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Abstract: Nonlinear systems are typically linearized to permit linear feedback control design,
but, in some systems, the nonlinearities are so strong that their performance is called chaotic,
and linear control designs can be rendered ineffective. One famous example is the van der Pol
equation of oscillatory circuits. This study investigates the control design for the forced van der Pol
equation using simulations of various control designs for iterated initial conditions. The results of the
study highlight that even optimal linear, time-invariant (LTI) control is unable to control the nonlinear
van der Pol equation, but idealized nonlinear feedforward control performs quite well after an initial
transient effect of the initial conditions. Perhaps the greatest strength of ideal nonlinear control is
shown to be the simplicity of analysis. Merely equate coefficients order-of-differentiation insures
trajectory tracking in steady-state (following dissipation of transient effects of initial conditions),
meanwhile the solution of the time-invariant linear-quadratic optimal control problem with infinite
time horizon is needed to reveal constant control gains for a linear-quadratic regulator. Since analytical
development is so easy for ideal nonlinear control, this article focuses on numerical demonstrations
of trajectory tracking error.
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1. Introduction

A century ago, in the era of vacuum tube electronics, Balthazar van der Pol sought circuits
that oscillated at a fixed frequency for use in signal transmission and receipt [1–5]. Van der Pol
articulated that the oscillatory behavior fit the class of nonlinear equations that are now referred to
by his name (Equation (1)). The equation exhibits an oscillatory behavior, but the amplitude is not
constant, it instead represents an invariant set called a “limit cycle”. System trajectories converge to
this invariant that is set from any initial conditions.

d2x
dt2 − µ

(
1 − x2

)dx
dt

+ x = 0 (1)

Seeking to produce a fixed-amplitude oscillation, forcing functions are added to the nonlinear
equation resulting in Equation (2). Typical control design procedures would begin with a linear,
time-invariant (LTI) feedback controller based on a linearized version of the system equation.
This paper derives such a controller and reveals the difficulties in controlling the nonlinear dynamic
Equation (1) with a linear controller, despite having optimized the feedback control gains via the
Ricatti equation (aka linear quadratic regulator (LQR)).

d2x
dt2 − µ

(
1 − x2

)dx
dt

+ x = F(t) (2)
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The purpose of this paper is to demonstrate the limitation of optimal linear feedback control,
and then examine the effectiveness of idealized, nonlinear feedforward control [5], as well as
a combined strategy of nonlinear feedforward control plus linear optimal feedback control as it
pertains to the forced van der Pol equation. Analytical development will be demonstrated to be very
easy for ideal nonlinear control, and therefore this article de-emphasizes analytical development and
focuses on numerical demonstrations of trajectory tracking error. In particular, analytical development
of the linear optimal controlled is more complicated, yet the controller will prove inferior, so the
article emphasizes the superior performance of ideal nonlinear control together with simple analysis.
Simulations reveal the relative superiority of idealized, nonlinear feedforward control, with a combined
control scheme next (in relative performance), followed by optimal linear feedback control as the
most relatively inferior method. The former control method very well produces an exact oscillator
despite initial conditions, while the latter two control methods struggle to achieve a demanded
fixed-amplitude oscillation.

2. Materials and Methods

The methodology begins with elaboration of the inherent dynamics and impact of various
initial conditions. Equation (1) is simulated in SIMULINK (Figure 1), where the nonlinear van der
Pol equation is forward-propagated in time with various initial conditions. Figure 1 is the overall
control topology coded in MATLAB/SIMULINK software (R2015b, Mathworks, 640 W California Ave,
Sunnyvale, CA USA): Desired-trajectory (left) is fed to controllers (center) that formulate the forcing
functions to drive the van der Pol dynamics (right). State observers are used to augment linear feedback
controllers (but are not necessary for nonlinear feedforward controllers). Manual switches allow for
“apples-to-apples” comparisons where all other features are kept constant except for the manually
switched feature [5]. Results are plotted together on single plots to highlight relative behaviors.
Then, controllers are designed and implemented in the same SIMULINK model. The dynamics after
incorporation of the disparate controller varies. In the first instance to be examined, the dynamic
remains open loop while using only an ideal nonlinear controller, while the second and third iterations
include a linear, optimal feedback controller, and thus the system dynamics are closed-loop dynamics.

Mathematics 2017, 5, 70  2 of 10 

 

combined strategy of nonlinear feedforward control plus linear optimal feedback control as it 
pertains to the forced van der Pol equation. Analytical development will be demonstrated to be very 
easy for ideal nonlinear control, and therefore this article de-emphasizes analytical development and 
focuses on numerical demonstrations of trajectory tracking error. In particular, analytical 
development of the linear optimal controlled is more complicated, yet the controller will prove 
inferior, so the article emphasizes the superior performance of ideal nonlinear control together with 
simple analysis. Simulations reveal the relative superiority of idealized, nonlinear feedforward 
control, with a combined control scheme next (in relative performance), followed by optimal linear 
feedback control as the most relatively inferior method. The former control method very well 
produces an exact oscillator despite initial conditions, while the latter two control methods struggle 
to achieve a demanded fixed-amplitude oscillation.  

2. Materials and Methods 

The methodology begins with elaboration of the inherent dynamics and impact of various initial 
conditions. Equation (1) is simulated in SIMULINK (Figure 1), where the nonlinear van der Pol 
equation is forward-propagated in time with various initial conditions. Figure 1 is the overall control 
topology coded in MATLAB/SIMULINK software (R2015b, Mathworks, 640 W California Ave, 
Sunnyvale, CA USA): Desired-trajectory (left) is fed to controllers (center) that formulate the forcing 
functions to drive the van der Pol dynamics (right). State observers are used to augment linear 
feedback controllers (but are not necessary for nonlinear feedforward controllers). Manual switches 
allow for “apples-to-apples” comparisons where all other features are kept constant except for the 
manually switched feature [5]. Results are plotted together on single plots to highlight relative 
behaviors. Then, controllers are designed and implemented in the same SIMULINK model. The 
dynamics after incorporation of the disparate controller varies. In the first instance to be examined, 
the dynamic remains open loop while using only an ideal nonlinear controller, while the second and 
third iterations include a linear, optimal feedback controller, and thus the system dynamics are 
closed-loop dynamics. 

 
Figure 1. Overall control topology coded in MATLAB/SIMULINK software. 

2.1. Inherent Dynamics  

Figure 2 contains a visual depiction of the inherent dynamics for different intial conditions. 
Regardless of initial condition the governing equations trajectories converge to this invariant set.  

2.2. Discussion of Initial Conditions 

These initial conditions (Figure 2) are used for evaluation of various control schemes: optimal 
LTI feedback control, idealized feedforward control, and combined control using both of the 
aforementioned schemes. Figure 2 is a depiction of forward time-propagation of nonlinear van der 
Pol Equation (1) with several initial conditions chosen to demonstrate convergence to non-circular 
invariant set despite starting inside the set or outside the set. 

Figure 1. Overall control topology coded in MATLAB/SIMULINK software.

2.1. Inherent Dynamics

Figure 2 contains a visual depiction of the inherent dynamics for different intial conditions.
Regardless of initial condition the governing equations trajectories converge to this invariant set.

2.2. Discussion of Initial Conditions

These initial conditions (Figure 2) are used for evaluation of various control schemes: optimal LTI
feedback control, idealized feedforward control, and combined control using both of the aforementioned
schemes. Figure 2 is a depiction of forward time-propagation of nonlinear van der Pol Equation (1) with
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several initial conditions chosen to demonstrate convergence to non-circular invariant set despite starting
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Figure 2. Forward time-propagation of nonlinear van der Pol Equation (1).

2.3. Optimal Linear, Time-Invariant Feedback Control Design

The normal procedure for optimal LTI feedback control design is to linearize the governing system
equation (the inherent dynamics), and then use the Ricatti equation to solve for optimal feedback gains
(optimal with respect to the linearized dynamics), referred to as the LQR [6]. The identical process is
valid for linear time-invariant observer design, although the result is referred to as linear quadratic
estimator (LQE). This process is described in Section 3.2 and result in closed-loop dynamics.

2.4. Nonlinear Feedforward Control Design

The basic premise of idealized nonlinear feedforward control design [7–9] is to define the inherent
dynamics as the idealized feedforward control (Equation (3)), where the control designer is required
to specify the desired trajectory to be followed. In this study, the desired trajectory is a circle of
constant-amplitude (a trajectory not producible by the inherent dynamics). The controller is idealized
only with respect to the assumed parameter estimates (µ in Equation (1)). If those parameters were
exactly known, the idealized control would seem perfect (although that is rarely or never the case,
thus the rationale to investigate a combined control scheme of both idealized feedforward together
with optimal feedback control). Equation (4) is merely a combined display of Equations (2) and (3).
Equation (4) is the expression for the controlled dynamics after the controller is incorporated.

F(t) ≡ d2xd
dt2 − µ

(
1 − xd

2
)dxd

dt
+ xd (3)

d2x
dt2 − µ

(
1 − x2

)dx
dt

+ x = F(t) ≡ d2xd
dt2 − µ

(
1 − xd

2
)dxd

dt
+ xd (4)

2.5. Analysis of the Ideal Nonlinear Controller

Perhaps the greatest strength of ideal nonlinear control is the simplicity of analysis. Merely equate
coefficients order-of-differentiation in Equation (4) to see: x = xd,

..
x =

..
xd ∴

.
x =

.
xd, thus trajectory

tracking is assured in steady state after the dissipation of the effects of initial conditions.



Mathematics 2017, 5, 70 4 of 10

3. Results

The general methodology is to begin with basic scenarios, and then to change only one
thing permitting the readers to understand the impact of the single change where the changes are
incrementally added to eventually reveal a comparison of various control methodologies.

The van der Pol dynamics will be shown to converge to an invariant set (non-circular) at various
initial conditions. Firstly, the desired trajectory will be commanded to stay at zero, despite no control
activation. Next, a constant amplitude circular trajectory is commanded, and then an optimal linear
time-invariant feedback controller will be used. Afterwards, the idealized feedforward control will
be implemented followed lastly by the combined use of both optimal feedback control plus idealized
nonlinear feedforward control.

3.1. Uncontrolled van der Pol Dynamic

3.1.1. Desired Trajectory Equals Zero

The initial simulation runs (Figure 1) commands a zero trajectory, but no control is activated.
This simulation run establishes a baseline. Figure 3 depicts the initial baseline for evaluation. From a
non-zero initial condition, the inherent dynamics will converge to a non-circular invariant set. This instance
uses Figure 1 with a commanded zero trajectory, yet no control is activated (neither feedback nor
feedforward). Figure 3 depicts the expected results: despite commanding zero trajectory, the system
converges to the invariant set since no controllers are active. Figure 3a displays the baseline comparison
of desired trajectory versus actual trajectory, while Figure 3b displays the state space trajectory (we will
eventually seek to command this invariant set to be a circle of radius equal five).
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Figure 3. Initial baseline for evaluation. (a) Displays trajectory comparison; and (b) trajectory.

3.1.2. Desired Trajectory Equals a Circular Oscillation (Baseline for Comparison of Forcing)

The next simulation run (Figure 1) commands a circular trajectory, but no control is activated.
Figure 4 contains the first step away from the initial baseline for evaluation: Commanding a desired
trajectory as a circle of radius five. From a non-zero initial condition, the inherent dynamics will
converge to a non-circular invariant set. This instance uses Figure 1 with a commanded circular
trajectory, yet no control is activated (neither feedback nor feedforward). Figure 4 depicts the expected
results: despite commanding a circular trajectory, the system converges to the invariant set since no
controllers are active. Figure 4a displays the baseline comparison of desired trajectory versus actual
trajectory, while Figure 4b displays the state space trajectory (we’ll eventually seek to command this
invariant set to be a circle of radius equal five using various controllers).
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(neither feedback nor feedforward): (a) displays trajectory comparison; and (b) trajectory.

3.2. Van der Pol Dynamics Forced by Linear Feedback Controllers

3.2.1. Linearized van der Pol Equation Used for Linear Control Design

The normal first procedure for control design involves linearizing the dynamic equation,
and afterwards designing the control signal using the linearized dynamics. Linearizing Equation (1)
leads to Equation (5), expressed in state-variable formulation from which state space trajectories are
displayed on phase portraits (e.g., Figures 2–5).

[A] = [1 −1; 1; 0]; [B] = [−1; 0]; [C] = [0,1]; D = [0]; (5)

[Q]=[1 0; 0 1]; [R] = [1]; [S] = [2.6818 0.4142; 0.4142 3.3784] (6)

Kp = 2.6818; Kd = 0.4142 (7)

Equations (5) and (6) are the expressions used in the linear-quadratic optimization leading to a
feedback controller with proportional and derivative gains in Equation (7). The closed loop dynamics
are established by Equation (2) where the van der Pol forcing function F(t) is a proportional-derivative
(PD) controller per paragraph 8 in ref [10] who’s gains are in Equation (7) immediately above.

d2x
dt2 − µ

(
1 − x2

)dx
dt

+ x = F(t) ≡ −Kd
( .
xd −

.
x
)
− Kp(xd − x) (8)

d2x
dt2 − µ

(
1 − x2

)dx
dt

+ x = F(t) ≡ d2xd
dt2 − µ

(
1 − xd

2
)dxd

dt
+ xd − Kd

( .
xd −

.
x
)
− Kp(xd − x) (9)

Equation (8) is the expression for the controlled dynamics after the linear optimal feedback
controller (alone) is incorporated, while Equation (9) is the expression for the controlled dynamics after
incorporation of both ideal nonlinear control together with linear optimal feedback control. Notice that
in every instance the system is nonlinear, even in the instance of using only linear optimal feedback
control (Equation (8)). The van der Pol differential equation is inherently nonlinear with a natural limit
cycle that will be omnipresent in all dynamic equations of control of the van der Pol equation.

3.2.2. Linear Control Design

Finding optimal LTI feedback gains involves solving the Ricatti equation [11], whose details are
not necessary to describe here, especially since it shall be immediately shown that such control is
ineffective. MATLAB software can easily produce the optimal feedback gains with Equation (4) as input
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to the lqr(A,B,C,D) command, which tells MATLAB software to solve the linear-quadratic optimization
problem. The results are Kp = 2.6818 and Kd = 0.4142, respectively, for the state (“position” subscripted p)
and state derivative (derivative: subscripted d).

The next simulation run (Figure 1) commands a circular trajectory, with optimal LTI feedback
control activated. The control is a LQR whose states are the position and derivative. Figure 5 depicts
this second step away from the initial baseline for evaluation: Commanding a desired trajectory as a
circle of radius five using optimal LTI feedback control. From a non-zero initial condition, the inherent
dynamics will seek to converge to a non-circular invariant set while the feedback controller seeks to
force the trajectory into a circle of radius equal to five. This instance uses Figure 1 with a commanded
circular trajectory, and the control switch is activated for the feedback controller. Figure 5 depicts
some interesting results. The commanded circular trajectory is not achieved with optimal LTI control.
The nonlinear system converges to the invariant set regardless.
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Figure 5. Commanding a desired trajectory as a circle of radius five using optimal linear, time-invariant
feedback control: (a) displays trajectory comparison; and (b) trajectory.

Figure 6a displays the baseline comparison of desired trajectory versus actual trajectory,
while Figure 6b displays the position, rate, and acceleration errors. The bottom graph in Figure 6a
reveals that while the optimal LTI control nearly closely replicates the desired acceleration trajectory,
the errors in Figure 6b result in relatively large velocity errors displayed in the middle graph
of Figure 6a, and subsequently large position errors displayed in the upper graph in Figure 6a.
The optimal LTI feedback controller is not able to overcome the nonlinear inherent dynamics to achieve
the commanded fixed-amplitude circular state space trajectory.
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3.3. Van der Pol Dynamics Forced by only Nonlinear Feedforward Controllers

Figure 7 reveals the third step away from the initial baseline for evaluation: Commanding a
desired trajectory as a circle of radius five using idealized feedforward control. From a non-zero
initial condition, the inherent dynamics will seek to converge to a non-circular invariant set while the
feedforward controller seek to force the trajectory into a circle of radius equal to five. This instance
uses Figure 1 with a commanded circular trajectory, and the control switch is activated for the
feedforward controller. Figure 7 reveals the idealized nonlinear feedforward controller designed per
the methodology inspired by [7], implemented in [12] for Euler’s moment equations and augmented
in [10,13], and demonstrated in [8,9]. The results of these steady improvements applied to the van der
Pol equation results in Equation (4) which (after three-to-four overshoot events) achieves a circular
oscillatory trajectory with the commanded amplitude. The result is obviously vastly superior to the
results achieved with the optimal LTI feedback controller. Figure 8a displays the baseline comparison of
desired trajectory versus actual trajectory (again revealing the overshoots followed by close trajectory
following), Figure 8b displays the position, rate, and acceleration errors. Clearly visible in figure
a, after the initial transient the idealized, nonlinear feedforward controller exactly achieves the
commanded oscillatory trajectory, with very close command-following achieved after a short (10 s or so)
startup transient.
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3.4. Van der Pol Dynamics Forced by Both Linear Feedback and Nonlinear Feedforward Controllers

Figure 9 reveals the final iteration away from the initial baseline for evaluation: Commanding a
desired trajectory as a circle of radius five using both idealized feedforward control and optimal linear,
time-invariant feedback control. From a non-zero initial condition, the inherent dynamics will seek to
converge to a non-circular invariant set while the feedforward controller seeks to force the trajectory
into a circle of radius equal to five. The feedback controller also seeks the same goal, but was seen in
earlier analysis not to be effective by itself. This instance uses Figure 1 with a commanded circular
trajectory, and the control switch is activated for the feedforward controller. Figure 10 reveals the
two components of control together are not effective. The idealized nonlinear feedforward controller
(after three-to-four overshoot events) was shown earlier to achieve a circular oscillatory trajectory
with the commanded amplitude (overcoming the inherent dynamics), but here we see the optimal
linear, time-invariant controller interferes with that ability. The result is quite inferior to the results
achieved with idealized nonlinear feedforward control alone. Figure 9b displays the position, rate,
and acceleration errors. Despite achieving near-zero acceleration error after the initial transient,
the resulting velocities and positions are already too far off and never achieve the commanded results.
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4. Discussion

Section 3 Results revealed the general notion that idealized nonlinear feedforward control is the
superior methodology, and this section elaborates those results with more detailed perspective and
numerical interpretation. Analytical development was shown to very easy for ideal nonlinear control,
and the following numerical results in terms of trajectory tracking error are emphasized. Low standard
deviations are ubiquitous with idealized nonlinear control reinforcing the trajectory depictions in the
previous sections. Table 1 displays the results of thirty simulation runs (Figure 1), where the only
modification is the initial conditions and activation of the appropriate switch to engage the relevant
control methodology.

Table 1. Comparison of forcing method (non-optimal observers). LQR.

Initial
Position Unforced 1

Forced by LQR Linear Feedback
Kp = 1.1913
Kd = 0.9050

Forced only by Idealized Nonlinear Feedforward

(0,0)
µ = 2.858 µ = 0.28163 µ = 0.083008
σ = 3.357 σ= 1.41 σ = 0.30951

(5,0)
µ = 2.2539 µ = 0.15107 µ = −0.5283
σ = 4.4174 σ = 2.0607 σ = 1.2645

(1,0)
µ = 2.8491 µ = 0.28427 µ = 0.092108
σ = 3.4741 σ = 1.4116 σ = 0.33885

(0,1)
µ = 2.8756 µ = 0.2784 µ = 0.066252
σ = 3.1283 σ = 1.3977 σ = 0.24343

(6,0)
µ = 1.7929 µ = 0.0041396 µ = −1.0166
σ = 4.62 σ = 2.9392 σ = 2.0182

(0,6)
µ = 2.7794 µ = 0.26159 µ = 0.01697
σ = 3.7424 σ = 1.3979 σ = 0.067415

1 Establishes baseline mean error, µ and standard deviation σ for comparison.

Table 1 lists the mean errors, µ and standard deviations, σ for each of thirty simulation runs with
various initial conditions and control methodologies with the most superior case listed in bold for each
control methodology. The cases where the initial condition is on or inside the commanded circular amplitude,
optimal LQR feedback control alone saw superior mean error (with greater standard deviation).

Another interesting thing to notice is the good ability of linear observers (both Luenberger-styled
observers and PID observers) estimating the states [14–16] when the linear controller is active, yet the
same observers perform very poorly when only the nonlinear control is active. Despite the superior
trajectory-tracking performance of the nonlinear controller, the linear observer cannot estimate the
states well.

Follow-on research: reacting to the very bad performance of the optimal LQR controller that was
designed for a linearized version of the nonlinear van der Pol dynamics, future research will probe
the question, “what can be done to linear optimal LQR feedback control to improve its performance
with such nonlinear plants as van der Pol?” Additionally, auto-trajectory generation from the initial
condition to the desired oscillatory manifold will be investigated in the sequel to eliminate the
transient overshoots.
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