual source model [28–33] or wave function-based
models [1,5,7,34–40]. In this paper, we focus on the latter approach in which the microscopic wave
functions of the charge carriers are approximated in a compact form.

A microscopic calculation of the wave functions of the charge carriers requires the time-consuming
numerical solution of the Schrödinger equation in at least two relevant dimensions (along the
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conduction channel and perpendicular to the semiconductor-insulator interface). To move towards
a compact quantum model, an essential step is therefore the formulation of a one-dimensional effective
model, which can be constructed and evaluated quickly. In our approach, we start from a complete
three-dimensional microscopic R-matrix-description of a nanotransistor in the Landauer–Büttiker
formalism and reduce it systematically to a one-dimensional effective model [5,37]. Here, one assumes
a separable form of the scattering potential in the conduction channel with only a single relevant
mode (‘single level approximation’). The resulting one-dimensional effective model is microscopically
justified for the OFF-state and for the threshold voltage region, which are essential for complementary
logic. Assuming furthermore a piecewise linear potential, the effective model can be formulated
in a scale-invariant form using only five dimensionless transistor parameters [38]. These transistor
parameters describe the height of the source-drain barrier, the device temperature, the channel length
and the applied drain voltage. The fifth parameter, the overlap parameter 0 ≤ C ≤ 1, is particularly
relevant for channel engineering because it gives a criterion for the quality of the coupling between the
contacts and the conduction channel: a high level of C means good matching properties (low reflection)
between the wave functions in the source/drain contact and in the conduction channel. In a model
with equal transverse confinement in the contacts and in the conduction channel as in [35,36], one has
C = 1. Finally, assuming the applicability of our theoretical results in the piecewise linear potential
approximation, the described five transistor parameters are adjusted to the experimental traces [39,40].
Excellent agreement between theory and experimental traces is found for three series of transistors
(‘A-, B- and C-transistors’) fabricated and measured by Globalfoundries with gate lengths of 30 nm,
26 nm and 22 nm.

This paper contains a detailed study of the overlap parameter of the C-transistors. We relate
the results for the overlap parameter to the sub-threshold slope and to the saturation current in the
experimental transfer characteristics. Here, we also compare the present results for the C-transistors
with previous results for the A-transistors with a much poorer overlap parameter and a poorer
saturation current. It is found that a large overlap parameter is associated with a large sub-threshold
slope in the transfer characteristic and a high saturation current in the ON-state. The magnitude of
the saturation current turns out to be strongly influenced by the magnitude of a characteristic jump
in the overlap parameter occurring at the threshold voltage. This jump is particularly pronounced for
short channel devices and for low temperatures. It is probably a non-linear phenomenon resulting
from the Coulomb interaction, which determines the potential in the shallow junction extensions
between the contacts and conduction channel. At low temperatures, thermal random motion is
reduced and screening is improved, and one expects a smooth transition between the contacts and the
conduction channel.

With future device miniaturization in mind, we analyze the contribution of the tunneling current
to the total drain current. Taking the C-transistor with the intermediate gate length of 26 nm
as an example it is seen that for all gate voltages, the share of the tunneling current becomes small for
small drain voltages. With increasing drain voltage, the contribution of the tunneling current grows
considerably showing Fowler–Nordheim oscillations. In the ON-state, the classically-allowed current
remains barely dominant for large drain voltages. In contrast, in the OFF-state, the drain current
becomes nearly entirely a tunneling current for large drain voltages.

2. Semiempirical Transistor Model

Our semiempirical model is reviewed in detail in the Appendix A. This section contains only
an account of the central equations in a nut-shell.

2.1. Scale-Invariant Drain Current

In [39,40], a formula for the drain current of a nanotransistor per width J is derived as given by:
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j =
J
J0

= C
∫ ∞

0
dε [s(ε−m)− s(ε−m + vD)] Te f (ε) ≡ j(v0, u, C, vD, l). (1)

Here, one has five dimensionless transistor parameters v0 = V0/EF (effective barrier height),
u = kBT/EF (normalized device temperature), C (wave function overlap; for the microscopic
interpretation, see Equation (A19)), l = L/λ (effective channel length) and vD = eUD/EF (normalized
drain voltage), where L is the channel length of the transistor, λ = h̄/

√
2m∗EF is the scaling

length and UD is the applied drain voltage. For the microcopic interpretation of the energy ε see
Equation (A26). While the three transistor parameters v0, u and C result from a fit of the experimental
output characteristics (see the next section), the remaining quantities can be calculated assuming that
the Fermi energy in the source contact EF and the chemical potential µ(T) are known from the doping
concentration: modeling the contacts as a homogeneous three-dimensional electron gas appropriate
for a wide transistor with a large junction depth, one has:

m =
µ

EF
= uX1/2

(
4

3
√

π
u−3/2

)
(2)

where X1/2 is the inverse function of the Fermi–Dirac integral of order 1/2. Furthermore, we adopt
from [37,38] values for the current normalization constant J0 = 2eNch

v EF/(hλ) ∼ 50 mA/µm with the
valley degeneracy Nch

v in the conduction channel, for the characteristic length λ ∼ 1 nm and for the
Fermi energy in the source EF = 0.35 eV. This way, for the investigated devices, the effective channel
length l is given by the channel length in nanometers. The supply function is calculated from:

s(α) =
√

u
4π

F− 1
2

(
− α

u

)
, (3)

where F−1/2 is the Fermi–Dirac integral of order −1/2. The supply function gives the number
of occupied scattering states per energy interval and per channel width. The effective current
transmission Te f is calculated from the scattering solutions of a normalized one-dimensional effective
Schrödinger equation in the scaled x-coordinate x̂ = x/L→ x:[

− 1
l2

d2

dx2 + ve f (x)− ε

]
ψe f (x) = 0 (4)

with the effective potential given by:

ve f (x) =


0 for x < 0
v0 − vDx for 0 ≤ x ≤ 1
−vD for x ≥ 1.

(5)

For the microscopic interpretation of the effective potential, see Equation (A22). The effective
potential of height v0 is plotted in Figure 1b. The source-incident scattering solution of (4) takes the
asymptotic form:

ψe f (x < 0) = eik1x + re f e−ik1x with k1 = l
√

ε (6)

and:
ψe f (x > 1) = te f eik2x with k2 = l

√
ε + vD. (7)

It now holds that Te f = k2|te f |2k−1
1 (see Equation (A25)).

From the effective Schrödinger Equation (4), it is clear that contributions to Te f with ε < v0 are
due to source-drain tunneling. Typical forms for the effective current transmission and the supply
function in (3) are given in Figure 8, and they are illustrated in Figure 1c: As is well known, Te f

approaches zero for ε� v0 and approaches unity for ε� v0. Since at room temperature, the thermal
energy kBT is considerably smaller than EF, the supply function decays quickly for ε > m. As a
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consequence, in the OFF-state with v0 > m ∼ 1, which is illustrated in Figure 1, there is only a small
overlap between the two factors s(ε−m)− s(ε−m− vD) and Te f (ε) in (1), and the total drain current
becomes small.

Figure 1. (a) N-type bulk nano-FET with applied gate voltage UG and drain voltage UD; (b) normalized
effective potential ve f (x) along the conduction channel with maximum barrier height v0; (c) schematic
plot of the factor s(ε− m)− s(ε− m + vD) in (1) containing the normalized supply functions (red)
and the current transmission function Te f (ε) (black). Shaded green: tunneling part of the current
transmission (see also Figure 8).

2.2. Calibration of the System Parameters

It is seen from Equation (1) that the normalized current per width j can be calculated from five
transistor parameters v0, u, C, vD and l. From the measurements of J, UD and L, one obtains directly the
three parameters j, vD and l from the values for J0, EF and λ, which are adopted from [37,38]. To find
the three missing transistor parameters v0, u and C in Equation (1), we assume the existence of three
calibration functions v0(UG), u(UG) and C(UG) depending only on the experimental gate voltage UG.
Through these calibration functions, the drain current becomes dependent on UG. The calibration
functions result from the minimization of the root mean square deviation:

∆Jrms(UG) =

√√√√ 1
N

N

∑
i

[
Jexp(Ui

D, UG)− Jth(Ui
D, v0, u, C)

Jexp(Ui
D, UG)

]2

(8)

at given UG. Here, Jexp(Ui
D, UG) is the experimental current measured at N equidistant drain voltages

Ui
D. The theoretical current is calculated from (1) as:

Jth(Ui
D, v0, u, C) = J0 j(v0, u, C, vD = qUi

D/EF, l = L/λ). (9)

The values of the parameters v0, u and C that lead to the minimum of ∆Jrms(UG) constitute the
calibration functions v0(UG), u(UG) and C(UG). One obtains the calibrated theoretical current plotted
in Figures 2 and 3 as:

Jcal(UD, UG) = Jth[v0(UG), u(UG), C(UG), qUD/EF, L/λ]. (10)
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Figure 2. Experimental output traces Jexp for the C-transistors in the ON-state regime: upper row
C1, middle row C2 and lower row C3; left column environment temperature T = 233 K, middle
column T = 298 K and right column T = 398 K; UG = 1.2 V (magenta solid lines), 1.1 V (green),
1 V (blue), 0.9 V (yellow), 0.8 V (brown), 0.7 V (cyan) and Uth

G = 0.6 V (red, close to linear threshold
trace). Theoretical results Jcal according to (10) in black crosses.

3. The Calibration Functions

3.1. Experimental and Theoretical Output Characteristic

We analyze the experimental and theoretical output characteristics of a series of three n-channel
transistors (‘C-transistors’) with gate lengths of L = 22 nm (C1), L = 26 nm (C2, identical to B3 in [40])
and L = 30 nm (C3, identical to B4 in [40]). The characteristics are plotted in Figures 2 and 3 for
three environment temperatures T = 233 K, 298 K and 398 K [41]. In all cases, excellent agreement
between experiment and theory is found. The threshold gate voltage for the C-transistors we locate
at Uth

G = 0.6 V where the ID-VD traces show a close to linear behavior. As usual, in the ON-state,
the drain current grows weaker than linearly with increasing drain voltage showing a negative
bending. In contrast, in the OFF-state, the drain current grows faster than exponentially with the drain
voltage at small drain voltages and exponentially at larger drain voltages leading to a positive bending.
These results for the OFF-state have already been reported in [39,42] for another series of transistors.
In agreement with our theoretical results in [38], the slope of the close to linear threshold trace is found
to decrease slightly with channel length and to increase slightly with temperature.
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Figure 3. Experimental output traces Jexp for the C-transistors in the OFF-state regime in logarithmic
scale: upper row C1, middle row C2, left column environment temperature T = 233 K, middle column
T = 298 K and right column T = 398 K; UG = 0 V (green), 0.1 V (blue), 0.2 V (yellow), 0.3 V (brown),
0.4 V (magenta), 0.5 V (orange) and Uth

G = 0.6 V (red, close to linear threshold trace). Theoretical results
Jcal according to (10) in black crosses.

The location of Uth
G around 0.6 V is confirmed, first by an inspection of the temperature dependence

of the drain current and, second, by an inspection of the calibration functions: Above Uth
G , in the

ON-state (see Figure 2), the output characteristics are only weakly temperature dependent [43].
In contrast, below Uth

G , in the OFF-state (see Figure 3), the drain current increases strongly with
increasing temperature, which suggests thermal activation. This contrast is consistent with the metallic
characteristics of conduction in the ON-state and its insulator characteristic in the OFF-state.

The inspection of the calibration functions yields: First, above Uth
G , the barrier height parameter

v0 falls below the chemical potential m indicating classically allowed transport without thermal
activation, while below, Uth

G we have v0 > m (see Figure 4). Second, above Uth
G , the device temperature

parameter u increases strongly with increasing gate voltage (see Figure 4), while below Uth
G , the device

temperature stays around the environment temperature. Third, the overlap parameter C takes a jump
at Uth

G (see Figure 5).

3.2. The Calibration Functions for Barrier Height and Device Temperature

The calibration functions for the barrier height and for the device temperature of the three
C-transistors are shown in Figure 4 for the three environment temperatures. The general structure
is the same in all cases and coincides with the one reported in [39,40]: In the OFF-state, for gate voltages
below Uth

G , the barrier height lies above the chemical potential m in the source and drops as a nearly
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linear function of the gate voltage, v0(UG) ∼ 2− 2UG[V]. At Uth
G , one has v0 ∼ m, and the conduction

channel becomes strongly populated. For gate voltages above Uth
G , in the ON-state, the drop of v0(UG)

is much weaker than in the OFF-state. This we attribute to better screening when the conduction
channel is populated. As can be expected, the screening effect is most pronounced in the shortest
channel device C1 at low temperatures. Here, the barrier height remains roughly constant in the
entire ON-state regime in spite of the increased applied gate voltage. As a further consequence of the
changed screening conditions in the ON-state, we adduce the jump in the overlap calibration function
C of the transistors at Uth

G (see Figure 5), which is by far most pronounced for C1 at low temperatures.
In an intuitive physical picture, we explain the reduction of screening at higher temperatures invoking
increased random thermal motion: because of Poisson’s equation, screening of an external potential
requires a specific adjustment of the electron density. This adjustment is prevented by Pauli’s exclusion
principle in small dimensions, on the one hand, and by random thermal motion, on the other.

Figure 4. The calibration functions for barrier height v0(UG) (black) and for the device temperature
u(UG) (red) and the normalized chemical potential in the source m(UG) (green). Upper row C1, middle
row C2 and lower row C3; left column environment temperature T = 233 K, middle column T = 298 K
and right column T = 398 K. The threshold voltage Uth

G = 0.6 V at which v0(UG) and m(UG) coincide
is marked with a red dash-dotted vertical line.

For all examined transistors and environment temperatures, the device temperature stays close
to the environment temperature in the OFF-state due to small ohmic heating. A careful inspection
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of Figure 4 shows that the device temperature generally increases slightly when increasing the
environment temperature. Above the threshold, the drain current sets in, and Ohmic heating leads
to rising device temperatures. At EF ∼ 0.35 eV, one has at room temperature 298 K the value
kBT/EF ∼ 0.075. The temperature difference ∆T = 398 K − 298 K corresponds to kB∆T/EF ∼ 0.025.

3.3. The Calibration Function for the Overlap Parameter and Transfer Characteristic

In Figure 5, the calibration function of the overlap parameter (‘overlap function’) is depicted.
In all cases, the overlap function is a growing function of the gate voltage showing a jump at Uth

G , which
is most pronounced at low temperatures and short channel lengths. As mentioned, these properties
can be explained by improved screening conditions with increasing population of the conduction
channel. The fact that C takes values greater than unity above the threshold gate voltage indicates
that at least one excited mode at the interface plays a role above the threshold so that the single-level
approximation leading to Equation (A19) is not strictly applicable any more. In the screening picture,
it can also be explained that in the OFF-state, the overlap functions of all C-transistors at the low
temperatures of T = 233 K and T = 298 K take very small values and are nearly the same. This is
consistent with the expectation that in the OFF-state, the population of the conduction channel is nearly
absent at low temperatures (‘no screening limit’). Furthermore, in the OFF-state, for all C-transistors,
the overlap parameter is much larger at the high temperature of T = 398 K. This we attribute to
the thermally-activated population of the channel. In contrast, in the ON-state for all C-transistors,
the overlap parameter is smaller at the high temperature due to the less pronounced jump in C at the
threshold voltage. This we attribute to random thermal motions degrading the screening properties of
the strongly populated ‘metallic’ conduction channel.

Figure 5. The calibration function C(UG) for the environment temperature T = 398 K (black), T = 298 K
(red, room temperature) and T = 233 (green) for C1 (left), C2 (middle) and C3 (right). The threshold
voltage Uth

G ∼ 0.6 V is marked with a vertical line in magenta.

In Figure 6a, we compare the overlap functions of the three A-transistors Ai, i = 1, 2, 3 taken
from [39] to the ones of the C-transistors Ci, i = 1, 2, 3 at the room-environment temperature.
Here, Ai has the same channel length as Ci. In the OFF-state, the temperature parameters of both
the A- and the C-transistors are close to room-environment temperature, and the barrier height
parameter of both the A- and the C-transistors is given by v0(UG) ∼ 2− 2UG[V]. Therefore, in the
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OFF-state, the essential differences between the A- and the C-transistors lies in the overlap parameter.
In Figure 6b, we also include the transfer characteristics of the A- and C-transistors to find relations
between features in the overlap function and the transfer characteristics of the devices. It is observed
that for small gate voltages the overlap functions of the A- and C-devices are very similar and that the
transfer characteristics are close to each other. With increasing gate voltage, the overlap parameters
of the C-devices increase while those of the A-devices stay constant. As a consequence, the slope
of the transfer characteristics of the C-devices exceeds that of the A-devices leading to a larger drain
current of the C-transistors. At the threshold, a strong Coulomb coupling between the contacts and
the conduction channel leads to the described jump in the overlap parameter of the C-transistors.
In contrast, in the A-devices, the increase in the overlap parameter around the threshold is gradual
and not so pronounced. As a consequence, the saturation current in the C-devices is markedly larger
than that of the A-devices. The comparison between the A- and the C-transistors therefore indicates
that a large overlap factor leads to large slopes of the transfer characteristic in the OFF-state and to
large saturation currents in the ON-state. This finding suggests that the overlap factor might serve as a
quantitative criterion of a systematic classification of nanotransistors in the future.

Figure 6. (a) Overlap parameter and (b) experimental transfer characteristic at UD = 0.95 V at room
temperature: in black for the C-transistors (C1 solid, C2 dashed, C3 dotted) and in red for the
A-transistors (A1 solid, A2 dashed, A3 dotted). The threshold voltage Uth

G is marked with a black (red)
vertical line for the C(A)-transistors.

4. Tunneling Current

In Figure 7, we plot the classically forbidden tunneling part of the drain current:

Jt = CJ0

∫ v0

0
dε [s(ε−m)− s(ε−m + vD)] Te f (ε) (11)

normalized to the total current in Equation (1) (see the green area in Figure 1c). As can be expected,
the share of the tunneling current Jt always decreases with increasing the gate voltage, increases
with increasing the drain voltage and decreases with increasing channel length. It is seen that for
all gate voltages and channel lengths, the contribution of Jt becomes small for small drain voltages.
With increasing drain voltage, the contribution of the tunneling current grows, showing oscillations.



Mathematics 2017, 5, 68 10 of 17

These oscillations arise from Fabry–Perot-type resonances in the transmission (see [44] and Figure 8).
As can be taken from Figures 2 and 3, the Fabry–Perot-type resonances are averaged out efficiently
in the energy integral in (1) to determine the total drain current j at the experimental temperatures.
However, due to the abrupt upper limit v0 of the energy integration in (11), the tunneling current
is discernibly increased whenever a Fabry–Perot resonance falls below v0 corresponding to the inset
of resonant Fowler–Nordheim tunneling (see Figure 3 of [44]). The resulting oscillations in JT are
probably overestimated in the abrupt barrier potential in Equation (5). In the OFF-state, i.e., for the
gate voltages below Uth

G , one finds a rise of Jt/J0 for all transistors up to well above 80% for VD ≥ 0.5 V.
Above Uth

G , one finds a weaker rise of Jt/J0 for all transistors, which still ranges between 20% and 50%
for VD ≥ 0.5 V.

Figure 7. Ratio between the tunneling drain current Jt and the total drain current J0 vs. drain voltage
UD for C1 (left), C2 (middle) and C3 (right) at T = 298 K. In the OFF-state, UG = 0 V (black),
0.2 V (blue), 0.4 V (green), at threshold Uth

G = 0.6 (red, dashed) and in the ON-state UG = 0.8 V
(magenta), 1.0 V (brown) and 1.2 V (orange).

We analyze the strong increase of Jt/J0 with increasing drain voltage in the OFF-state. For this
purpose, the constituents of the integrand in (11) are plotted in Figure 8 for a small drain voltage
and for a large drain voltage. These constituents are the effective current transmission Te f and the
difference of the supply functions in source and drain contact s(ε − m) − s(ε − m − vD) (‘supply
function difference’), which show the general behavior discussed in Figure 1. Comparing the results
for the small drain voltage to the ones at the large drain voltage, one finds: First, the supply function
difference is always larger for the large drain voltage, though this difference is small in the range
of relevant energies where Te f is finite. Second, and most important, for the large drain voltage,
Te f sets in at much smaller energies, so that it is much larger than Te f for the small drain voltage in the
range of tunneling-energies below v0. As a consequence of these two findings, the product function
is larger and wider for the large drain voltage, yielding a much larger value for Jt in (11).
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Figure 8. (a) Effective current transmission Te f (ε) (black) and supply function difference s(ε−m)−
s(ε−m + vD) (red) for C2 in the OFF-state UG = 0.4 V at T = 298 K. Solid lines at the small drain
voltage UD = 0.1 V and dashed lines at the large drain voltage UD = 0.95 V. At T = 298 K and
UG = 0.4 V, one has from Figure 4 v0 = 0.126 (green arrow) and m = 0.99 (blue arrow). In (b),
the product Te f (ε)[s(ε − m) − s(ε − m + vD)] is plotted normalized to its maximum in the energy
range below v0.

5. Conclusions for Channel Engineering

The comparison between the A- and C-devices in Figure 6 suggests that the coupling between the
contacts and the channel is of great importance for the switching properties of a transistor. One expects
that the quality of this coupling sensitively depends on the doping profile in the shallow junction
extension. Here, an important factor are the screening properties arising in the doping profile.
In the C-transistors, a good contact-to-channel coupling exists leading to a growing population of
the conduction channel in the OFF-state when approaching the threshold voltage through thermal
excitation. This causes a significant increase of the sub-threshold slope in the transfer characteristic.
Moreover, at good channel coupling, a jump in the overlap factor arises at the threshold voltage
causing a large saturation current in the ON-state. This jump in the overlap factor is most likely
a non-linear phenomenon resembling a metal-insulator transition. Therefore, for the theoretical
investigation of an optimal doping profile in the shallow junction extension, a calculation of the
Coulomb interaction at least in the Hartree approximation is necessary, which is left to future research.
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Appendix A. Review of the Semiempirical Model

Appendix A.1. Single-Level Abrupt Transition Approximation (SMAT)

In the abrupt transition approximation, one assumes that the potential acting on the charge
carriers has in three dimensions the general form:

V(~r) =


V1(y, z) for x ≤ 0
VT(y, z) + VL(x) for 0 ≤ x ≤ L
V2(y, z)− eUD for x ≥ L.

(A1)

There are two abrupt transitions in the potential, the first between the source contact (x ≤ 0,
see Figure 1) and the conduction channel (0 ≤ x ≤ L) and the second between the conduction channel
and the drain contact (x ≥ L). Because of the separable form of the potential, the wave functions in the
conduction channel can be expanded in modes (‘channel modes’):

Ψ(0 < x < L, y, z; E) = ∑
k

αkψk(x)φk(y, z) (A2)

with general expansion coefficients αk. Here, the transverse functions of the channel modes are defined by:[
− h̄2

2m∗

(
d2

dy2 +
d2

dz2

)
+ VT(y, z)− ET

k

]
φk(y, z) = 0 (A3)

and the longitudinal functions by:(
− h̄2

2m∗
d2

dx2 + VL(x) + ET
k − E

)
ψk(x) = 0. (A4)

In the source contact, we obtain a similar expansion in modes (‘contact modes’):

Ψ(x < 0, y, z; E) = ∑
n

[
a1,neik1,nx + b1,ne−ik1,nx

]
Φn(y, z). (A5)

with general expansion coefficients a1,n and b1,n. In the drain, one has:

Ψ(x > L, y, z; E) = ∑
n

[
a2,neik2,nx + b2,ne−ik2,nx

]
Φn(y, z) (A6)

with general expansion coefficients a2,n and b2,n. Here, the case of identical contacts
V1(y, z) = V2(y, z) = V⊥(y, z) is taken where the identical transverse functions of the contact modes
are given by: [

− h̄2

2m∗

(
d2

dy2 +
d2

dz2

)
+ V⊥(y, z)− E⊥n

]
Φn(y, z) = 0. (A7)

The wave numbers in the longitudinal direction are given by:

h̄ks,n =
√

2m∗(E− E⊥n + Ws), (A8)

with the contact index s = 1 for the source and s = 2 for the drain, so that W1 = 0 and W2 = eUD.
For E < Ws−E⊥n , it results that ks,n is imaginary, and the corresponding contact mode is evanescent and
carries no current. In our generic transistor model, we introduce a lateral cut-off for the wave functions:

Ψ(x, 0, z; E) = Ψ(x, D, z; E) = Ψ(x, y, 0; E) = Ψ(x, y, W; E) = 0 (A9)
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carrying through to the transverse functions in the conduction channel and in the contacts.
In the derivation of the single mode approximation (SMA) in [5], it was assumed that the

conduction channel is narrow in both transverse directions so that only the lowest channel mode
with k = 0 has to be taken into account (single-mode abrupt transition approximation in the strict
sense). However, usually, in bulk nano-FETs and thin film transistors, one has a wide channel,
i.e., the conduction channel is narrow only in one transverse direction (here, depth direction =
y-direction) and wide in the other transverse direction (here, the width direction = z-direction).
Then, a number of relevant channel modes has to be taken into account. For this purpose, in [38],
the potential in (A1) is assumed to be independent of z, leaving V⊥(y, z) = V⊥(y), VL(y, z) = VL(y)
and VT(y, z) = VT(y). The confinement in the z-direction is only represented by the wave function
cut-off (A9). One then obtains from (A3) transverse modes in the channel of the form:

φk(y, z) = φky ,kz = ζky(y) sin
(

kzπ

W
z
)

(A10)

with: [
− h̄2

2m∗
d2

dy2 + VT(y)− ETy
ky

]
ζky(y) = 0 (A11)

and:

ET
ky ,kz

= ETy
ky

+
h̄2

2m∗

(
kzπ

W

)2
. (A12)

For a bulk nano-FET, the functions ζky(y) can be identified with the sub-band functions
in an MOS-structure, as calculated, for example, in [45]. For thin film transistors, the sub-band
functions ζky(y) are strongly influenced by the wave function cut-off at y = D. In the single-mode
approximation for wide channels, one takes into account in the scattering matrix the channel modes
with ky = 0 and kz ∈ N, i.e., in the depth direction only contributions from the lowest sub-band ζ0(y)
are kept, while in the z-direction, all kz are summed over. For the identical contacts, we find in analogy
to (A10):

Φn(y, z) = φny ,nz = Φny(y) sin
(nzπ

W
z
)

(A13)

with: [
− h̄2

2m∗
d2

dy2 + VT(y)− E⊥y
ny

]
Φny(y) = 0 (A14)

and:

E⊥ny ,nz = E⊥y
ny +

h̄2

2m∗
(nzπ

W

)2
. (A15)

Appendix A.2. Drain Current and Effective Current Transmission

The drain current ID was calculated in [39,40], introducing the further approximation:

h̄ks,n ∼ h̄ke f
s =

√
2m∗(E− E⊥0 + Ws) (A16)

where E⊥0 = E⊥y
0 + (h̄2/2m∗)(π/W)2 is the smallest solution of the eigenvalue problem in (A7).

It was found that:

ID = Nch
v

2e
h

∫ ∞

0
dExy C(Exy) [S(Exy − µ)− S(Exy − µ + eUD)] T e f (Exy), (A17)

where Exy is the conserved energy in the x− y-plane, and the valley degeneracy in the conduction
channel Nch

v is included. The summation over occupied scattering states with different total energy
E, but the same Exy is carried out in the formation of the supply function:
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S(α) = ∑
nz

f

[
α +

h̄2

2m∗
(πnz

W

)2
]
=

1
4π

√
uwF−1/2

(
− α

kBT

)
, (A18)

with the Fermi distribution f (x) = (ex/kBT + 1)−1 and the normalized transistor width w = W/λ.
In the last step, the limit W → ∞ was taken. At constant Exy, the scattering states are characterized
by the index ny of the incident transverse mode. The overlap function:

0 ≤ C(Exy) = ∑
nyn′y

ζ2
ny ζ2

n′y
Θ

[
Exy − h̄2

2m∗
(nyπ

D

)2
]

Θ

Exy + eUD −
h̄2

2m∗

(
n′yπ

D

)2
≤1 (A19)

results from summing up the drain current contributions coming from the incident channels ny and the
transmitted channels n′y. Here, the theta functions ensure that only propagating modes are taken into
account. An upper bound for C(Exy) can be obtained ignoring the theta functions. Then, one obtains
from the normalization of the sub-band functions C(Exy) = 1. It is seen that in C(Exy), the products
of squares of the projection factors:

ζny =
∫ D

0
dyΦny(y)ζ0(y) (A20)

are summed over so that C(Exy) ≥ 0. The projection factors ζny represent the overlap between the
y-dependent factors of the transverse function of the lowest channel mode with ky = 0 and the
transverse function Φny of the contact modes. In (1), the overlap function is approximated as an energy
independent overlap factor, C(Exy) ∼ C. The effective current transmission T e f (E) is calculated from
the scattering solutions ψe f of the one-dimensional effective Schrödinger equation:[

− h̄2

2m∗
d2

dx2 + Ve f (x)− E

]
ψe f (x) = 0 (A21)

with the effective potential given by:

Ve f (x) =


E⊥11 for x < 0
ETy

0 + h̄2

2m∗
(

π
W
)2 −VL(x) for 0 ≤ x ≤ L

E⊥11 − eUD for x ≥ L,
(A22)

where ETy
0 is the lowest sub-band energy obtained from (A11). The source-incident scattering solution

of (A21) takes the asymptotic form:

ψe f (x < 0) = eike f
1 x + re f e−ike f

1 x (A23)

and:
ψe f (x > L) = te f eike f

2 x. (A24)

One then finds for the current transmission in (A17):

T e f (E) = ke f
2 |t

e f |2(ke f
1 )−1. (A25)

Appendix A.3. Scale-Invariant Form of the Basic Equations

Introducing the variable Exy/EF = ε, we write Equation (A17) in the form (1):

J
J0

= C
∫ ∞

0
dε [s(ε−m)− s(ε−m− vD)] Te f (ε), (A26)
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with s(α) given by (3), T e f (εEF) = Te f (ε) and J0 = 2Nch
v eEF/(hλ). To rewrite (A22), we first model

the electron gas in the contacts as a three-dimensional electron gas, V1(y, z) = V2(y, z) = 0, and for
W, D → ∞, one obtains:

E⊥11 =
h̄2

2m∗

[(π

D

)2
+
( π

W

)2
]
→ 0. (A27)

Second, for simplicity, we assume that the drain voltage-induced electric field along the channel
is constant, VL(x) = −eUDx/L, so that Ve f (0 < x < L) = V0 − eUDx/L, with the potential maximum
given by:

V0 = ETy
0 +

h̄2

2m∗
( π

W

)2
→ ETy

0 . (A28)

Dividing (A21) by EF yields (4) in the scaled variable x/l → x,[
− 1

l2
d2

dx2 + ve f (x)− ε

]
ψe f = 0, (A29)

with ψe f (x, E) → ψe f (x, ε) and ve f (x) = Ve f /EF as given in (A22). The source-incident scattering
solution of (A29) now has the asymptotic form in (A23) and (A24) with ke f f

s → lke f f
s , re f (E)→ re f (ε)

and te f (E)→ te f (ε), so that T e f (E)→ Te f (ε).
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