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1. Introduction

Partial fractional differential equations are nowadays both an important research subject
and a popular modeling approach. Despite of importance of mathematical models in two- and
three-dimensions for applications, most of the recent publications devoted to fractional diffusion-wave
equations have dealt with the one-dimensional case. The literature dealing with multi-dimensional
partial fractional differential equations is still not numerous and can be divided into several groups,
those devoted to Cauchy problems on the whole space, boundary-value problems on bounded domains,
and of course to different types of equations, including single- and multi-term equations as well as
equations of distributed order. Because the focus of this paper is on the Cauchy problem for a model
linear time- and space-fractional diffusion-wave equation, we mention here only some important
relevant publications.

The fundamental solution to the multi-dimensional time-fractional diffusion-wave equation with
the Laplace operator was derived for the first time by Kochubei in [1] and Schneider and Wyss in [2]
independently from each other in terms of the Fox H-function. We note that in [1], the Cauchy problem
for the general fractional diffusion equation with the regularized fractional derivative (the Caputo
fractional derivative in modern terminology) and the general second-order spatial differential operator
was also investigated. In the series of publications [3–5], Hanyga considered mathematical, physical,
and probabilistic properties of the fundamental solutions to multi-dimensional time-, space- and
space-time-fractional diffusion-wave equations, respectively. Recently, Luchko and his co-authors
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started to employ the method of the Mellin-Barnes integral representation to derive further properties of
the multi-dimensional space-time-fractional diffusion-wave equation (see, e.g., [6–10]). Still, the list of
the properties, particular cases, integral and series representations, asymptotic formulas, and so forth
known for the fundamental solution to the one-dimensional diffusion-wave equation (see, e.g., [11]) is
essentially more expanded compared to the multi-dimensional case, and thus further investigations of
the multi-dimensional case are required.

In this paper, some new properties and particular cases of the fundamental solution to the
multi-dimensional space- and time-fractional diffusion-wave equation are deduced. In the second
section, we recall the Mellin-Barnes representations of the fundamental solution that were derived
in the previous publications of the author and his co-authors. In the third section, the Mellin-Barnes
integral is used to obtain two new representations of the fundamental solution in the form of the
Mellin convolution of the special functions of the Wright type. The fourth section is devoted to the
derivation of some new closed-form formulas for the fundamental solution. In particular, the open
problem of the representation of the fundamental solution to the two-dimensional neutral-fractional
diffusion-wave equation in terms of the known elementary or special functions is solved.

2. Problem Formulation and Auxiliary Results

In this section, we present a problem formulation and some auxiliary results that are used in the
rest of the paper.

2.1. Problem Formulation

In this paper, we deal with the multi-dimensional space- and time-fractional diffusion-wave
equation in the following form:

Dβ
t u(x, t) = −(−∆)

α
2 u(x, t), x ∈ Rn, t > 0, 1 < α ≤ 2, 0 < β ≤ 2, (1)

where (−∆)
α
2 is the fractional Laplacian and Dβ

t is the Caputo time-fractional derivative of order β.
The Caputo time-fractional derivative of order β > 0 is defined by the formula

Dβ
t u(x, t) =

(
In−β
t

∂nu
∂tn

)
(t), n− 1 < β ≤ n, n ∈ N , (2)

where Iγ
t is the Riemann–Liouville fractional integral:

(Iγ
t u)(t) =

 1
Γ(γ)

∫ t
0 (t− τ)γ−1u(x, τ) dτ for γ > 0,

u(x, t) for γ = 0.

The fractional Laplacian (−∆)
α
2 is defined as a pseudo-differential operator with the symbol

|κ|α ([12,13]): (
F (−∆)

α
2 f
)
(κ) = |κ|α(F f )(κ) , (3)

where (F f )(κ) is the Fourier transform of a function f at the point κ ∈ Rn defined by

(F f )(κ) = f̂ (κ) =
∫
Rn

eiκ·x f (x) dx . (4)

For 0 < α < m, m ∈ N and x ∈ Rn, the fractional Laplacian can be also represented as
a hypersingular integral ([13]):

(−∆)
α
2 f (x) =

1
dn,m(α)

∫
Rn

(
∆m

h f
)
(x)

|h|n+α
dh (5)
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with a suitably defined finite-differences operator
(
∆m

h f
)
(x) and a normalization constant dn,m(α).

According to [13], the representation given by Equation (5) of the fractional Laplacian in the form
of the hypersingular integral does not depend on m, m ∈ N provided that α < m.

We note that in the one-dimensional case, Equation (1) is a particular case of a more general
equation with the Caputo time-fractional derivative and the Riesz-Feller space-fractional derivative
that was discussed in detail in [11]. For α = 2, the fractional Laplacian (−∆)

α
2 is simply −∆, and thus

Equation (1) is a particular case of the time-fractional diffusion-wave equation that was considered in
many publications, including, for example, [1,2,5,14–17]. For α = 2 and β = 1, Equation (1) is reduced
to the diffusion equation, and for α = 2 and β = 2, it is the wave equation that justifies its denotation
as a fractional diffusion-wave equation.

In this paper, we deal with the Cauchy problem for Equation (1) with Dirichlet initial conditions.
If the order β of the time-derivative satisfies the condition 0 < β ≤ 1, we pose an initial condition of
the form

u(x, 0) = ϕ(x) , x ∈ Rn. (6)

For the orders β satisfying the condition 1 < β ≤ 2, the second initial condition in the form

∂u
∂t

(x, 0) = 0 , x ∈ Rn (7)

is added to the Cauchy problem.
Because the initial-value problem given by Equations (1) and (6) (or (1), (6) and (7)) is linear,

its solution can be represented in the form

u(x, t) =
∫
Rn

Gα,β,n(x− ζ, t)ϕ(ζ) dζ,

where Gα,β,n is the first fundamental solution to the fractional diffusion-wave Equation (1), that is,
the solution to the problem given by Equations (1) and (6) with the initial condition

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

or to the problem given by Equations (1), (6) and (7) with the initial conditions

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

and
∂u
∂t

(x, 0) = 0 , x ∈ Rn

for 0 < β ≤ 1 or 1 < β ≤ 2, respectively, with δ being the Dirac delta function.
Thus the behavior of the solutions to the problem given by Equations (1) and (6) (or (1), (6) and (7))

is determined by the fundamental solution Gα,β,n(x, t), and the focus of this paper is on the derivation
of the new properties of the fundamental solution.

2.2. Mellin-Barnes Representations of the Fundamental Solution

A Mellin-Barnes representation of the fundamental solution to the multi-dimensional space- and
time-fractional diffusion-wave Equation (1) was derived for the first time in [7] for the case β = α (see
also [8]), in [10] for the case β = α/2, and in [9] for the general case. For the reader’s convenience, we
present here a short schema of its derivation.

The application of the multi-dimensional Fourier transform (4) with respect to the spatial variable
x ∈ Rn to Equation (1) and to the initial conditions given by Equation (6) with ϕ(x) = ∏n

i=1 δ(xi), and
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Equation (7) (the last condition is relevant only if β > 1) leads to the ordinary fractional differential
equation in the Fourier domain:

Dβ
t Ĝα,β,n(κ, t) + |κ|αĜα,β,n(κ, t) = 0, (8)

along with the initial conditions
Ĝα,β,n(κ, 0) = 1 (9)

in the case for 0 < β ≤ 1, or with the initial conditions

Ĝα,β,n(κ, 0) = 1,
∂

∂t
Ĝα,β,n(κ, 0) = 0 (10)

in the case for 1 < β ≤ 2.
In both cases, the unique solution of Equation (8) with the initial conditions given by Equations (9)

or (9) and (10) has the following form (see, e.g., [18]):

Ĝα,β,n(κ, t) = Eβ

(
−|κ|αtβ

)
(11)

in terms of the Mittag-Leffler function Eβ(z) that is defined by a convergent series:

Eβ(z) =
∞

∑
n=0

zn

Γ(1 + β n)
, β > 0, z ∈ C. (12)

Because of the asymptotic formula (see, e.g., [19]):

Eβ(−x) = −
m

∑
k=1

(−x)−k

Γ(1− βk)
+ O(|x|−1−m), m ∈ N, x → +∞, 0 < β < 2 (13)

we have the inclusion Ĝα,β,n ∈ L1(Rn) under the condition α > 1, and thus the inverse Fourier
transform of Equation (11) can be represented as follows:

Gα,β,n(x, t) =
1

(2π)n

∫
Rn

e−iκ·xEβ

(
−|κ|αtβ

)
dκ , x ∈ Rn , t > 0. (14)

Because Eβ

(
−|κ|αtβ

)
is a radial function, the known formula (see, e.g., [13])

1
(2π)n

∫
Rn

e−iκ·x ϕ(|κ|) dκ =
|x|1− n

2

(2π)
n
2

∫ ∞

0
ϕ(τ)τ

n
2 J n

2−1(τ|x|) dτ (15)

for the Fourier transform of the radial functions can be applied, where Jν denotes the Bessel
function with index ν (for the properties of the the Bessel function, see, e.g., [20]), and we arrive
at the representation

Gα,β,n(x, t) =
|x|1− n

2

(2π)
n
2

∫ ∞

0
Eβ

(
−ταtβ

)
τ

n
2 J n

2−1(τ|x|) dτ (16)

whenever the integral in Equation (16) converges absolutely or at least conditionally.
The representation given by Equation (16) can be transformed to a Mellin-Barnes integral.
We start with the case |x| = 0 (x = (0, . . . , 0)) and obtain the formula

Gα,β,n(0, t) =
1

(2π)n

∫
Rn

Eβ(−|κ|αtβ)dκ,
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which can be represented in the form

Gα,β,n(0, t) =
1

(2π)n
2π

n
2

Γ( n
2 )

∫ ∞

0
Eβ(−ταtβ) τn−1 dτ (17)

as a result of the known formula (see, e.g., [13]):

∫
Rn

f (|x|)dx =
2π

n
2

Γ( n
2 )

∫ ∞

0
τn−1 f (τ)dτ. (18)

The asymptotics of the Mittag-Leffler function ensures convergence of the integral in Equation (17)
under the condition 0 < n < α. Thus, for 1 < α ≤ 2, the fundamental solution Gα,β,n is finite at |x| = 0
only in the one-dimensional case and we obtain the formula

Gα,β,1(0, t) =
t−

β
α

απ

∫ ∞

0
Eβ(−u) u

1
α−1 du =

t−
β
α

απ

Γ
(

1
α

)
Γ
(

1− 1
α

)
Γ
(

1− β
α

) ,

which is valid for α > 1 if 0 < β < 2 and for α > 2 if β = 2. This formula is an easy consequence from
the known Mellin integral transform of the Mittag-Leffler function (see, e.g., [21,22]):

∫ ∞

0
Eβ(−u) us−1 du =

Γ(s)Γ(1− s)
Γ(1− βs)

if

{
0 < <(s) < 1 for 0 < β < 2,

0 < <(s) < 1/2 for β = 2.
(19)

The Mellin integral transform plays an important role in fractional calculus in general and for
the derivation of the results of this paper in particular; thus we recall the definitions of the Mellin
transform and the inverse Mellin transform, respectively:

f ∗(s) = (M f (τ))(s) =
∫ ∞

0
f (τ)τs−1 dτ, τ > 0, (20)

f (τ) = (M−1 f ∗(s))(τ) =
1

2πi

∫ γ+i∞

γ−i∞
f ∗(s)τ−s ds, γ1 < <(s) = γ < γ2. (21)

The Mellin integral transform exists in particular for the functions continuous on the intervals
(0, ε] and [E,+∞) and integrable on the interval (ε, E) with any ε, E, 0 < ε < E < +∞ that satisfy
the estimates | f (τ)| ≤ M1τ−γ1 for 0 < τ < ε and | f (τ)| ≤ M2τ−γ2 for τ > E with γ1 < γ2 and some
constants M1 and M2. In this case, the Mellin integral transform f ∗(s) is analytic in the vertical strip
γ1 < <(s) = γ < γ2.

If f is piecewise differentiable and τγ−1 f (τ) ∈ Lc(0, ∞), then Equation (21) holds at all points
of continuity for f . The integral in Equation (21) has to be considered in the sense of the Cauchy
principal value.

For the general theory of the Mellin integral transform, we refer the reader to [22]. Several
applications of the Mellin integral transform in fractional calculus are discussed in [7,21].

If the dimension n of Equation (1) is greater that one, the fundamental solution Gα,β,n(x, t) has an
integrable singularity at the point |x| = 0.

Now we proceed with the case x 6= 0 and first discuss the convergence of the integral in the integral
representation given by Equation (16). It follows from the asymptotic formulas for the Mittag-Leffler
function and the known asymptotic behavior of the Bessel function (see, e.g., [20]) that the integral in
Equation (16) converges conditionally in the case n < 2α + 1 and absolutely in the case n < 2α− 1.
Thus for 1 < α ≤ 2 and n = 1, 2, 3, the integral in Equation (16) is at least conditionally convergent.
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Now the technique of the Mellin integral transform is applied to deduce a Mellin-Barnes
representation of the fundamental solution Gα,β,n(x, t). In particular, we use the convolution theorem
for the Mellin integral transform that reads as∫ ∞

0
f1(τ) f2

( y
τ

) dτ

τ

M←→ f ∗1 (s) f ∗2 (s) , (22)

where by M←→ the juxtaposition of a function f with its Mellin transform f ∗ is denoted.
It can be easily seen that for x 6= 0 the integral on the right-hand side of Equation (16) is the Mellin

convolution of the functions

f1(τ) = Eβ(−τα tβ) and f2(τ) =
|x|−n

(2π)
n
2

τ−
n
2−1 J n

2−1

(
1
τ

)

at the point y = 1
|x| .

The Mellin transform of the Mittag-Leffler function (Equation (19)), the known Mellin integral
transform of the Bessel function ([22]):

Jν(2
√

τ)
M←→ Γ(ν/2 + s)

Γ(ν/2 + 1− s)
, −<(ν/2) < <(s) < 3/4,

and some elementary properties of the Mellin integral transform (see, e.g., [21,22]) lead to the Mellin
transform formulas:

f ∗1 (s) =
t−

β
α s

α

Γ( s
α )Γ(1−

s
α )

Γ(1− β
α s)

, 0 < <(s) < α ,

f ∗2 (s) =
|x|−n

(2π)
n
2

(
1
2

)− n
2 +s Γ

( n
2 −

s
2
)

Γ
( s

2
) ,

n
2
− 1

2
< <(s) < n .

These two formulas, the convolution Theorem (Equation (22)) for the Mellin transform, and the
inverse Mellin transform Equation (21) result in the following Mellin-Barnes integral representation of
the fundamental solution Gα,β,n:

Gα,β,n(x, t) =
1
α

|x|−n

π
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( n

2 −
s
2
)

Γ
( s

α

)
Γ
(
1− s

α

)
Γ
(

1− β
α s
)

Γ
( s

2
)

(
2t

β
α

|x|

)−s

ds , (23)

where n
2 −

1
2 < γ < min(α, n). We note that the Mellin-Barnes integral given by Equation (23) can

also be interpreted as a particular case of the Fox H-function. The theory of the H-function, its
properties, and applications are presented in a number of textbooks and papers (see, e.g., [23–28]);
thus, here we do not discuss this subject in detail and prefer to directly deduce the properties of the
fundamental solution Gα,β,n from its Mellin-Barnes representation (Equation (23)). Starting with this
representation and using simple linear variables’ substitutions, we can easily derive some other forms
of this representation that will be useful for further discussions. For example, the substitutions s→ −s
and then s → s− n in the Mellin-Barnes representation given by Equation (23) result in two other
equivalent representations:

Gα,β,n(x, t) =
1
α

|x|−n

π
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( n

2 + s
2
)

Γ
(
− s

α

)
Γ
(
1 + s

α

)
Γ
(

1 + β
α s
)

Γ
(
− s

2
)

(
|x|
2t

β
α

)−s

ds (24)
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and

Gα,β,n(x, t) =
1
α

t−
βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
)
(
|x|
2t

β
α

)−s

ds (25)

under the conditions −min(α, n) < γ < 1
2 −

n
2 or max(n− α, 0) < γ < n, respectively.

Finally, we demonstrate how these integral representations can be used, for example, for deriving
some series representations of Gα,β,n(x, t) and then its representations in terms of elementary or special
functions of the hypergeometric type. To this end, we consider a simple example. In the case β = 1 and
α = 2 (standard diffusion equation), the representation given by Equation (25) takes the following form
(two pairs of the gamma functions in the integral on the right-hand side of Equation (25) are canceled):

G2,1,n(x, t) =
t−

n
2

2 (4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞
Γ
( s

2

) ( z
2

)−s
ds, z =

|x|√
t
.

The substitution of the variables s→ 2s leads to an even simpler representation:

G2,1,n(x, t) =
t−

n
2

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞
Γ (s)

( z
2

)−2s
ds, z =

|x|√
t
.

According to the Cauchy theorem, the contour of integration in the integral on the right-hand
side of the previous formula can be transformed to the loop L−∞ starting and ending at −∞ and
encircling all poles sk = −k, k = 0, 1, 2, . . . of the function Γ(s). Taking into account the Jordan lemma,
the formula

ress=−kΓ(s) =
(−1)k

k!
, k = 0, 1, 2, . . .

and the Cauchy residue theorem lead to a series representation of G2,1,n(x, t):

G2,1,n(x, t) =
t−

n
2

(4π)
n
2

∫ γ+i∞

γ−i∞
Γ(s)

( z
2

)−2s
ds =

t−
n
2

(4π)
n
2

∞

∑
k=0

(−1)k

k!

( z
2

)2k
, z =

|x|√
t
.

Thus the fundamental solution G2,1,n to the n-dimensional diffusion equation takes its standard form:

G2,1,n(x, t) =
1

(
√

4πt)n
exp

(
−|x|

2

4t

)
. (26)

2.3. Special Functions of the Wright Type

The fundamental solutions to different time-, space-, or time- and space-fractional partial
differential equations are closely connected to the special functions of hypergeometric type. In the
general situation, some particular cases of the Fox H-function are often involved (see, e.g., [1,2]).
However, for particular cases of the orders of the fractional derivatives, the H-function can sometimes
be reduced to some simpler special functions, mainly of Wright type (see, e.g., [29] for the
one-dimensional case of the time-fractional diffusion-wave equation). Because the Fox H-function has
still not been investigated in all its details and, in particular, because no packages for its numerical
calculation are available, this reduction is very welcome. In this paper, some new reduction formulas
for the fundamental solution to the multi-dimensional time- and space-fractional diffusion-wave
Equation (1) are derived. In this subsection, we shortly discuss the special functions of the Wright type
that appear in these derivations. For more details regarding theory and applications of these special
functions, we refer the reader to, for example, [30–36].

We start with the Wright function:

Wa,µ(z) =
∞

∑
k=0

zk

k!Γ(a + µk)
, µ > −1, a, z ∈ C (27)
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that was introduced for the first time in [37] for the case µ > 0. In particular, in [37,38], Wright
investigated some elementary properties and asymptotic behavior of this function in connection with
his research on the asymptotic theory of partitions.

Because of the relation

Jν(z) =
( z

2

)ν
W1+ν,1

(
−1

4
z2
)

, (28)

the Wright function can be considered as a generalization of the Bessel function Jν(z). In turn,
the Wright function is a particular case of the Fox H-function (see, e.g., [25,39]):

Wa,µ(−z) = H1,0
0,2

[
z

∣∣∣∣∣ −
(0, 1), (1− a, µ)

]
. (29)

The Wright function is an entire function for all real values of the parameter µ (both positive
and negative) under the condition −1 < µ, but its asymptotic behavior is different in the cases µ > 0,
µ = 0, and µ < 0 (see [40] for details).

Two particular cases of the Wright function, namely, the functions M(z; β) = W1−β,−β(−z) and
F(z; β) = W0,−β(−z) with the parameter β between 0 and 1, have been introduced and investigated in
detail in [41,42]. These functions play an important role as fundamental solutions of the Cauchy and
signaling problems for the one-dimensional time-fractional diffusion-wave equation ([29]).

In this paper, a four-parameter Wright function in the form

W(a,µ),(b,ν)(z) :=
∞

∑
k=0

zk

Γ(a + µk)Γ(b + νk)
, µ, ν ∈ R, a, b, z ∈ C (30)

is also used. Wright himself investigated this function in [43] for the case µ > 0, ν > 0. For a = µ = 1
or b = ν = 1, the four-parameter Wright function is reduced to the Wright function (Equation (27)).
In [44], Luchko and Gorenflo investigated the four-parameter Wright function for the first time in the
case for which one of the parameters µ or ν is negative. In particular, they proved that the function
W(a,µ),(b,ν)(z) is an entire function provided that 0 < µ + ν, a, b ∈ C.

It is important to emphasize that the function W(a,µ),(b,ν)(z) can have an algebraic asymptotic
expansion on the positive real semi-axis in the case of suitably restricted parameters (see [44] for details):

W(a,µ),(b,ν)(x) =
L−1

∑
l=0

x(a−1−l)/(−µ)

(−µ)Γ(l + 1)Γ(b + ν(a− l − 1)/(−µ))
(31)

−
P

∑
k=1

x−k

Γ(b− νk)Γ(a− µk)
+ O(x(a−1−L)/(−µ)) + O(x−1−P), x → +∞

when 0 < ν/3 < −µ < ν ≤ 2, L, P ∈ N.
In the important case µ+ ν = 0, the four-parameter Wright function is no longer an entire function.

Indeed, in this case, the convergence radius of the series from Equation (30) is equal to 1 rather than to
infinity, as can be seen from the asymptotics of the series terms as k→ ∞:∣∣∣∣ 1

Γ(a− νk)Γ(b + νk)

∣∣∣∣ = ∣∣∣∣ sin(π(a− νk))
π

Γ(1− a + νk)
Γ(b + νk)

∣∣∣∣ =∣∣∣∣cosh(π=(a))
π

(νk)1−a−b
[
1 + O(k−1)

]∣∣∣∣ , k→ +∞.

In the chain of the equalities above, the following known formulas for the gamma function
were employed:

Γ(z)
Γ(1− z)

=
π

sin(π z)
,
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Γ(s + a)
Γ(s + b)

= sa−b
[
1 + O(s−1)

]
, |s| → +∞, | arg(s)| < π.

Finally, we mention here the generalized Wright function that is defined by the following series
(in the case of its convergence):

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1) . . . (bq, Bq)
; z
]
=

∞

∑
k=0

∏
p
i=1 Γ(ai + Aik)

∏
q
i=1 Γ(bi + Bik)

zk

k!
. (32)

This function was introduced and investigated by Wright in [43]. For details regarding the
generalized Wright function, we refer the readers to the recent book [45].

3. New Integral Representations of the Fundamental Solution

In the previous section, we derived the following integral representation of the fundamental
solution:

Gα,β,n(x, t) =
|x|1− n

2

(2π)
n
2

∫ ∞

0
Eβ

(
−ταtβ

)
τ

n
2 J n

2−1(τ|x|) dτ . (33)

In this section, we demonstrate how the Mellin-Barnes representations of the fundamental solution
can be employed to obtain other integral representations of the same type. The idea is very simple.
For example, we start with the Mellin-Barnes representation given by Equation (25) and consider the
kernel function:

Lα,β,n(s) =
Γ
( s

2
)

Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
)

Γ
( n

2 −
s
2
) . (34)

When the kernel function is represented as a product of two factors, the convolution theorem
for the Mellin integral transform can be applied, and we obtain an integral representation of Gα,β,n
of the type given by Equation (33). For example, we obtained the integral representation given by
Equation (33) by employing the Mellin integral transform formulas for the Mittag-Leffler function and
for the Bessel function, that is, by representing the kernel function Lα,β,n(s) as the following product:

Lα,β,n(s) =
Γ
( n

α −
s
α

)
Γ
(
1− n

α + s
α

)
Γ
(

1− β
α n + β

α s
) ×

Γ
( s

2
)

Γ
( n

2 −
s
2
) . (35)

In what follows, we consider other possibilities of the representation of the kernel function
Lα,β,n(s) as a product of two factors. Of course, these factors should be chosen in a way that makes it
possible to easily obtain the inverse Mellin integral transform of these factors in terms of the known
elementary or special functions. In the following theorem, two possible representations are given.

Theorem 1. Let the inequalities 1 < α ≤ 2, 0 < β ≤ 2 hold true. Then the first fundamental solution
Gα,β,n of the multi-dimensional space- and time-fractional diffusion-wave Equation (1) has the following integral
representations of the Mellin convolution type:

Gα,β,n(x, t) =
1

(
√

π|x|)n

∫ ∞

0
e−ττ

n
2−1W(1,β),(0,−α/2)

(
− τα/2tβ

(|x|/2)α

)
dτ if β > α/2, (36)

Gα,β,n(x, t) =
1

(
√

π|x|)n

∫ ∞

0
Wα

2 , α
2
(−τ) 1Ψ1

[
( n

2 , α
2 )

(1, β)
;− τ tβ

(|x|/2)α

]
dτ. (37)
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Proof. To make calculations easier, we first perform the variables’ substitution s→ 2s in the integral
representation given by Equation (25). We obtain

Gα,β,n(x, t) =
2
α

t−
βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ (s) Γ
( n

α −
2
α s
)

Γ
(
1− n

α + 2
α s
)

Γ
(

1− β
α n + 2β

α s
)

Γ
( n

2 − s
) (

z2
)−s

ds , z =
|x|
2t

β
α

. (38)

Now we represent the kernel function of the previous integral as follows:

Lα,β,n(s) = Γ (s)×
Γ
( n

α −
2
α s
)

Γ
(
1− n

α + 2
α s
)

Γ
(

1− β
α n + 2β

α s
)

Γ
( n

2 − s
) . (39)

The inverse Mellin integral transform of Γ (s) is simply the exponential function exp(−τ) ([22]):

f1(τ) =
1

2πi

∫ γ+i∞

γ−i∞
Γ(s) τ−s ds = e−τ . (40)

To calculate the inverse Mellin transform of the second factor, the variables’ substitution s→ α
2 s

is first applied. We then obtain the formula

f2(τ) =
α

2
1

2πi

∫ γ+i∞

γ−i∞

Γ
( n

α − s
)

Γ
(
1− n

α + s
)

Γ
(

1− β
α n + βs

)
Γ
( n

2 −
α
2 s
) (τ

α
2

)−s
ds. (41)

To obtain a series representation of the function f2, we employ the standard technique for the
Mellin-Barnes integrals. According to the Cauchy theorem, the contour of integration in the integral on
the right-hand side of the previous formula can be transformed to the loop L+∞ starting and ending at
+∞ and encircling all poles sk = k + n

α , k = 0, 1, 2, . . . of the function Γ
( n

α − s
)
. Taking into account

the Jordan lemma and the formula for the residual of the gamma function, the Cauchy residue theorem
leads to a series representation of f2:

f2(τ) =
α

2

∞

∑
k=0

(−1)k

k!
Γ(k + 1)

Γ (1 + βk) Γ
(
− α

2 k
) (τ

α
2

)−k− n
α . (42)

We thus have obtained a representation of f2 in terms of the four-parameter Wright function
(Equation (30)):

f2(τ) =
α

2
τ−n/2 W(1,β),(0,−α/2)

(
−τ−α/2

)
, (43)

which is valid under the condition β > α/2.
Now we take into consideration the Mellin-Barnes integral given by Equation (38), Equations (40)

and (43), and the Mellin transform convolution theorem, and thus we obtain the integral representation
given by Equation (36).

The same procedure can be applied for other representations of the kernel function Lα,β,n(s) as
a product of two factors. We again start with the Mellin-Barnes integral given by Equation (25) and
perform the variables’ substitution s→ αs. Then we obtain the representation

Gα,β,n(x, t) =
t−

βn
α

(4π)
n
2

1
2πi

∫ γ+i∞

γ−i∞

Γ
(

α
2 s
)

Γ
( n

α − s
)

Γ
(
1− n

α + s
)

Γ
(

1− β
α n + βs

)
Γ
( n

2 −
α
2 s
) (zα)−s ds , z =

|x|
2t

β
α

. (44)
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The next step is a representation of the kernel function of the previous integral as a product of
two factors:

Lα,β,n(s) =
Γ
(
1− n

α + s
)

Γ
( n

2 −
α
2 s
) × Γ

(
α
2 s
)

Γ
( n

α − s
)

Γ
(

1− β
α n + βs

) . (45)

Now we calculate the inverse Mellin integral transforms of the factors. For the first factor,
we employ the same technique as above and obtain the series representation

f1(τ) =
1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− n

α + s
)

Γ
( n

2 −
α
2 s
) τ−s ds =

∞

∑
k=0

(−1)k

k!
1

Γ
(

α
2 + α

2 k
) τk+1− n

α . (46)

Thus the function f1 can be represented in terms of the Wright function (Equation (27)):

f1(τ) = τ1− n
α Wα

2 , α
2
(−τ). (47)

As for the second factor, we first obtain the series representation:

f2(τ) =
1

2πi

∫ γ+i∞

γ−i∞

Γ
(

α
2 s
)

Γ
( n

α − s
)

Γ
(

1− β
α n + βs

) ds =
∞

∑
k=0

(−1)k

k!
Γ
( n

2 + α
2 k
)

Γ (1 + βk)
τ−k− n

α (48)

and then its representation in terms of the generalized Wright function (Equation (32)):

f2(τ) = τ−
n
α 1Ψ1

[
( n

2 , α
2 )

(1, β)
;− 1

τ

]
. (49)

Combining Equations (44), (47), and (49) together and applying the Mellin convolution theorem,
we finally arrive at the integral representation given by Equation (37) of the fundamental solution in
terms of the Wright function and the generalized Wright function.

4. New Closed-Form Formulas for Particular Cases of the Fundamental Solution

In the paper [9], the Mellin-Barnes representations of the fundamental solution to the
multi-dimensional time- and space-fractional diffusion-wave equation were employed to derive
some new particular cases of the solution in terms of the elementary functions and the special
functions of the Wright type. In particular, the closed-form formulas for the fundamental solution
to the neutral-fractional diffusion equation (β = α in Equation (1)) in terms of elementary functions
were deduced for the odd-dimensional case (n = 1, 3, . . . ). In this section, we derive among other
things a representation of the fundamental solution to the neutral-fractional diffusion equation in the
two-dimensional case in terms of the four-parameter Wright function (Equation (30)).

Theorem 2. The first fundamental solution to the multi-dimensional space- and time-fractional diffusion
Equation (1) can be represented in terms of the Wright-type functions:

(a) For β = α and n = 2 under the condition 1 < α ≤ 2:

Gα,α,2(x, t) =


|x|α−2
√

πtα W( 1
2−

α
2 ,− α

2 ),( α
2 , α

2 )

(
−
(
|x|
t

)α)
if |x| < t,

|x|−2
√

π
W(0,− α

2 ),( 1
2 , α

2 )

(
−
(

t
|x|

)α)
if |x| > t.

(50)

(b) For β = 3
2 α and n = 2 under the condition 1 < α ≤ 4

3 :

Gα, 3
2 α,2(x, t) =

√
3

2π2|x|2 1Ψ3

 (1, 1)(
1
3 , α

2

)
,
( 2

3 , α
2
)

,
(
0,− α

2
) ;−

(
|x|

2(3t)
3
2

)α
 . (51)



Mathematics 2017, 5, 76 12 of 16

Proof. Once again we start with the Mellin-Barnes integral representation given by Equation (25),
which for β = α and n = 2, takes the following form:

Gα,α,2(x, t) =
1
α

t−2

4π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( 2

α −
s
α

)
Γ
(
1− 2

α + s
α

)
Γ (−1 + s) Γ

(
1− s

2
) (

|x|
2t

)−s
ds . (52)

The general theory of Mellin-Barnes integrals (see, e.g., [22]) states that for |x| ≤ 2t, a series
representation of Equation (52) can be obtained by transforming the contour of integration in the
integral on the right-hand side of Equation (52) to the loop L−∞ starting and ending at −∞ and
encircling all poles of the functions Γ

( s
2
)

and Γ
(
1− 2

α + s
α

)
. The problem now is that we have to take

into consideration the cases in which some of the poles of Γ
( s

2
)

coincide with the poles Γ
(
1− 2

α + s
α

)
,

making the series representation become very complicated.
To avoid this problem, we aim to “eliminate” one of these gamma functions. The application of

the duplication formula for the gamma function:

Γ(2s) =
22s−1
√

π
Γ(s)Γ

(
s +

1
2

)
to the function Γ (−1 + s) (one of the Gamma-functions in the denominator of the kernel function from
the integral in Equation (52)) results in the following representation:

Γ(1− s) = Γ
(

2
(
−1

2
+

s
2

))
=

2s−2
√

π
Γ
(
−1

2
+

s
2

)
Γ
( s

2

)
.

Now we substitute the previous formula into the integral in Equation (52) and obtain another
Mellin-Barnes representation:

Gα,α,2(x, t) =
1
α

t−2
√

π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α −
s
α

)
Γ
(
1− 2

α + s
α

)
Γ
(
− 1

2 + s
2

)
Γ
(
1− s

2
) (

|x|
t

)−s
ds . (53)

In contrast to the representation given by Equation (52), the numerator of the kernel function in
Equation (53) has just one gamma function with the poles tending to −∞ and one gamma function
with the poles tending to +∞, and thus this representation is very suitable for the derivation of a series
representation of Gα,α,2.

To proceed, the variables’ substitution s→ αs is first employed in the integral from Equation (53).
We then obtain the representation

Gα,α,2(x, t) =
t−2
√

π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α − s
)

Γ
(
1− 2

α + s
)

Γ
(
− 1

2 + α
2 s
)

Γ
(
1− α

2 s
) (( |x|t

)α)−s

ds . (54)

To obtain the series representation of the Mellin-Barnes integral (Equation (54)), we have to
consider two cases:

(i) |x| < t;

(ii) |x| > t.
In the first case, the contour of integration in the integral on the right-hand side of Equation (54)

can be transformed to the loop L−∞ starting and ending at −∞ and encircling all poles of the function
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Γ
(
1− 2

α + s
)
. Taking into account the Jordan lemma and the formula for the residuals of the gamma

function, the Cauchy residue theorem leads to the following series representation of Gα,α,2:

Gα,α,2(x, t) =
t−2
√

π

∞

∑
k=0

(−1)k

k!

k!
((
|x|
t

)α)1+k− 2
α

Γ
(

1
2 −

α
2 −

α
2 k
)

Γ
(

α
2 + α

2 k
) . (55)

We thus arrive at the closed-form formula:

Gα,α,2(x, t) =
|x|α−2
√

πtα
W( 1

2−
α
2 ,− α

2 ),( α
2 , α

2 )

(
−
(
|x|
t

)α)
(56)

in terms of the four-parameter Wright function (Equation (30)) that is valid for |x| < t.
In the case |x| > t, the contour of integration in the integral on the right-hand side of Equation (54)

can be transformed to the loop L+∞ starting and ending at +∞ and encircling all poles of the function
Γ
( 2

α − s
)
. Proceeding as in case i), we first obtain a series representation of Gα,α,2 in the form

Gα,α,2(x, t) =
t−2
√

π

∞

∑
k=0

(−1)k

k!

k!
((
|x|
t

)α)−k− 2
α

Γ
(
− α

2 k
)

Γ
(

1
2 + α

2 k
) (57)

and then obtain the closed-form formula:

Gα,α,2(x, t) =
|x|−2
√

π
W(0,− α

2 ),( 1
2 , α

2 )

(
−
(

t
|x|

)α)
(58)

in terms of the four-parameter Wright function that is valid for |x| > t.
Combining Equations (56) and (58), the obtain the representation given by Equation (50) of the

fundamental solution Gα,α,2 in terms of the four-parameter Wright function.
In the case |x| = t, both series are divergent, and the problem of determining a series

representation of Gα,α,2 is more complicated; it will be considered elsewhere.
The method described above can be used for the derivation of other closed-form formulas for

particular cases of the fundamental solution Gα,β,n in terms of the Wright-type functions. For example,
we consider the case β = 3

2 α and n = 2 (because of the condition β ≤ 2, in this case, the inequalities
1 < α ≤ 4

3 have to be satisfied). The Mellin-Barnes representation of Gα, 3
2 α,2 is as follows:

Gα, 3
2 α,2(x, t) =

1
α

t−3

4π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( s

2
)

Γ
( 2

α −
s
α

)
Γ
(
1− 2

α + s
α

)
Γ
(
−2 + 3

2 s
)

Γ
(
1− s

2
) (

|x|
2t

3
2

)−s
ds . (59)

To proceed, we apply the multiplication formula for the gamma function:

Γ(ms) = mms− 1
2 (2π)

1−m
2

m−1

∏
k=0

Γ
(

s +
k
m

)
, m = 2, 3, 4, . . .

with m = 3 to the gamma function Γ
(
−2 + 3

2 s
)

from the denominator of the kernel function from the
Mellin-Barnes representation given by Equation (59). We thus obtain the representation

Γ
(
−2 +

3
2

s
)
= Γ

(
3
(
−2

3
+

1
2

s
))

= 3−
5
2+

3
2 s(2π)−1Γ

(
−2

3
+

1
2

s
)

Γ
(
−1

3
+

1
2

s
)

Γ
(

1
2

s
)

.
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By applying this formula to Equation (59) and by the variables’ substitution s→ αs, we arrive at
the following Mellin-Barnes representation:

Gα, 3
2 α,2(x, t) =

t−3

4π

3−
5
2

2π

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α − s
)

Γ
(
1− 2

α + s
)

Γ
(
− 2

3 + α
2 s
)

Γ
(
− 1

3 + α
2 s
)

Γ
(
1− α

2 s
)
((

|x|
2(3t)

3
2

)α)−s

ds . (60)

Using the technique presented above, the representation given by Equation (60) leads first to
a series representation of Gα, 3

2 α,2 in the following form:

Gα, 3
2 α,2(x, t) =

√
3

2π2|x|2
∞

∑
k=0

(
−
(
|x|

2(3t)
3
2

)α)k

Γ
(

1
3 + α

2 k
)

Γ
( 2

3 + α
2 k
)

Γ
(
− α

2 k
) ,

which can be represented as a particular case of the generalized Wright function (Equation (51)).

5. Discussion

This paper is devoted to some applications of the Mellin-Barnes integral representations of the
fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation for
the analysis of its properties. In particular, this representation is used to obtain two new representations
of the fundamental solution in the form of the Mellin convolution of the special functions of Wright
type and for the derivation of some new closed-form formulas for particular cases of the fundamental
solution. Among other things, the open problem of the representation of the fundamental solution
to the two-dimensional neutral-fractional diffusion-wave equation in terms of the known special
functions is solved. The potential of the Mellin-Barnes integral representation of the fundamental
solution to the multi-dimensional space- and time-fractional diffusion-wave equation is of course not
yet ladled. It can be used among other things for the derivation of the new closed-form formulas for its
particular cases, for asymptotic formulas for the fundamental solution, and for relationships between
the fundamental solutions for different values of the derivative orders α and β. These problems will be
considered elsewhere in further publications.
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