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Abstract: In this paper, we propose and analyze a mathematical model for the dynamics of visceral
leishmaniasis with seasonality. Our results show that the disease-free equilibrium is globally
asymptotically stable under certain conditions when R0, the basic reproduction number, is less
than unity. When R0 > 1 and under some conditions, then our system has a unique positive
ω-periodic solution that is globally asymptotically stable. Applying two controls, vaccination and
treatment, to our model forces the system to be non-periodic, and all fractions of infected populations
settle on a very low level.
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1. Introduction

Leishmaniasis is a vector borne, zoonotic disease transmitted to humans and animals through
the bite of infected phlebotomine sandflies. The World Health Organization considers leishmaniasis
as the sixth most important endemic disease in the world because it has the second-highest number
of affected people after malaria and causes an important public health problem in several countries
around the world [1].

Leishmaniaisis has many forms, the most important being cutaneous leishmaniasis and visceral
leishmaniasis. The cutaneous form is rarely fatal, but it can lead to tissue destruction, scarring,
and serious visible impairment. These can lead to social stigmas because of the deformation of the
face with permanent scarring. The visceral form, which is almost 100% fatal if left untreated, requires
a lengthy and very costly treatment that should be taken under medical supervision [2]. In some
cases, depending on the immunity, after the treatment of visceral leishmaniasis, another form of the
disease may develop, the post-kala-azar dermal leishmaniasis (PKDL) form, which is not a fatal form;
most cases will self-cure, but severe and chronic cases must be treated, and it plays an important role
for the dynamics of the disease as it acts as a reservoir for the parasite [3]. Naturally, a time delay could
be inserted for PKDL development, as this would make the mathematics very rich and interesting.

Leishmaniasis is distributed in around 90 countries of the world, most of which are developing
countries, and more than 90% of the cases are found in India, Nepal, Iran, Iraq and Sudan; there are
approximately 350 million people at risk of leishmaniasis in these areas [4]. Leishmaniasis is very hard
to control, because it can be transmitted to many mammals, which play the role of a reservoir to the
disease, and the transmission to humans can be restarted at any time, causing a high prevalence of the
disease even after a long period of no disease or low prevalence of the disease.

Some studies have suggested that there is a correlation between seasonal variations and the
abundance of sandflies, which leads to a link between seasonal variations and the prevalence of the
disease [5–10]. Tiwary et al. [9] found that sandflies are highly prevalent in the rainy season and that
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the lowest rate of infection with visceral leishmaniasis was observed in the rainy season. This might
be due to the flushing effect of rainfall on immature, emerging sandflies. Turki et al. [10] found that
the increase in temperature during summer can lead to an increase of cutaneous leishmaniasis cases.
They also found an indication that rainfall has no impact or influence on the species of sandflies in
the highlands; however, they found that in the lowlands, increased rainfall can lead to increased
numbers of cases of cutaneous leishmaniasis, except during the winter season. There is not yet
a vaccine for visceral leishmaniasis; however, this is biologically feasible, as many people before the
age of vaccinology use a procedure called leishmanization to protect themselves from the infection.
Leishmanization procedure is the process of introducing a live but weak form of the parasite to
stimulate immune response in order protect from the real infection [11].

Some mathematical models have been developed to study the dynamics of visceral and
cutaneous leishmanaisis. Dye [12] designed a mathematical model for the dynamics of zoonotic
visceral leishmaniasis, and his model also focused on the dynamics of infection in dogs. His results
show that insecticides are the most effective control method; the second-best strategy is to reduce
susceptibility to leishmaniasis by vaccinating people or dogs, or by eliminating childhood malnutrition
where it is common. Both killing vectors and reducing susceptibility (by whatever means) are more
effective than killing dogs or treating them with drugs. Dye et al. [13] formulated an age-structured
mathematical model to investigate the effects of visceral leishmaniasis on children, as well as the
correlation between malnutrition and the susceptibility of leishmaniasis. His model consists of
a system of partial differential equations for the human population, but it has no equation for the
animal reservoir nor for the vector reservoir. Lysenko et al. [14] developed an epidemic model for the
transmission of cutaneous leishmaniasis. However, the mechanisms that govern the dynamics of the
transmission of leishmania parasites are not explicitly stated; therefore, no control strategies for the
disease can be proposed. Recently, Rabinovich et al. [15] added some realism to this model by making
the probability of developing cutaneous lesions a function of the number of infective bites by sandflies.
Burattini et al. [16] formulated a mathematical model to describe the dynamics of the transmission
of leishmaniasis, including populations of vector, human and animal (dogs) hosts. Assuming that
all populations are both sources and sinks of leishmania parasites, they estimated R0: the infection
persistence threshold condition from the sum of individual terms for transmission in humans and in
dogs. However, their model did not include the role of PKDL humans in the disease transmission,
who have a major role, as PKDL humans act as a source of infection for vectors [17]. Chaves et al. [1]
developed a mathematical model for the American cutaneous leishmaniasis. Their model describes
the transmission of American cutaneous leishmaniasis in three different populations, a human host
population, an animal reservoir population and a vector population, but they considered humans as
sinks of the infection only; hence humans in their model are not a source of infection for the vectors.

Elmojtaba et al. [18] developed a mathematical model to understand the dynamics of visceral
leishamniasis and determined the local and global stability of the disease-free equilibrium, as well as
the local stability of the endemic equilibrium. Elmojtaba et al. [19] developed a model to study the
role of cross-immunity between two different strains of leishmaniasis in the eradication of the disease;
Elmojtaba et al. [20] also studied the dynamics of malaria and leishmaniasis co-infection to set up
some control measures against the spread of these two diseases. Elmojtaba et al. [21] studied the role
of infected immigrants and vaccination on the dynamics of visceral leishmaniasis under these settings.
All these models used the same assumptions with constant coefficients; however, here in this paper,
we consider a model with periodic coefficients.

This paper is organized as follows: the first section gives an introduction for the topic; in the
second section, the model is built; the third section gives an intensive mathematical analysis of
the model; the optimal control problem is proposed and analyzed in the fourth section; numerical
simulations have been carried out and are presented in the fifth section; and a discussion is given in
the last section.
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2. Model Formulation

To formulate this model, we follow Elmojtaba et al. [18], and we consider the transmission of
the disease between three different populations, a human host population, NH(t); a reservoir host
population, NR(t); and a vector population, NV(t). We let the human host population be divided into
four categories, susceptible individuals, SH(t); those who are infected with visceral leishmaniasis,
IH(t); those who develop PKDL after the treatment of visceral leishmaniasis, PH(t); and those who are
recovered and have permanent immunity, RH(t). This implies that

NH(t) = SH(t) + IH(t) + PH(t) + RH(t)

Similarly, we let the reservoir host population be divided into two categories, a susceptible
reservoir SR(t), and an infected reservoir IR(t), such that

NR(t) = SR(t) + IR(t)

We let the vector population have two categories, susceptiblesandflies SV(t), and infected sandflies
IV(t), such that

NV(t) = SV(t) + IV(t)

It is assumed that susceptible individuals are recruited into the population at a constant rate
ΛH and acquire infection with leishmaniasis following contact with infected sandflies at a per capita
rate a(t)b IV

NH
, where a(t) is the per capita biting rate of sandflies on humans (or reservoirs) and b is

the transmission probability per bite per human. The per capita biting rate of sandflies a is equal
to the number of bites received per human from sandflies due to conservation of bites mechanism.
Infected humans die as a result of leishmaniasis at an average rate δ or receive treatment at an average
rate α1; a fraction σ of those that are treated recover and acquire permanent immunity, and a fraction
(1− σ) develop PKDL. Humans with PKDL are treated at an average rate α2 or recover naturally
at an average rate β; they acquire permanent immunity in both cases. There is a per capita natural
mortality rate µh in all human subpopulations.

Susceptible reservoirs are recruited into the population at a constant rate ΛR and acquire infection
with leishmaniasis following contact with infected sandflies at a rate a(t)b IV

NH
, where a(t) and b are as

described above. We assume that the transmission probability per bite is the same for human and the
reservoir because sandflies do not distinguish between humans and reservoirs. It is also assumed that
reservoirs do not die as a result of the disease, but a per capita natural mortality rate µr occurs in the
reservoir population.

Susceptible sandflies are recruited at a constant rate ΛV and acquire leishmaniasis infection
following contact with humans infected with leishmaniasis or having PKDL, or reservoirs infected with
leishmaniasis, at an average rate equal to a(t)c IH

NH
+ a (t)c PH

NH
+ a(t)c IR

NR
, where a(t) is the per capita

biting rate and c is the transmission probability for sandfly infection. Sandflies suffer natural mortality
at a per capita rate µv regardless of their infection status.

We assume that a(t) (the per capita biting rate of sandflies on humans) is a time-dependent
ω-periodic function. With this assumption and the description of the terms, we obtain the following
system of differential equations:
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S′H = ΛH − a(t)bIV
SH
NH
− µhSH

I′H = a(t)bIV
SH
NH
− (α1 + δ + µh)IH

P′H = (1− σ)α1 IH − (α2 + β + µh)PH

R′H = σα1 IH + (α2 + β)PH − µhRH (1)

S′R = ΛR − a(t)bIV
SR
NR
− µrSR

I′R = a(t)bIV
SR
NR
− µr IR

S′V = ΛV − a(t)cSV
IH
NH
− a(t)cSV

PH
NH
− a(t)cSV

IR
NR
− µvSV

I′V = a(t)cSV
IH
NH

+ a(t)cSV
PH
NH

+ a(t)cSV
IR
NR
− µv IV

with

N′H = ΛH − µhNH − δIH

N′R = ΛR − µr NR

N′V = ΛV − µvNV

Invariant Region

All parameters of the model are assumed to be non-negative; furthermore, because Equation (1)
monitors living populations, it is assumed that all the state variables are non-negative at time t = 0. It is
noted that in the absence of the disease (δ = 0), the total human population size NH → ΛH/µh as
t → ∞; additionally, NR → ΛR/µr and NV → ΛV/µv as t → ∞. This shows that the biologically
feasible region

Ω = {(SH, IH, PH, RH, SR, IR, SV, IV) ∈ R8
+ : SH, IH, PH, RH, SR, IR, SV, IV ≥ 0, NH ≤ ΛH

µh
,NR ≤ ΛR

µr
,

NV ≤ ΛV
µv
} is a positively invariant domain, and thus the model is epidemiologically and

mathematically well posed; it is sufficient to consider the dynamics of the flow generated by
Equation (1) in this positively invariant domain Ω.

3. Analysis of the Model

In this section, we analyze Equation (1) to obtain the equilibrium points of the system and
their stability. We consider the equations for the proportions by first scaling the subpopulations NH ,
NR and NV using the following set of new variables:

sh =
SH
NH

, ih =
IH
NH

, ph =
PH
NH

, rh =
RH
NH

, sr =
SR
NR

, ir =
IR
NR

, sv =
SV
NV

, and iv =
IV
NV

and let m = NV
NH

be the female vector–human ratio defined as the number of female sandflies per human
host [18]. We note that the ratio m is taken as a constant because it is well known that a vector takes
a fixed number of blood meals per unit time independent of the population density of the host.
Similarly, we let n = NV

NR
be the female vector–reservoir ratio defined as the number of female sandflies

per reservoir host.
Differentiating with respect to time t and simplifying gives the following reduced system of

differential equations:
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dsh
dt

=
ΛH
NH
− [a(t)bmiv +

ΛH
NH
− δih]sh

dih
dt

= a(t)bmivsh − [α1 + δ +
ΛH
NH
− δih]ih

dph
dt

= (1− σ)α1ih − [α2 + β +
ΛH
NH
− δih]ph

drh
dt

= σα1ih + [α2 + β]ph − [
ΛH
NH
− δih]rh

dsr

dt
=

ΛR
NR
− a(t)bnivsr −

ΛH
NH

sr

dir
dt

= a(t)bnivsr −
ΛH
NH

ir
dsv

dt
=

ΛV
NV
− [a(t)cih + a(t)cph + a(t)cir +

ΛV
NV

]sv

div
dt

= [a(t)cih + a(t)cph + a(t)cir]sv −
ΛV
NV

iv

(2)

3.1. Mathematical Properties

We let C denote all continuous functions on the real line. Given f ∈ C, and if f is ω-periodic,
then the average value of f on a time interval [0,ω] can be defined as

f̄ =
1
ω

∫ ω

0
f (t)dt

The maximum and minimum values of f on a time interval [0,ω] are denoted as f M and f m,
respectively, and are defined as

f M = max
t∈[0,ω]

f (t)

and

f m = min
t∈[0,ω]

f (t)

Then the following result is valid:

Proposition 1. Every forward solution of Equation (2) in R8
+ eventually enters into the closed set

Ω = {(sh, ih, ph, rh, sr, ir, sv, iv) ∈ R8
+ : 0 ≤ sh, ih, ph, rh, sh + ih + ph + rh ≤ 1, 0 ≤ sr, ir, sr + ir ≤ 1,

0 ≤ sv, iv, sv + iv ≤ 1} and Ω is positively invariant.

This proposition shows that the scaled system (Equation (2)) is epidemiologically and
mathematically well-posed, and it is sufficient to consider the dynamics of the flow generated by
Equation (2) in this positively invariant domain Ω. Here R8

+ denotes the non-negative cone of R8

including its lower-dimensional faces. We denote the boundary and the interior of Ω by ∂Ω and
◦
Ω, respectively.

Proof. The proof is straightforward.

3.2. Global Stability of the Disease-Free Equilibrium

It is clear that the system given by Equation (2) admits a unique disease-free equilibrium
E0 = (1, 0, 0, 0, 1, 0, 1, 0).

We let (Rn,Rn
+) be an ordered n-dimensional Euclidean space with a norm ||.||, and we assume

that int(Rn
+) 6= ∅. We let x, y ∈ Rn, and we say x > y if x− y ∈ Rn

+, x > y if x− y ∈ Rn
+\{0} and

x � y if x− y ∈ int(Rn
+).
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The following lemma will be useful for proving global stability of E0.

Lemma 1. (Lemma 2.1 in [22]). Let A(t) be a continuous, cooperative, irreducible, and ω-periodic n × n
matrix function. Let ΦA(.)(t) be the fundamental matrix of the linear non-autonomous differential equation
ẋ = A(t)x, where x is a n× 1 vector. Let µ = 1

ω ln r(ΦA(.)(ω)), where r(ΦA(.)(ω)) is the spectral radius
of the monodromy matrix ΦA(.)(ω). Then there exists a positive ω-periodic function v(t) such that eµtv(t) is
a solution of ẋ = A(t)x.

Now let x = (ih, ph, ir, iv)T , F (t, x) denotes the new infection rate and V(t, x) denotes the rate
of transfer of individuals between infection compartment; therefore the vectors F (t, x) and V(t, x)
given by

F (t, x) =


a(t) bmivsh

0
a(t) bnivsr

(a(t) cih + a(t) cph + a(t) cir)sv

 , V(t, x) =


(α1 + δ + ΛH

NH
− δih)ih

(α2 + β + ΛH
NH
− δih)ph − (1− σ)α1ih

ΛR
NR

ir
ΛV
NV

iv


Therefore, see [23], F(t) and V(t) given by

F(t) =

(
∂Fi(t, E0)

∂xj

)
16i,j64

=


0 0 0 a(t)bm
0 0 0 0
0 0 0 a(t)bn

a(t)c a(t)c a(t)c 0


and

V(t) =

(
∂Vi(t, E0)

∂xj

)
16i,j64

=


α1 + δ + µh 0 0 0
−(1− σ)α1 α2 + β + µh 0 0

0 0 µr 0
0 0 0 µv


Now, F(t) is non-negative and −V(t) is co-operative (off-diagonal elements are non-negative).

Thus, F(t)−V(t) is continuous and co-operative and irreducible. Therefore, Lemma 1 is applicable to
the system Ẋ = (F(t)−V(t))X, where X = (ih, ph, ir, iv)T .

The following result will hold:

Proposition 2. If r(ΦF(.)−V(.)(ω)) < 1 then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. From the system given by Equation (2), we have the system of equations:

i′h = a(t)bmivsh −
[

α1 + δ + ΛH
NH
− δih

]
ih

p′h = (1− σ)α1ih −
[

α2 + β + ΛH
NH
− δih

]
ph

i′r = a(t)bnivsr − ΛH
NH

ir
i′v = a(t)cihsv + a(t)cphsv + a(t)cirsv − ΛV

NV
iv

We observe that
d
dt
[ih, ph, ir, iv]

T 6 [F(t)−V(t)][ih, ph, ir, iv]
T

Now, we consider the linear auxiliary system:

dX
dt

= [F(t)−V(t)]X (3)
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Applying Lemma 1 there exists an ω-periodic function X̄(t) such that X(t) = estX̄(t) is a solution
of the system given by Equation (3), where s = 1

ω ln[r(ΦF(.)−V(.)(ω))].
Now, by the comparison principle [24], for any [ih(0), ph(0), ir(0), iv(0)] 6 MX(0) and for some

sufficiently large M > 0, we have [ih, ph, ir, iv] 6 MX(t). Because r(ΦF(.)−V(.)(ω)) < 1, therefore,
X(t)→ 0 as t→ ∞. Thus, ih(t)→ 0, ph(t)→ 0, ir(t)→ 0 and iv(t)→ 0 as t→ ∞.

Using the theory of asymptomatic autonomous systems [25], we have rh(t) → 0, sh(t) → 1,
sr(t)→ 1, and sv(t)→ 1 as t→ ∞.

Thus, E0 = (1, 0, 0, 0, 1, 0, 1, 0) is globally asymptotically stable if r(ΦF(.)−V(.)(ω)) < 1.

3.3. Basic Reproduction Number

We let, for each s ∈ R, the 4× 4 matrix Y(t, s), ∀t > s satisfy the ω-periodic system:

dy
dt

= −V(t)y (4)

and Y(s, s) = I, where I is the 4× 4 identity matrix.
We let Cω be the ordered Banach space of all ω-periodic functions from R to R4, which is equipped

with maximum norm ||.|| and the positive cone C+
ω = {φ ∈ Cω : φ(t) > 0, ∀t ∈ R}. We define the

linear operator L : Cω → Cω as follows:

(Lφ)(t) =
∫ ∞

0
Y(t, t− a)F(t− a)φ(t− a)da, ∀t ∈ R, φ ∈ Cω (5)

The definitions of the basic reproduction number (R0) with seasonality in literature was given
by [23]. According to the definition, R0 is defined as follows:

R0 = r(L)

In this paper, we follow the definition of [23] and analyze the model of Equation (2) in terms of
the threshold parameter R0.

We use following lemma to infer stability of E0 in terms of R0.

Lemma 2. (Theorem 2.2 in [23]). The following statements are valid:

1. R0 = 1 if and only if r(ΦF(.)−V(.)(ω)) = 1.

2. R0 > 1 if and only if r(ΦF(.)−V(.)(ω)) > 1.

3. R0 < 1 if and only if r(ΦF(.)−V(.)(ω)) < 1.

Therefore, from Lemma 2 and Proposition 2, we have the following result.

Proposition 3. If R0 < 1 then the disease-free equilibrium E0 of the system given by Equation (2) is globally
asymptotically stable.

3.4. Existence and Permanence of the Endemic Periodic Solution

In this section, we study the existence and permanence of the endemic periodic state of the
model of Equation (2).

Before giving the main result, we give following definitions from [26].

Definition 1. The system given by Equation (2) is uniformly persistent if ∃ an η > 0
(depending only on parameter values and not on initial conditions) such that for any initial value
(sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0), iv(0)) ∈ R+× int(R+) × int(R+) × int(R+) × R+ ×
int(R+) × R+ × int(R+) such that every solution (sh(t), ih(t), ph(t), rh(t), sr(t), ir(t), sv(t), i− v(t)) of
the system given by Equation (2) satisfies
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limt→∞ inf sh(t) > η, limt→∞ inf ih(t) > η, limt→∞ inf ph(t) > η, limt→∞ inf rh(t) > η,
limt→∞ inf sr(t) > η, limt→∞ inf ir(t) > η, limt→∞ inf sv(t) > η, limt→∞ inf iv(t) > η.

Definition 2. The system given by Equation (2) is said to be permanent if there exists a compact
region Ω0 ⊂ int(Ω) such that every solution of the system given by Equation (2) with initial condition
(sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0), iv(0)) ∈ R+× int(R+) × int(R+) × int(R+) × R+ × int(R+)
× R+ × int(R+) will eventually enter and remain in the region Ω0.

A natural concept of dissipation is to assume that there is a bounded set into which every orbit
eventually enters and remains [27]. Clearly, for a dissipative dynamical system, proving permanence
is equivalent to proving uniform persistence.

We consider the following sets:

X = R8
+, X0 = R+ × int(R+)× int(R+)× int(R+)×R+ × int(R+)×R+ × int(R+), ∂X0 = X\X0.

We let f : X → X be a continuous map, and we define the following set:

M∂ = {x ∈ ∂X0 : f n(x) ∈ ∂X0, n > 0}

where f n is the nth iteration of the function.
The following lemma is used to show the uniform persistence of the system given by Equation (2).

Lemma 3. ([26]) Let Ws(X) be the stable set of X. Assume that

1. f (X0) ⊆ X0 and f has a global attractor A.
2. There exists a finite sequenceM = {M1, M2, ...., Mk} of disjoint, compact, and isolated invariant sets in

∂X0 such that

• Ω(Mδ) = ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi;
• no subset ofM forms a cycle in ∂X0;
• Mi is isolated in X;
• Ws(Mi) ∩ X0 = ∅ for each 1 6 i 6 k.

Then there exists η > 0 such that lim infn→∞ d( f n(x), ∂X0) > η for all x ∈ X0.

We claim the following result:

Proposition 4. If R0 > 1 then the solutions of Equation (2) are uniformly persistent, and the system admits at
least one positive ω-periodic solution.

Proof. Consider the periodic semi-flow T : R8
+ → R8

+ associated with Equation (2), defined by

T(t)x = u(t, x), ∀x ∈ R8
+

Let P1 be the associated Poincaré map defined as P1 := T(ω). We first show that P1 is uniformly
persistent with respect to (X0, ∂X0).

It is clear that the sets X and X0 are positively invariant for Equation (2). Now by Proposition 1,
the bounded set Ω attracts every solution of Equation (2), and Ω is compact. Thus the Poincaré map P1

is point-dissipative and compact on X. Therefore, it follows from Theorem 1.1.3 in [26] that there is a
global attractor A of P1 that attracts each bounded set in X.

For Equation (2), the set M∂ is defined as M∂ = {(sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0),
iv(0)) ∈ ∂X0 : Pn

1 (sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0), iv(0)) ∈ ∂X0, ∀n > 0}.
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We claim that M∂ = {(sh, 0, 0, 0, sr, 0, sv, 0) : sh > 0, sr > 0, sv > 0}. It is clear that
{(sh, 0, 0, 0, sr, 0, sv, 0) : sh > 0, sr > 0, sv > 0} ⊆ M∂.

Now, we let (sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0), iv(0)) ∈ ∂X0\{(sh, 0, 0, 0, sr, 0, sv, 0) : sh > 0,
sr > 0, sv > 0}.

If ih(0) = 0, ph(0) = 0, rh(0) = 0, ir(0) = 0, iv > 0, then we have sh(0) > 0, sr(0) > 0,
sv(0) > 0, iv(0) > 0.

From the second equation of the system given by Equation (2), we have
i′h(0) > a(t)bmiv(0)sh(0) > 0; p′h(0) > (1 − σ)α1ih(0) > 0; r′h(0) > σ)α1ih(0) > 0;

i′r(0) > a(t)bniv(0)sr(0) > 0; and i′v(0) > a(t)csv(0)(ih(0) + ph(0) + ir(0)) > 0.
Similar holds for other cases also.
Therefore, (sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0), iv(0)) /∈ ∂X0 for all 0 < t� 1. This implies

that M∂ = {(sh, 0, 0, 0, sr, 0, sv, 0) : sh > 0, sr > 0, sv > 0}.
Now, P1 has a unique fixed point E0(sh, 0, 0, 0, sr, 0, sv, 0) in M∂. It is easy to show that {E0} is

isolated in X and E0 is global attracting in M∂; therefore we have Ω(M∂) = ∪x∈M∂
ω(x) ⊆ {E0}, where

ω(x) is the omega limit set of x. It is clear that no subset of {E0} can form a cycle in ∂X0.
Now, we show that Ws(E0) ∩ X0 = ∅, where Ws(E0) is the stable set of E0.
We let x0 = (sh(0), ih(0), ph(0), rh(0), sr(0), ir(0), sv(0), iv(0)) ∈Ws(E0) ∩ X0.
Because x0 ∈ X0, therefore, by the continuity of the solution with respect to the initial conditions

we have, for any ε ∈ (0, 1), there exists a δ > 0 such that ∀x0 ∈ X0 satisfying ||x0 − E0|| < δ,
this implies ||u(t, x0)− u(t, E0)|| < ε ∀t ∈ [0, ω].

We claim that limm→∞ sup ||Pm
1 (x0)− E0|| > δ ∀x0 ∈ X0. We suppose, if possible, ∃x0 ∈ X0 such

that limm→∞ sup ||Pm
1 (x0)− E0|| < δ. Without loss of generality, we can assume that ||Pm

1 (x0)− E0|| < δ

for all m > 0. Therefore, we have ||u(t, Pm
1 (x0))− u(t, E0)|| < ε, ∀t ∈ [0, ω] and ∀m > 0.

For any t > 0, we let t = mω + t1, where t1 ∈ [0, ω] and m = [ t
ω ] is the greatest positive integer

less than or equal to t
ω .

Then we have ||u(t, Pm
1 (x0))− u(t, E0)|| = ||u(t1, Pm

1 (x0))− u(t1, E0)|| < ε for all t > 0.
We let (sh(t), ih(t), ph(t), rh(t), sr(t), ir(t), sv(t), iv(t)) = U(t, x0). It follows from the previous

argument that 1− ε < sh(t) < 1 + ε, 1− ε < sr(t) < 1 + ε, 1− ε < sv(t) < 1 + ε, 0 < ih(t) < ε,
0 < pr(t) < ε, 0 < rh(t) < ε, 0 < ir(t) < ε, 0 < iv(t) < ε, ∀t > 0.

From Equation (2), we have the following:

dih
dt

> a(t)bmiv(1− ε)− [α1 + δ +
ΛH
NH
− δih]ih

dph
dt

> (1− σ)α1ih − [α2 + β +
ΛH
NH
− δih]ph

dir
dt

> a(t)bniv(1− ε)− ΛH
NH

ir
div
dt

> a(t)cih(1− ε) + a(t)cph(1− ε) + a(t)cir(1− ε)− ΛV
NV

iv

(6)

We let Mε(t) =


0 0 0 a(t)bmε

0 0 0 0
0 0 0 a(t)bnε

a(t)cε a(t)cε a(t)cε 0.


Hence we obtain

d
dt
[ih, ph, ir, iv]

T > [F(t)−V(t)− εMε(t)][ih, ph, ir, iv]
T



Mathematics 2017, 5, 78 10 of 18

Now, by Lemma 2, we have that if R0 > 1, then r(ΦF(.)−V(.)(ω)) > 1. We choose ε > 0 sufficiently
small so that r(ΦF(.)−V(.)−εMε(.)(ω)) > 1. Thus by Lemma 1 and the standard comparison theorem [24],
∃ ω-periodic function f (t) such that x(t) > f (t)es1t, where x(t) = [ih, ph, ir, iv] and

s1 =
1
ω

ln r(ΦF(.)−V(.)−εMε(.)(ω)) > 0

This implies, as t → ∞, that ih(t) → ∞, ph(t) → ∞, ir(t) → ∞ and iv(t) → ∞. This is
a contradiction, as limt→∞ sup ||Pm

1 (x0)− E0|| < δ. Therefore, we have limt→∞ sup ||Pm
1 (x0)− E0|| > δ

∀x0 ∈ X0. This is again impossible, as x0 ∈Ws(E0) (because x ∈Ws(E0) implies limt→∞||Pm
1 (x0)−

E0|| = 0). Thus we have Ws(E0) ∩ X0 = ∅.
Therefore, by Lemma 3, we have that P1 is uniformly persistent with respect to (X0, ∂X0).

Therefore, by Theorem 3.1.1 in [26], the periodic semi-flow T is uniformly persistent in X.
Thus, if R0 > 1, then the solution of the system given by Equation (2) is uniformly persistent.
Now the Poincarè map P1 is point-dissipative and compact, and P1 is also uniformly persistent

with respect to (X0, ∂X0). Now, X0 is a relatively open set in X and therefore, ∂X0 is a relatively closed
set in X. Thus, by Theorem 1.3.6 in [26], P1 has a fixed point (s̄h(0), īh(0), p̄h(0), r̄h(0), s̄r(0), īr(0), s̄v(0),
īv(0)) ∈ X0. Now we have īh(0) ∈ int(R+), p̄h(0) ∈ int(R+), r̄h(0) ∈ int(R+), īr(0) ∈ int(R+),
īv(0) ∈ int(R+). We need to show that s̄h(0) ∈ int(R+), s̄r(0) ∈ int(R+), s̄v(0) ∈ int(R+). If not,
we suppose s̄h(0) = 0; then from Equation (2), we have 0 = −(α1 + δ + ΛH

NH
− δīh)īh(0) ⇒ īh(0) = 0,

a contradiction. Therefore, s̄h(0) ∈ int(R+). Similarly, we can show that s̄v(0) ∈ int(R+) and
s̄r(0) ∈ int(R+). Thus,

(s̄h(0), īh(0), p̄h(0), r̄h(0), s̄r(0), īr(0), s̄v(0), īv(0)) ∈ int(R8
+)

Therefore,

(s̄h(t), īh(t), p̄h(t), r̄h(t), s̄r(t), īr(t), s̄v(t), īv(t)) = u(t, (s̄h(0), īh(0), p̄h(0), r̄h(0), s̄r(0), īr(0), s̄v(0), īv(0)))

is the positive ω-periodic solution of the system given by Equation (2). Thus if R0 > 1, then Equation (2)
admits at least one positive periodic solution.

3.5. Global Stability of the Positive Periodic Solution

We claim the following result:

Proposition 5. If R0 > 1 and
ΛH
NH
− 4δ > 0, then the system given by Equation (2) has a unique positive

ω-periodic solution that is globally asymptotically stable.

Proof. If R0 > 1, then we have by Proposition 4 that the system given by Equation (2) admits a positive
periodic solution.

We first show that (s̄h(t), īh(t), p̄h(t), r̄h(t), s̄r(t), īr(t), s̄v(t), īv(t)) is globally asymptotically stable
if all the conditions of Proposition 5 are satisfied.

We construct the following Lyapunov function: L(t) = |sh(t)− s̄h(t)|+ |ih(t)− īh(t)|+ |ph(t)−
p̄h(t)|+ |rh(t)− r̄h(t)|+ |sr(t)− s̄r(t)|+ |ir(t)− īr(t)|+ |sv(t)− s̄v(t)|+ |iv(t)− īv(t)|.

We use the following formula:
|x|′ = sgn(x)x′

to calculate the upper right-hand derivative (Dini’s derivative) of L(t).



Mathematics 2017, 5, 78 11 of 18

Therefore, we have

D+L(t) = sgn |sh − s̄h|(−a(t)bm(shiv − s̄h īv)− (sh − s̄h)(
ΛH
NH
− δ(ih − īh)))

+ sgn |ih − īh|(a(t)bm(shiv − s̄h īv)− (α1 + δ + ΛH
NH
− δ(ih − īh))(ih − īh))

+ sgn |ph − p̄h|((1− σ)α1(ih − īh)− (α2 + β)(ph − p̄h)− (ΛH
NH
− δ(ih − īh))(ph − p̄h))

+ sgn |rh − r̄h|(σα1(ih − īh) + (α2 + β)(ph − p̄h)− (ΛH
NH
− δ(ih − īh))(rh − r̄h))

sgn |sr − s̄r|(−a(t)bn(ivsr − īv s̄v)− ΛR
NR

(sr − s̄r))

+ sgn |ir − īr|(a(t)bn(ivsr − īv s̄v)− ΛR
NR

(ir − īr))
+ sgn |sv − s̄v|(−a(t)c(svih − s̄v īh)− a(t)c(sv ph − s̄v p̄h)− a(t)c(svir − s̄v īr)− ΛV

NV
(sv − s̄v))

+ sgn |iv − īv|(a(t)c(svih − s̄v īh) + a(t)c(sv ph − s̄v p̄h) + a(t)c(svir − s̄v īr)− ΛV
NV

(iv − īv))
D+L(t) 6 −|sh − s̄h|(ΛH

NH
− δ)− |ih − īh|(ΛH

NH
− 4δ)

−|ph − p̄h|(ΛH
NH
− δ)− |rh − r̄h|(ΛH

NH
− δ)− |sr − s̄r|ΛH

NH
− |ir − īr|ΛH

NH

−|sv − s̄v|ΛV
NV
− |iv − īv|ΛV

NV

(7)

We let K = min{ΛV
NV

, ΛH
NH
− 4δ, ΛH

NH
− δ}. Therefore, K > 0 .

Now,

D+L(t) 6 −K
(
|sh − s̄h|+ |ih − īh|+ |ph − p̄h|+ |rh − r̄h|+ |sr − s̄r|+ |ir − īr|+ |sv − s̄v|+ |iv − īv|

)
which implies that L is non-increasing on [0,+∞). Integrating the above inequality from 0 to t, we have

L(t) + K
∫ t

0 (|sh − s̄h|+ |ih − īh|+ |ph − p̄h|+ |rh − r̄h|
+|sr − s̄r|+ |ir − īr|+ |sv − s̄v|+ |iv − īv|) 6 L(0) < ∞, ∀t > 0

(8)

Thus, following Lemma 2.2 in [28], we have limt→∞ L(t) = 0. Therefore, it follows that
limt→∞ |sh − s̄h| = 0, limt→∞ |ih − īh| = 0, limt→∞ |ph − p̄h| = 0, limt→∞ |rh − r̄h| = 0,

limt→∞ |sr − s̄r| = 0, limt→∞ |ir − īr| = 0, limt→∞ |sv − s̄v| = 0, limt→∞ |iv − īv| = 0.
Thus, (s̄h(t), īh(t), p̄h(t), r̄h(t), s̄r(t), īr(t), s̄v(t), īv(t)) is globally asymptotically stable.
Now we show that there exists a unique ω-periodic solution of the system given by

Equation (2). For any two ω-periodic solutions (s̄h(t), īh(t), p̄h(t), r̄h(t), s̄r(t), īr(t), s̄v(t), īv(t)) and
( ¯̄sh(t), ¯̄ih(t), ¯̄ph(t), ¯̄rh(t), ¯̄sr(t), ¯̄ir(t), ¯̄sv(t), ¯̄iv(t)) of the system given by Equation (2), we claim that
s̄h(t) = ¯̄sh(t); īh(t) = ¯̄ih(t); p̄h(t) = ¯̄ph(t) r̄h(t) = ¯̄rh(t); s̄r(t) = ¯̄sr(t); īr(t) = ¯̄ir(t); s̄v(t) = ¯̄sv(t);
and īv(t) = ¯̄iv(t), for all t ∈ [0, ω]. If not, then there must be at least one η ∈ [0, ω] such that
s̄h(η) 6= ¯̄sh(η), that is, |s̄h(η)− ¯̄sh(η)| = ε > 0.

Thus we can obtain

ε = limn→∞ |s̄h(η + nv)− ¯̄sh(η + nv)|
= limt→∞ |s̄h(t)− ¯̄sh(t)| > 0

which is contradicting the fact that (s̄h(t), īh(t), p̄h(t), r̄h(t), s̄r(t), īr(t), s̄v(t), īv(t)) is globally
asymptotically stable. Therefore s̄h(t) = ¯̄sh(t), ∀t ∈ [0, ω], and similar holds for other cases also.

Thus if all the conditions of Proposition 5 are satisfied and if R0 > 1, then the system given by
Equation (2) has an unique positive ω-periodic solution that is globally asymptotically stable.

4. The Optimal Control Problem

4.1. Constructing the Problem

We use two different interventions in the model of Equation (1) to reduce the visceral leishmaniasis,
namely, vaccination and treatment using antibiotics. The vaccinated population is increased by
a proportion u1(t)σ1 of the susceptible individuals who are successfully vaccinated, where u1(t) is the
per-week vaccination rate and σ1 is the vaccine efficiency. The vaccinated population is decreased as
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a result of the waning of vaccine-based immunity (at a rate ε) to become susceptible again and die
(natural deaths) at a rate µh.

The system of non-linear differential equations representing the effect of different interventions
on our basic model from Equation (1) is given as follows:

dSH
dt

= ΛH − a(t)bIV
SH
NH
− (µh + σ1u1)SH + εV

dIH
dt

= a(t)bIV
SH
NH
− (u2 + δ + µh)IH

dPH
dt

= (1− σ)u2 IH − (α2 + β + µh)PH

dRH
dt

= σu2 IH + (α2 + β)PH − µhRH

dVH
dt

= σ1u1SH − (ε + µh)VH (9)

dSR
dt

= ΛR − a(t)bIV
SR
NR
− µrSR

dIR
dt

= a(t)bIV
SR
NR
− µr IR

dSV
dt

= ΛV − a(t)cSV
IH
NH
− a(t)cSV

PH
NH
− a(t)cSV

IR
NR
− µvSV

dIV
dt

= a(t)cSV
IH
NH

+ a(t)bSV
PH
NH

+ a(t)cSV
IR
NR
− µv IV

where the initial conditions SH(0), IH(0), PH(0), RH(0), V(0), SR(0), IR(0), SV(0), and IV(0) are given,
and the definitions of the above model parameters are listed in Table 1.

Table 1. Parameter values of the model.

Parameter Value References

ΛH 0.0015875 × Nh [29]
ΛR 0.0073 × Nr Assumed
ΛV 0.299 × Nvl [30]
µh 0.00004 [31]
µr 0.000274 Assumed
µv 0.189 [30]
b 0.1 Assumed
c 0.0714 [32]

α1 0.033 [33]
α2 0.00556 [33]

1− σ 0.36 [33]
δ 0.011 [34]
β 0.00556 [33]
ε 0.02 Assumed

The control functions u1(t) and u2(t) are bounded and are Lebesgue integrable functions,
where the control u1(t) measures the rate at which susceptible individuals are vaccinated in each time
period, and the control u2(t) represents the effort of treatment of infected individuals.
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This performance specification involves the number of infection individuals as well as the
cost of applying a vaccination control (u1(t)) and treatment control (u2(t)) in individuals with
visceral leishmaniasis. The objective functional to be minimized is defined as

J(u1, u2) =

t f∫
0

(AIH(t) +
1
2

Cu2
1σ1 +

1
2

Du2
2) dt (10)

where t f is the final time and A, C and D are positive constants to balance the cost factors. The costs
can include funds needed for the cost of productive time loss for per premature death, the cost
of vaccination per fully immunized person, the cost of vaccination per fully immunized person in
high emergencies, the cost for medicine, and hospital admission per case. More often, the cost of
implementing a control would be nonlinear. We thus seek to find an optimal control u∗1(t) and u∗2(t)
such that

J(u∗1 , u∗2) = min{J(u1, u2)|u1, u2 ∈ U} (11)

where

U = {(u1(t), u2(t))|(u1(t), u2(t)) measurable, ai ≤ (u1(t), u2(t)) ≤ bi, i = 1, 2, t ∈ [0, t1]} (12)

is the control set.

4.2. Analysis of the Optimal Control Problem

The necessary conditions that an optimal control must satisfy come from Pontryagin’s Maximum
Principle [35]. This principle converts the system given by Equation (9) into the problem of minimizing
pointwise a Hamiltonian, H, with respect to u1 and u2:

H = (AIH(t) +
1
2

Cu2
1σ1 +

1
2

Du2
2) +

9

∑
i=1

λigi (13)

where gi is the right-hand side of the differential equation of the ith state variable and λi are the adjoint
variables by applying Pontryagin’s Maximum Principle [35–37].

Proposition 6. Given an optimal control u∗1 and u∗2 and solutions S∗H , I∗H , P∗H , R∗H , V∗H , S∗R, I∗R, S∗V , and I∗V of
the corresponding state system given by Equation (9) that minimizes J(u1,u2) over U, then there exists adjoint
variables λi, 1 ≤ i ≤ 9, satisfying the following:

∂λ1
∂t

=

[
a(t)b

IV
NH

+ µh + σ1u1

]
λ1 − a(t)b

IV
NH

λ2 − u1σ1λ5

∂λ2
∂t

= −A + (u2 + δ + µh) λ2 − (1− σ)u2λ3 − σu2λ4 + a(t)c
SV
NH

λ8 − a(t)c
SV
NH

λ9

∂λ3
∂t

= (α2 + β + µh)λ3 − (α2 + β)λ4 + a(t)c
SV
NH

λ8 − a(t)c
SV
NH

λ9

∂λ4
∂t

= µhλ4

∂λ5
∂t

= (ε + µh)λ5 + ελ1 (14)

∂λ6
∂t

=

(
a(t)b

IV
NR

+ µr

)
λ6 − a(t)b

IV
NR

λ7

∂λ7
∂t

= µrλ7 + a(t)c
SV
NR

λ8 − a(t)c
SV
NR

λ9

∂λ8
∂t

=

(
a(t)c

IH
NH

+ a(t)c
PH
NH

+ a(t)c
IR
NR

+ µv

)
λ8 −

(
a(t)c

IH
NH

+ a(t)c
PH
NH

+ a(t)c
IR
NR

)
λ9

∂λ9
∂t

= a(t)b
SH
NH

λ1 − a(t)b
SH
NH

λ2 + a(t)b
SR
NR

λ6 − a(t)b
SR
NR

λ7 + µvλ9



Mathematics 2017, 5, 78 14 of 18

with transversality conditions
λi(t f ) = 0, i = 1, ....., 9 (15)

Furthermore, the control pair (u∗1 , u∗2) is given as

u∗1 = min
{

b1, max
[

a1,
σ1(λ1 − λ5)SH

Cσ1

]}
and (16)

u∗2 = min
{

b2, max
[

a2,
(λ2 − (1− σ)λ3 − σλ4)IH

D

]}
Proof. The existence of an optimal control is guaranteed using the result by [38]. Thus, the differential equations
governing the adjoint variables are obtained by the differentiation of the Hamiltonian function
evaluated at the optimal controls, giving the stated adjoint system from Equations (14) and (15).

Furthermore, differentiating the Hamiltonian function with respect to the control variables in the
interior of the control set U, where ai < ui < bi, i = 1, 2, we have

∂H
∂u1

= Cσ1u1 − σ1λ1SH + σ1λ5SH = 0

∂H
∂u2

= Du2 − λ2 IH + (1− σ)λ3 IH + σλ4 IH = 0
(17)

Solving Equation (17) for controls (u∗1 , u∗2) and using the bounds on the controls, the
characterization of Equation (16) can be derived.

5. Numerical Simulations

In this section, we present some numerical results obtained using data from [18], assuming
that the force of infection is a periodic function with a period of 12 months, with one peak in
each period. The parameter values are given in Table 1. To solve the optimal control problem,
we used a forward-backward Runge–Kutta of order 4 (RK4) method. To solve the state system of
ordinary differential equations, a simple forward RK4 method was applied, but to solve the adjoint
ODE, the RK4 method had to be adapted to account for solving backwards in time.

In Figure 1, it is clear that without control, the fraction of infected humans decreases to low levels,
then starts to increase and repeats this process periodically; however with optimal control, it decreases
to a very low level and settles at that level.
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Figure 1. Simulation results showing the infected humans.
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Figure 2 shows that the fraction of infected reservoirs without control increases at first, then
decreases to a very low level, before increasing again; this process is repeated, and the fraction of
infected reservoirs with control increases at first, then decreases again and settles on a medium level.
This is because there is no control applied to the reservoir population.

From Figure 3, it is clear that the fraction of infected vectors without control increases at first, then
decreases to a low level, before increasing again; this process is repeated, and the fraction of infected
vectors with control increases slightly at first, then decreases again and settles on a very low level.
The reason is that the control applied to the human population affects the vector population indirectly.

In Figure 4, we show that without control, the fraction of PKDL-infected humans decreases at
first, then increases; this process repeats again until the end of the simulation time, while with control,
this fraction decreases to a very low level.

The main conclusion drawn from the simulation is that when the optimal control is applied, the
periodicity disappears from the model.
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Figure 2. Simulation results showing the infected reservoir.
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Figure 3. Simulation results showing the infected vector.
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Figure 4. Simulation results showing post-kala-azar dermal leishmaniasis (PKDL).

6. Discussion

Visceral leishmaniasis is associated with many different factors, such as complex vector dynamics,
the role of an animal reservoir, and social and economical factors; one of the most important factors is
the seasonal dynamics of the disease, which makes its control very difficult, as seasonality makes the
recurrence of epidemics very common.

In this paper, we present and analyze a mathematical model for the dynamics of visceral
leishmaniasis, assuming that the biting rate of the vector is a time-dependent function, to capture the
seasonal behavior of the disease. Our results show that ifR0 is less than unity, then the disease-free
equilibrium is globally asymptotically stable, and ifR0 > 1, then our system is uniformly persistent
and admits at least one positive ω-periodic solution. Two time-dependent control variables, namely,
the treatment of infected humans and the vaccination of susceptible individuals, were added to the
model in order to investigate the best control strategy against the disease. The analysis and numerical
simulation of the optimal control problem show that using an optimal combination of vaccination and
treatment will make the system periodic-free by forcing it to reach the disease-free state. The optimal
combination of vaccination and treatment means that an extensive use of treatment for all infected
individuals and massive vaccination for susceptible humans should be applied. As shown previously,
there is not yet a vaccine for visceral leishamaniasis; however, our results suggest that the research
should continue to develop such as vaccine, as if it is applied perfectly with the treatment, it will lead
to a disease-free state of the system, and more importantly, it will stop the recurrence of the disease.
Our model assumes that vaccinated individuals could not be infected with visceral leishmaniasis and
that the waning rate of the vaccine is very low; therefore the developed vaccine should be very effective
to achieve these goals. Our results also suggest that the vaccine should be very cheap or otherwise
freely distributed, as it should be applied widely, and almost all of the susceptible individuals should
be vaccinated to eradicate the disease.
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