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Abstract: In this study, we consider codes over Euclidean domains modulo their ideals. In the
first half of the study, we deal with arbitrary Euclidean domains. We show that the product
of generator matrices of codes over the rings mod a and mod b produces generator matrices of
all codes over the ring mod ab, i.e., this correspondence is onto. Moreover, we show that if a
and b are coprime, then this correspondence is one-to-one, i.e., there exist unique codes over the
rings mod a and mod b that produce any given code over the ring mod ab through the product
of their generator matrices. In the second half of the study, we focus on the typical Euclidean
domains such as the rational integer ring, one-variable polynomial rings, rings of Gaussian and
Eisenstein integers, p-adic integer rings and rings of one-variable formal power series. We define
the reduced generator matrices of codes over Euclidean domains modulo their ideals and show
their uniqueness. Finally, we apply our theory of reduced generator matrices to the Hecke rings of
matrices over these Euclidean domains.

Keywords: error-correcting codes; quasi-cyclic codes; Euclidean division; Hermite normal form;
Hecke algebras

1. Introduction

The structural properties of quasi-cyclic (QC) [1,2] and generalized quasi-cyclic (GQC) codes [3–5]
have been reported. On the other hand, cyclic codes can be extended to pseudo-cyclic (PC) and
generalized pseudo-cyclic (GPC) codes [6]. Similar constructions for the rational integer ring Z are
known as integer codes and generalized integer codes [7]. We can summarize the module structure of
these codes as follows:

Cyclic codes: ideals in Fq[x]/〈xn − 1〉
QC codes: submodules in

⊕l
i=1 Fq[x]/〈xn − 1〉

GQC codes: submodules in
⊕l

i=1 Fq[x]/〈xni − 1〉
PC codes: ideals in Fq[x]/〈d 〉
GPC codes: submodules in

⊕l
i=1 Fq[x]/〈di〉

Integer codes: submodules in
⊕l

i=1 Z/dZ

Generalized integer codes: submodules in
⊕l

i=1 Z/diZ,

where Fq[x] is a one-variable polynomial ring over a q-element finite field Fq with a prime power q,
〈 f 〉 is the ideal of Fq[x] generated by f ∈ Fq[x], Fq[x]/〈 f 〉 is their quotient ring,

⊕l
i=1 denotes the direct

sum of the Fq[x]- or Z-modules and Z/diZ is the integer residue ring modulo di ∈ Z. Note that both
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Fq[x] and Z are Euclidean domains [8,9]; we say that a commutative integral domain R is a Euclidean
domain if there exists a function ψ : R \ {0} → N0 such that, for any a, b ∈ R with b 6= 0, a = sb + r
and r = 0 or ψ(r) < ψ(b) are valid for some s, r ∈ R, where N0 denotes the set of non-negative integers.
Finding s, r with a = sb + r and r = 0 or ψ(r) < ψ(b) is called Euclidean division, and s, r are called a
quotient and a remainder of a by b, respectively. If R = Fq[x], then ψ(·) = deg(·) is the degree function,
and if R = Z, then ψ(·) = | · | is the absolute value. However, no theory has yet been reported
concerning the unified treatment of codes over the quotient rings of the general Euclidean domains.

In this study, we deal with the above codes uniformly, which can be constructed by any Euclidean
domain R. Let Ml(R) be the ring of l-by-l matrices with entries in R. We denote:

L = Rl = {(c1 c2 . . . cl) | c1, c2, . . . , cl ∈ R},
M = L/Ldiag [d1, . . . , dl ] ,

where diag [d1, . . . , dl ] ∈ Ml(R) denotes the diagonal matrix whose i-th entry is di for all 1 ≤ i ≤ l;
for X ∈ Ml(R), LX denotes the R-module consisting of cX for all c ∈ L; and for two R-modules
S ⊃ T, S/T denotes their quotient R-module. We investigate R-submodules ofM, and we denote
one of them by C. If R = Fq[x], then R-submodules are equivalent to the GPC codes, and if R = Z,
then R-submodules are equivalent to the generalized integer codes.

To indicate the R-modules explicitly, let us define their generator matrices. Let F : L→M be a
natural surjective map of the R-modules and F−1(C) be the inverse image of an R-submodule C ⊂ M.
If G ∈ Ml(R) satisfies F−1(C) = LG, then we say that G is a generator matrix of C. For an arbitrary
given G ∈ Ml(R), there exists an R-module C ⊂ M such that G is its generator matrix if and only if
LG ⊃ Ldiag [d1, . . . , dl ], and this condition is equivalent to:

AG = diag [d1, . . . , dl ]

for some A ∈ Ml(R). Then, we have C = LG/Ldiag [d1, . . . , dl ].
Under the above preparation, if d1 = · · · = dl , then we can reveal the multiplicative structure of

generator matrices of R-submodules in the following manner. Hereafter, we set u = d1 = · · · = dl .
Let I ∈ Ml(R) be the identity matrix. In this case, we have diag [d1, . . . , dl ] = uI and:

C = LG/uL ⊂M = L/uL.

For two R-modules C1 = LG1/u1L and C2 = LG2/u2L, if A1G1 = u1 I and A2G2 = u2 I, we have
A2 A1G1G2 = u1u2 I. If we set G = G1G2 and u = u1u2, then C = LG/uL determines an R-module in
M = L/uL. Our results can be divided into two parts. The first result asserts that this correspondence
(C1, C2) 7→ C by the multiplication of generator matrices is surjective, i.e., all R-modules inM = L/uL
can be obtained by this correspondence. The second result asserts that, if gcd(u1, u2) = 1, then this
correspondence is injective, i.e., C1 and C2 are both uniquely determined for each C. The latter assertion
corresponds to the explicit version of Chinese remainder theorem in our theory of R-submodules.
Because we can express its composition and decomposition through the multiplication of generator
matrices effectively, our results can be applied to the fast enumeration of the generator matrices of
efficient R-modules inM. The above results we obtain here are valid for the codes over the quotient
rings of arbitrary Euclidean domains.

In general, the result of the Euclidean division is not unique; for a, b ∈ R with b 6= 0, the quotient
s and the remainder r are not always unique in a = sb + r and r = 0 or ψ(r) < ψ(b). For example,
if R = Fq[x], the result is unique, but if R = Z, 1 = 1 · 2− 1 = 0 · 2 + 1. One way to impose the
uniqueness for the result of the Euclidean division in R = Z is to indicate s = ba/bc, where, for a
real number x, bxc denotes a unique n ∈ Z such that n ≤ x < n + 1. It is shown that, if a = sb + r,
then s = ba/bc is equivalent to br/bc = 0, and r = 0 or ψ(r) < ψ(b) follows from br/bc = 0.
In this study, for the other cases of Euclidean domains R such as the ring of Gaussian integers Z[i],
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the ring of Eisenstein integers Z[ω], the p-adic integer ring Zp and the ring of the formal power series
Fq[[x]], namely,

R = Z, Fq[x], Z[i], Z[ω], Zp, Fq[[x]],

where i =
√
−1, ω = (−1 +

√
−3)/2 and p denotes a rational prime, we determine a unique pair of

the quotient and remainder similar to s = ba/bc and br/bc = 0 of R = Z. We apply this uniqueness to
show the uniqueness of the Euclidean division by a class of matrices over R.

Let GLl(R) be the group of invertible matrices in Ml(R). Then, for two generator
matrices G, G′ ∈ Ml(R) of an R-module C ⊂ M, there exists E ∈ GLl(R) such that G′ = EG.
Among these EG’s, we can algorithmically find a simple form of G, which is called the reduced
generator matrix, which generalizes the Hermite normal form [10,11] of R = Z. Then, we apply the
uniqueness of the Euclidean divisions to show that there exists a unique reduced generator matrix for
each R-module inM. This standard expression of the generator matrix is useful for enumerating and
searching for efficient R-modules inM.

Furthermore, we apply our theory of generator matrices to Hecke rings of matrices
over the prescribed Euclidean domains. Hecke rings or Hecke algebras we consider here
are the rings of the formal finite sums ∑α∈∆ cαΓαΓ of the double cosets ΓαΓ with cα ∈ Z,
where ∆ = {α ∈ Ml(R) | det(α) 6= 0}, det(α) denotes the matrix determinant, and Γ = GLl(R).
Hecke rings are commonly used as Hecke operators to the number theory, especially, the theory
of modular forms [12,13]. In this study, we show that the generator matrices of R-modules inM are
deeply concerned with the theory of Hecke rings. We describe in terms of the generator matrices the
definition of Hecke rings, the homomorphism “ind(·)”, the prime decompositions and a generating
function of ind(·). Although these results on Hecke rings are not new (cf. [13]), the argument in this
study shows that the concept of reduced generator matrices simplifies the theory of Hecke rings and
makes it computable.

The rest of this paper is organized as follows. Section 2 gives the basic definitions and the
one-to-one correspondence between R-modules inM and certain R-modules in L. Section 3 gives
a division algorithm, which is similar to the Euclidean division in R, for a class of matrices with a
pair of quotient and remainder matrices. Section 4 defines generator matrices of R-modules inM
and shows their existence constructively. Section 5 shows the multiplicative structure among the
generator matrices in the case of d1 = · · · = dl . Section 6 treats the cases where Euclidean divisions
have a uniqueness property, which can deduce the uniqueness of the reduced generator matrix.
Finally, Section 7 applies our theory of generator matrices to Hecke rings and shows a generating
function which is useful for counting the reduced generator matrices with a fixed determinant. Section 8
concludes the study.

2. R-Modules in M

Throughout this section, R is used to denote any commutative ring. The purposes of this section
are to define R-modules inM and to show a one-to-one correspondence between R-modules inM
and a class of lattices.

Let l ∈ Z be positive and d1, d2, . . . , dl ∈ R. Consider the quotient ring R/〈di〉 for 1 ≤ i ≤ l.
For any c ∈ R, we denote the corresponding element in R/〈di〉 by c mod di ∈ R/〈di〉. If we define:

M =
l⊕

i=1

R/〈di〉

=

{
(c1 mod d1 c2 mod d2 . . . cl mod dl)

∣∣∣∣∣ ci mod di ∈ R/〈di〉,
1 ≤ i ≤ l

}
, (1)
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thenM has the natural structure of an R-module. If d1 = · · · = dl = 0, then we write:

L =
l⊕

i=1

R = {(c1 . . . cl) | ci ∈ R, 1 ≤ i ≤ l} .

We denote the projection map of the R-modules by:

F : L→M
(c1 . . . cl) 7→ (c1 mod d1 . . . cl mod dl) .

Hereafter, ifM is considered, then di is assumed to be di 6= 0 for all 1 ≤ i ≤ l.
Let C ⊂ M be a subset. In this study, we consider R-submodules of the form C ⊂ M.
For example, let R = Fq[x]. Then, M can be also viewed as a vector space of dimension

n = ∑l
i=1 deg di over Fq. If C ⊂ M is an R-module, then C determines a linear code of length n

over Fq, whose dimension will be stated later in Proposition 5. If l = 1 and d1 = xn − 1, then C is
called a cyclic code. If l = 1 and d1 is arbitrary, then C is called a PC code. If l ≥ 1, l divides n,
and d1 = · · · = dl = xn/l − 1, then C is called a QC code. If di = xni − 1 for all 1 ≤ i ≤ l and
∑l

i=1 ni = n, then C is called a GQC code.
For the other example, let R = Z. Then, an R-module C ⊂ M is called a generalized integer code.

If d1 = · · · = dl , then C is called an integer code.
Let C ⊂ M be an R-module. Consider R-module F−1(C) ⊂ L. Then, F−1(C) includes l elements

of the form:
(0 . . . 0︸ ︷︷ ︸

i−1

di 0 . . . 0︸ ︷︷ ︸
l−i

), (2)

where 1 ≤ i ≤ l. Note that:
F−1(C) ⊃ Ldiag [d1, . . . , dl ] ,

where:

diag [d1, . . . , dl ] =


d1 0 . . . 0

0 d2
. . .

...
...

. . . . . . 0
0 . . . 0 dl

 ∈ Ml(R)

and
LG = {(c1 . . . cl) G | (c1 . . . cl) ∈ L}

for G ∈ Ml(R). Conversely, let B ⊂ L be an R-module with B ⊃ L diag [d1, . . . , dl ]. Then, F(B) ⊂M
is an R-module. It is proven below that this correspondence between B ⊂ L with B ⊃ Ldiag [d1, . . . , dl ]

and C ⊂ M is one-to-one and onto.

Proposition 1. The set of R-modules B ⊂ L with B ⊃ Ldiag [d1, . . . , dl ] and the set of R-modules C ⊂ M are
bijective through the correspondences B 7→ F(B) and C 7→ F−1(C) which are the inverse maps of one another.

Proof. F(F−1(C)) = C follows from the surjectivity of F. Thus, we only need to show that
F−1(F(B)) = B. For b ∈ B, F(b) ∈ F(B) implies that F−1(F(B)) ⊃ B. Conversely, from
x ∈ F−1(F(B))⇐⇒ F(x) ∈ F(B), there exists b ∈ B such that F(x) = F(b). Then, F(x − b) = 0,
and there exists c ∈ L such that x − b = cdiag [d1, . . . , dl ]. Thus, x = b + cdiag [d1, . . . , dl ] ∈ B and
F−1(F(B)) = B.

In [5], the author identified C with F−1(C) and expressed them using the same notation C.
In this study, we distinguish them and use the notation C only for an R-module inM.
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3. Euclidean Division

3.1. Euclidean Division in R

Hereafter, we will use R to denote a Euclidean domain; i.e., R is an integral domain and there
exists a function ψ : R → {−∞} ∪N0 (where we consider −∞ < n for all n ∈ N0), which is called a
Euclidean function, that satisfies the following property.

For a, b ∈ R with b 6= 0, there exist s, r ∈ R such that a = sb + r and ψ(r) < ψ(b). (3)

The case of R = K[x]. Let R = K[x], the ring of one-variable polynomials over K, where K is a
commutative field. For f = ∑w

h=0 fhxh ∈ R with fw 6= 0, we define deg( f ) = w and deg(0) = −∞.
If K has the infinite number of elements, then we adopt the Euclidean function ψ : R→ {−∞} ∪N0

as ψ( f ) = deg( f ). If K is equal to a q-element finite field Fq, where q denotes a rational prime power,
then we adopt:

ψ( f ) =

{
qdeg( f ) f 6= 0

0 f = 0

for consistency with the case of Z and the cardinality formula in Proposition 5 later in the paper.
The case of R = Z. Let R = Z. Then, the Euclidean function ψ : R→ N0 is taken to be the absolute

value ψ(a) = |a| for all a ∈ Z.
Hereafter, for a complex number z, Re(z) and Im(z) denote its real part and

imaginary part, respectively.
The case of R = Z[i]. Let R = Z[i] = {a1 + a2i | a1, a2 ∈ Z}, where i =

√
−1, which is called

Gaussian integers [9]. The Euclidean function ψ : R → N0 is taken to be the square of the complex
absolute value ψ(a) = |a|2 = a2

1 + a2
2 for a = a1 + a2i ∈ Z[i]. Then, the property (3) is shown as follows.

For a, b ∈ R with b 6= 0, note that Re(a/b), Im(a/b) ∈ Q because a/b = ab/(bb). Let s1, s2 ∈ Z be any
values such that:

|Re(a/b)− s1| ≤
1
2

and |Im(a/b)− s2| ≤
1
2

. (4)

Then, s = s1 + s2i and r = a− sb satisfies a = sb + r and ψ(r) < ψ(b) because:

ψ(r) = ψ(a− sb) =
∣∣∣ a
b
− s
∣∣∣2 ψ(b) =

(
|Re(a/b)− s1|2 + |Im(a/b)− s2|2

)
ψ(b) ≤ 1

2
ψ(b).

The case of R = Z[ω]. Let R = Z[ω] = {a1 + a2ω | a1, a2 ∈ Z}, where ω =
−1 +

√
−3

2
, which is

called Eisenstein integers [9]. Note that ω = ω2 = −1−ω. The Euclidean function ψ : R→ N0 is taken
to be the square of the complex absolute value ψ(a) = |a|2 = a2

1 − a1a2 + a2
2 for a = a1 + a2ω ∈ Z[ω].

Then, the property (3) is shown as follows. For a, b ∈ R with b 6= 0, note that there exists q1, q2 ∈ Q
such that a/b = q1 + q2ω because a/b = ab/(bb). Let s1, s2 ∈ Z be any values such that:

|q1 − s1| ≤
1
2

and |q2 − s2| ≤
1
2

. (5)

Then, s = s1 + s2ω and r = a− sb satisfies a = sb + r and ψ(r) < ψ(b) because:

ψ(r) =
∣∣∣ a
b
− s
∣∣∣2 ψ(b) =

(
|q1 − s1|2 − |q1 − s1| |q2 − s2|+ |q2 − s2|2

)
ψ(b) ≤ 3

4
ψ(b).

The case of R = Zp. Let R = Zp, where p denotes a rational prime and Zp denotes the p-adic
integer ring:

Zp =

{
a =

∞

∑
h=0

ah ph

∣∣∣∣∣ ah ∈ {0, 1, . . . , p− 1}
}

.
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For a = ∑∞
h=w ah ph ∈ R with aw 6= 0, we define ord(a) = w and ord(0) = ∞. This ring

R = Zp has a metric called p-adic metric defined by |a|p = p−ord(a) for a ∈ R. Any infinite series
a = ∑∞

h=0 ah ph ∈ R is convergent with respect to the p-adic distance dp(a, b) = |a− b|p for a, b ∈ R,
i.e., for any ε > 0, there exists N > 0 such that, for all m > n > N,

dp

(
m

∑
h=0

ah ph,
n

∑
h=0

ah ph

)
=

∣∣∣∣∣ m

∑
h=n+1

ah ph

∣∣∣∣∣
p

≤ p−n−1 < ε,

where the inequality |a + a′|p ≤ max{|a|p, |a′|p} is used. It is shown that a = ∑∞
h=0 ah ph ∈ R

is invertible, i.e., there exists a−1 ∈ R such that aa−1 = 1, if and only if a0 6= 0. We adopt the
Euclidean function ψ : R→ N0 as:

ψ(a) =

{
|a|−1

p = pord(a) a 6= 0

0 a = 0.

Note that, for any b ∈ R with b 6= 0, b/ψ(b) ∈ R is invertible, i.e., b−1ψ(b) ∈ R. Then, the
property (3) is shown as follows. If ψ(a) < ψ(b), then s = 0 and r = a. If ψ(a) ≥ ψ(b), then s = b−1a
and r = 0 because s = b−1ψ(b) · ψ(b)−1a ∈ R.

The case of R = K[[x]]. Let R = K[[x]], the ring of one-variable formal power series over a
commutative field K:

K[[x]] =

{
a =

∞

∑
h=0

ahxh

∣∣∣∣∣ ah ∈ K

}
.

For a = ∑∞
h=w ahxh ∈ R with aw 6= 0, we define ord(a) = w and ord(0) = −∞. It is shown that

a = ∑∞
h=0 ahxh ∈ R is invertible, i.e., there exists a−1 ∈ R such that aa−1 = 1, if and only if ord(a) = 0.

If K has the infinite number of elements, then we adopt the Euclidean function ψ : R→ {−∞} ∪N0 as
ψ(a) = ord(a). If K = Fq, then we adopt:

ψ(a) =

{
qord(a) a 6= 0

0 a = 0.

Note that, for any b ∈ R with b 6= 0, x−ord(b)b ∈ R is invertible, i.e., xord(b)b−1 ∈ R. Then, the
property (3) is shown as follows. If ψ(a) < ψ(b), then s = 0 and r = a. If ψ(a) ≥ ψ(b), then s = b−1a
and r = 0 because s = b−1xord(b) · x−ord(b)a ∈ R.

Hereafter, for a finite set S, we use |S| to denote the number of elements in S and we denote
|S| = ∞ if and only if S is an infinite set. Summarizing the above, we take the Euclidean function
ψ : R→ {−∞} ∪N0 as, for a ∈ R,

ψ(a) =



deg(a) or deg(0) = −∞ R = K[x], |K| = ∞

qdeg(a) or ψ(0) = 0 R = Fq[x]

|a| R = Z
|a|2 = a2

1 + a2
2 if a = a1 + a2i, a1, a2 ∈ Z R = Z[i]

|a|2 = a2
1 − a1a2 + a2

2 if a = a1 + a2ω, a1, a2 ∈ Z R = Z[ω]

pord(a) or ψ(0) = 0 R = Zp

ord(a) or ψ(0) = −∞ R = K[[x]], |K| = ∞

qord(a) or ψ(0) = 0 R = Fq[[x]].

(6)

Unless otherwise noted, the following argument is also valid for the other choices of the Euclidean
function ψ and arbitrary Euclidean domains.
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3.2. Euclidean Division by a Class of Matrices

Definition 1. If G =
(

gi,j
)
∈ Ml(R) satisfies gi,j = 0 for all 1 ≤ j < i ≤ l, i.e., G is of the form:

G =


g1,1 g1,2 . . . g1,l
0 g2,2 . . . g2,l
...

. . . . . .
...

0 . . . 0 gl,l

 ,

and det(G) 6= 0, then we say that G is upper triangular.

Note that we impose det(G) 6= 0 if we say that G is upper triangular.
In this study, we need the following division algorithm, which is described in [5] in the special

case where R = Fq[x].

Proposition 2. Let G =
(

gi,j
)
∈ Ml(R) be upper triangular. Then, for any a = (a1 . . . al) ∈ L, there exist

s = (s1 . . . sl) , r = (r1 . . . rl) ∈ L such that a = sG + r, i.e.,

(a1 . . . al) = (s1 . . . sl) G + (r1 . . . rl) , (7)

with ψ(ri) < ψ(gi,i) for all 1 ≤ i ≤ l.

Proof. To prove Proposition 2 constructively, consider the following (l + 1)-by-l matrix:

(
G
a

)
=


g1

g2
...

gl

a

 =


g1,1 g1,2 . . . g1,l
0 g2,2 . . . g2,l
...

. . . . . .
...

0 . . . 0 gl,l

a1 . . . al−1 al

 , (8)

where gi denotes the i-th row of G for all 1 ≤ i ≤ l. Then, the following row operations for the
matrix (8) are performed:

〈1〉 Set i = 1.
〈2〉 Compute si, ri ∈ R such that ai = sigi,i + ri with ψ(ri) < ψ(gi,i) and replace a with a− sigi in (8).
〈3〉 If i = l, stop. Otherwise, set i to i + 1 and return to 2〉.

Thus, s = (s1 . . . sl) , r = (r1 . . . rl) ∈ L are determined and (7) holds because the initial a is
converted into r in (8), and the result of these row operations can be represented by r = a−∑l

i=1 sigi =

a− sG.

4. Generator Matrices of R-Modules in M

In this section, we define the generator matrices of C, which are useful to generate code words in C.

Definition 2. We call G ∈ Ml(R) a generator matrix of C if and only if F−1(C) = LG.

If such a generator matrix G of C is constructed, we have C = F(LG) because of F
(

F−1(C)
)
= C.

We now show the construction of a generator matrix G of C.

Proposition 3. For all 1 ≤ i ≤ l, let:

gi = (gi,1 . . . gi,l) ∈ F−1(C) (9)
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be an element of L satisfying the following two conditions:

1. gi,i 6= 0 and, if i 6= 1, gi,1 = · · · = gi,i−1 = 0.
2. ψ(gi,i) has the minimum value among ψ(ci) for all (c1 . . . cl) ∈ F−1(C) with ci 6= 0 and, if i 6= 1,

with c1 = · · · = ci−1 = 0.

Let G ∈ Ml(R) have an i-th row equal to (9) that satisfies Conditions 1 and 2 for all 1 ≤ i ≤ l. Then, G
is a generator matrix of C, i.e., we have F−1(C) = LG. Conversely, if G′ is another generator matrix of C,
then there exists E ∈ GLl(R) such that G′ = EG.

Proof. Such a gi ∈ L with gi,i 6= 0 exists because F−1(C) includes (2). For any c ∈ F−1(C), let s, r ∈ L
be such that c = sG + r and ψ(ri) < ψ(gi,i) for all 1 ≤ i ≤ l by Proposition 2. Because F−1(C) is an
R-module, r = c− sG ∈ F−1(C) implies that r = (0 . . . 0), which completes the first half of the proof.
If LG = LG′, then L = LG′G−1. Because:

L 3 (1 0 0 . . . 0)G′G−1, (0 1 0 . . . 0)G′G−1, . . . , (0 0 . . . 0 1)G′G−1,

we have G′G−1 ∈ Ml(R). Because:

(1 0 0 . . . 0), (0 1 0 . . . 0), . . . , (0 0 . . . 0 1) ∈ LG′G−1,

we have G′G−1 ∈ GLl(R), which completes the proof.

Let C ⊂ M be an R-module. Because F−1(C) = LG implies that LG ⊃ Ldiag [d1, . . . , dl ],
the generator matrix G ∈ Ml(R) of C satisfies the following matrix equation:

AG = diag [d1, . . . , dl ] , (10)

for some A ∈ Ml(R). Conversely, if G ∈ Ml(R) satisfies (10) for some A ∈ Ml(R), then G determines
an R-module C = LG/Ldiag [d1, . . . , dl ]. We summarize these facts.

Proposition 4. Let G ∈ Ml(R). Then, G is equal to a generator matrix for some C if and only if G satisfies (10)
for some A ∈ Ml(R).

Note that if upper triangular G satisfies (10), then A is also upper triangular. Note also that,
if u = d1 = · · · = dl , then AG = GA = diag [u, . . . , u], cf. [5,7].

Example 1. Let R = Z[i]. If l = 1 and d1 = 5, then F : R → R/〈5〉 ⊃ C = gR/〈5〉 is satisfied
by g = 1, 2± i, 5 up to units. Although the general R-submodule R is equal to αR for some α ∈ R,
F−1 (gR/〈5〉) = gR is valid for g = 1, 2± i, 5 up to units. This fact corresponds to the equation Ag = 5 of
(10). Next, if l = 2 and d1 = d2 = 5, then consider:

C2 =



(4 + 2i, 2 + i),
(3 + 4i, 4 + 2i),
(2 + i, 1 + 3i),
(1 + 3i, 3 + 4i),
(0, 0)


⊂M = (R/〈5〉)2.

Because C2 forms an R-submodule, C2 is a code over Gaussian integers. We note that the generator matrix
of C2 is equal to:

G2 =

(
2 + i 1 + 3i

0 5

)
.
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Then, G2 satisfies: (
2− i −1− i

0 1

)(
2 + i 1 + 3i

0 5

)
=

(
5 0
0 5

)
.

Cardinality Formulae

In this subsection, we focus on the Euclidean domain R described above. We denote |K| = ∞ to
mean the case where the coefficient field K of R = K[x] or K[[x]] contains infinitely many elements.

Then, for any a, b ∈ R, the Euclidean function of (6) satisfies:

ψ(ab) =

{
ψ(a) + ψ(b) if |K| = ∞

ψ(a)ψ(b) otherwise.

Moreover, for any b ∈ R with b 6= 0, we have:

ψ(b) =

{
dimK R/〈b〉 if |K| = ∞

|R/〈b〉| otherwise,

where, for a finite dimensional K-vector space V, dimK V denotes its dimension. Let G be a generator
matrix of an R-module C ⊂ M. Consider the following composition map:

L→M
(c1 . . . cl) 7→ F ((c1 . . . cl) G) .

Note that F(·)G is not well-defined in general because Ldiag [d1, . . . , dl ] G 6⊂ Ldiag [d1, . . . , dl ]

in general, e.g.,
(
2 0

) ( 1 1
0 2

)
6∈ Z2diag[2, 4] for

(
2 −1
0 2

)(
1 1
0 2

)
=

(
2 0
0 4

)
. Then, the

image of this composition map is equal to C. Moreover, the kernel of this composition map is equal to
LA because:

F ((c1 . . . cl) G) = 0⇐⇒ (c1 . . . cl) G ∈ Ldiag [d1, . . . , dl ]

⇐⇒ (c1 . . . cl) G ∈ LAG (∵ (10))

⇐⇒ (c1 . . . cl) ∈ LA.

Thus, the R-modules L/LA and C are isomorphic. On the other hand, it follows from the theory
of elementary divisors [14] that there exist U, V ∈ GLl(R) such that UAV = diag [b1, . . . , bl ] and
〈b1〉 ⊃ · · · ⊃ 〈bl〉. Then, L/LA is isomorphic to

⊕l
i=1 R/〈bi〉 as R-modules and:

ψ(det(A)) =

{
∑l

i=1 ψ(bi) = dimK L/LA if |K| = ∞

∏l
i=1 ψ(bi) = |L/LA| otherwise.

We also note that:

ψ(det(A)det(G)) =

{
∑l

i=1 ψ(di) = dimKM if |K| = ∞

∏l
i=1 ψ(di) = |M| otherwise.

Hence, we obtain the following cardinality formula for C and all G.
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Proposition 5. Let C ⊂ M be an R-module and G be its generator matrix. Then, we have:{
dimK C = n− ψ(det(G)) if |K| = ∞

|C| = |M|/ψ(det(G)) otherwise.

In the case where R = Fq[x], we denote ki = deg di − deg gi,i and k = ∑l
i=1 ki if the generator

matrix G =
(

gi,j
)

is upper triangular. Then, k is equal to the dimension of C over Fq. As an application
of Proposition 5, we see that a generator matrix of C viewed as a linear code is composed of the
following linearly independent k code words from the rows of G for 1 ≤ i ≤ l and 0 ≤ m < ki:

(xmgi,1 mod d1 xmgi,2 mod d2 . . . xmgi,l mod dl) . (11)

Example 2. In the case of R = Fq[x], q = 2, and l = 3, we set d1 = d2 = d3 = (1+ x + x3)2 = 1+ x2 + x6.
Consider:

A =

 1 + x2 + x6 1 + x4 + x5 x2 + x3 + x4 + x5

0 1 + x + x3 x + x2

0 0 1

 ,

G =

 1 1 + x + x2 x + x2 + x3 + x5

0 1 + x + x3 x + x3 + x4 + x5

0 0 1 + x2 + x6

 .

Then, we have:
AG =

(
1 + x2 + x6

)
I.

Let C be the R-module inM defined by G. Then, the length n of C is equal to 18 and the dimension k of C
is equal to 9. From G and (11), we can derive a binary generator matrix:

100000 111000 011101
010000 011100 100110
001000 001110 010011
000100 000111 100001
000010 101011 111000
000001 111101 011100
000000 110100 010111
000000 011010 100011
000000 001101 111001


.

By applying the division algorithm to G in Proposition 2, we obtain the systematic encoding of C, which is
similar to that in the case of GQC codes [5].

5. Multiplicative Structure

In this section, we again consider the R-modules in M for the general Euclidean domain R.
Hereafter, we mainly consider the case of d1 = · · · = dl in (1). If u = d1 = · · · = dl , then we have
diag [u, . . . , u] = uI andM = L/Ldiag [d1, . . . , dl ] = L/uL.

Let G1, G2 ∈ Ml(R) satisfy the relations:

A1G1 = u1 I, A2G2 = u2 I

for some A1, A2 ∈ Ml(R) with u1, u2 ∈ R and u1u2 6= 0. Then, we have:

A2 A1G1G2 = u1u2 I.
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This argument shows that C1 = LG1/u1L and C2 = LG2/u2L produce C = LG1G2/u1u2L.

Remark 1. If d1 = · · · = dl does not hold, then in general LG1G2 does not include u1u2L. For example,

consider G1 =

(
1 2
0 4

)
and G2 =

(
1 3
0 9

)
. Then, we have:

A1G1 =

(
2 −1
0 1

)(
1 2
0 4

)
=

(
2 0
0 4

)
,

A2G2 =

(
3 −1
0 1

)(
1 3
0 9

)
=

(
3 0
0 9

)
,

G1G2 =

(
1 21
0 36

)
, and G2G1 =

(
1 14
0 36

)
. If there exists a, g ∈ Z such that:

(
6 a
0 1

)(
1 g
0 36

)
=

(
6 0
0 36

)
,

then we have 6g + 36a = 0 and g ∈ 6Z. Thus, for G = G1G2 and G = G2G1, there does not exist A such that

AG =

(
6 0
0 36

)
.

5.1. Surjectivity

We fix a nonzero u ∈ R. Because GLl(R) acts from the left on the set of G ∈ Ml(R) with AG = uI
for some A ∈ Ml(R), we can consider a quotient set:

GLl(R)\ {G ∈ Ml(R) | AG = uI for some A ∈ Ml(R)} . (12)

Let {G}u denote a complete system of representatives of generator matrices of R-modules in
M = L/uL. In other words, {G}u corresponds one-to-one and onto to R-modules C = LG/uL inM.
In Section 6, we will define a standard form of G ∈ {G}u, which will be called reduced, in order to
indicate a unique representative of generator matrices of an R-module inM for specified R’s.

Theorem 1. Suppose that u = u1u2 with u1, u2 ∈ R. Consider the map:

v : {G1}u1 × {G2}u2 → {G}u

(G1, G2) 7→ G,

where LG1G2 = LG. Then, v is surjective.

Proof. For each G ∈ {G}u, let C = LG/uL. We consider an R-module in L/u2L:

C2 =
u2L+LG

u2L
. (13)

Then, there exists G2 ∈ {G2}u2 such that C2 = LG2/u2L. By Proposition 1, we have:

u2L+LG = LG2, (14)

which leads to LG ⊂ LG2. Then, there exists some G1 ∈ Ml(R) such that G = G1G2. If we can show
that LG1 ⊃ u1L, then the proof is completed. From AG = uI = u1u2 I and A2G2 = u2 I, we have:
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AG1G2 = u1 A2G2, AG1 = u1 A2 = A2u1 I,

and A−1
2 AG1 = u1 I. Thus, we may show A−1

2 A ∈ Ml(R). Because, for some M ∈ Ml(R),

M = A−1
2 A⇐⇒ A2M = A⇐⇒ u2 IM = G2 A2M = G2 A,

where we note u2 I = A2G2 = G2 A2, we may show u2L ⊃ LG2 A. It follows from LG2 = LG + u2L
that G2 = PG + u2Q for some P, Q ∈ Ml(R). Hence we have, noting that uI = AG = GA,

LG2 A = L (PG + u2Q) A = u2L (u1P + QA) ⊂ u2L.

Example 3. (Continued from Example 2.) For u1 = u2 = 1 + x + x3, G is equal to G1G2, where:

G1 =

 1 0 x2

0 1 x + x2

0 0 1 + x + x3

 ∈ {G1}u1 , G2 =

 1 1 + x + x2 x
0 1 + x + x3 0
0 0 1 + x + x3

 ∈ {G2}u2 .

As for this G, there exists another pair of representatives G1, G2 with G = G1G2, i.e.,

G1 =

 1 1 + x + x2 x + x2

0 1 + x + x3 0
0 0 1 + x + x3

 ∈ {G1}u1 , G2 =

 1 0 x + x2

0 1 x + x2

0 0 1 + x + x3

 ∈ {G2}u2 .

5.2. Injectivity

Theorem 2. Let the notation be as in Theorem 1. If gcd(u1, u2) = 1, then v is bijective.

To prove Theorem 2, we must first prove a lemma.

Lemma 1. Let the notation be the same as that in Theorem 1. If gcd(u1, u2) = 1, then:

u2L+LG1G2

u2L
=

LG2

u2L
.

If gcd(u1, u2) 6= 1, then Lemma 1 is not correct in general. For example, if u1 = u2 = 2, G1 = 2,
and G2 = 1, then (u2L+LG1G2) /u2L = {0} but LG2/u2L = F2. Note that this fact does not
contradict (13) in the proof of Theorem 1.

Proof of Lemma 1. We may show that u2L+ LG1G2 ⊃ LG2. Because there exists E ∈ GLl(R) such
that EG1 is upper triangular, we may assume without loss of generality that G1 is upper triangular.
For A1 =

(
a(1)i,j

)
and G1 =

(
g(1)i,j

)
with A1G1 = u1 I, we have a(1)i,i g(1)i,i = u1 for all 1 ≤ i ≤ l. Then,

gcd
(

g(1)i,i , u2

)
= 1 and there exist si, ti ∈ R such that sig

(1)
i,i − tiu2 = 1 for all 1 ≤ i ≤ l. Thus,

diag [s1, . . . , sl ] G1 =


s1g(1)1,1 ∗

. . .

0 sl g
(1)
l,l

 =

 t1u2 0
. . .

0 tlu2

+

 1 ∗
. . .

0 1
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and:

u2L+LG1G2 ⊃ u2L+Ldiag [s1, . . . , sl ] G1G2 ⊃ u2L+L

 1 ∗
. . .

0 1

G2 = LG2.

Proof of Theorem 2. For a given G ∈ {G}u, there exists (G1, G2) ∈ {G1}u1 × {G2}u2 such that
LG1G2 = LG by Theorem 1. We may prove only the uniqueness of G2, which leads the uniqueness of
G1 by the relation LG1 = LGG−1

2 . Again, we consider an R-module in L/u2L

C2 =
u2L+LG

u2L
.

By Lemma 1, we have C2 = LG2/u2L. If there exists (G′1, G′2) ∈ {G1}u1 × {G2}u2 such that
LG′1G′2 = LG, it again follows from Lemma 1 that C2 = LG′2/u2L. By Proposition 1, we have
LG2 = LG′2, which completes the proof.

Remark 2. Because Lemma 1 is true only for G2 in general, C1 = (u1L+ LG)/u1L does not agree with
LG1/u1L in general. For example, consider the case where R = Z, l = 2, u = 6, u1 = 2, u2 = 3,

and G =

(
1 4
0 6

)
. Then, we have:

AG =

(
6 −4
0 1

)(
1 4
0 6

)
=

(
6 0
0 6

)
,

C = LG
uL = {(0 0), (1 4), (2 2), (3 0), (4 4), (5 2)},

C2 =
u2L+LG

u2L
= {(0 0), (1 1), (2 2)}.

Then, C2 = LG2/u2L with G2 =

(
1 1
0 3

)
and A2G2 =

(
3 −1
0 1

)(
1 1
0 3

)
=

(
3 0
0 3

)
.

On the other hand, we have:

C1 =
u1L+LG

u1L
= {(0 0), (1 0)}

and C1 = LG′1/u1L with G′1 =

(
1 0
0 2

)
. In fact, G = G1G2 with G1 =

(
1 1
0 2

)
6= G′1 and

A1G1 =

(
2 −1
0 1

)(
1 1
0 2

)
=

(
2 0
0 2

)
.

Example 4. Consider the case of R = F2[x], u = x + x2, u1 = x, and u2 = 1 + x. Because L/u1L = (F2)
l

for any positive l ∈ Z, the number of C1 ⊂ L/u1L is equal to ∑l
k=0 c(l)k (2), where c(l)k (q) denotes the number

of k-dimensional Fq-vector subspaces in
(
Fq
)l ,

c(l)k (q) = c(l)l−k(q) =
(ql − 1)(ql − q) . . . (ql − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
, (15)

cf. [13], e.g., ∑l
k=0 c(l)k (2) = 2, 5, 16, 67, 374, 2825, 29212 for l = 1, . . . , 7. Because L/u2L = (F2)

l ,
the number of C2 ⊂ L/u2L is equal to that of C1 ⊂ L/u1L. Then, Theorem 2 asserts that
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|{G}u| = |{G1}u1 | · |{G2}u2 |, and that any G ∈ {G}u can be uniquely obtained from G1G2 for some
G1 ∈ {G1}u1 and G2 ∈ {G2}u2 . For example, let:

G =


1 1 1 1 + x
0 x 1 1
0 0 1 + x 1 + x
0 0 0 x + x2

 ∈ {G}u.

Then, we can find:

G1 =


1 1 0 1
0 x 0 0
0 0 1 1
0 0 0 x

 , G2 =


1 0 0 1
0 1 1 1
0 0 1 + x 0
0 0 0 1 + x

 , G1G2 =


1 1 1 1 + x
0 x x x
0 0 1 + x 1 + x
0 0 0 x + x2

 .

There exists E ∈ GLl(R) such that EG1G2 = G.

6. Unique Euclidean Division Cases

In this section, we focus on the Euclidean domain R described above specifically. First, we will
show that the Euclidean division in R satisfies the following condition.

• For a, b ∈ R with b 6= 0, there exist unique s, r ∈ R such that:

◦ a = sb + r with ψ(r) < ψ(b),
◦ (if necessary,) the additional property on s, r, which is described below, specified on each R.

To validate this condition for the Euclidean division by a nonzero b ∈ R, one may choose
a complete system Sb ⊂ R of representatives of R/〈b〉 such that ψ(r) < ψ(b) for all r ∈ Sb.
Then, the above condition is valid because a = sb + r = s′b + r′ with s, s′ ∈ R and r, r′ ∈ Sb
implies r + 〈b〉 = r′ + 〈b〉 ∈ R/〈b〉 and r = r′. However, for each b, it is not always easy to choose Sb.
Thus, in this section, we show that a convenient Sb can be taken in each case of R’s.

The case of R = K[x]. The Euclidean function ψ has the uniqueness properties, i.e., s, r are
uniquely determined in a = sb + r with b 6= 0 and ψ(r) < ψ(b) because, if a = sb + r = s′b + r′, then
0 = (s− s′)b + (r− r′), and it follows from ψ(r− r′) = ψ((s′ − s)b) and ψ(r− r′) ≤ max{ψ(r), ψ(r′)}
that s− s′ = r− r′ = 0.

The case of R = Z. For a, b ∈ R with b 6= 0, the results s, r of Euclidean division a = sb + r
with ψ(r) < ψ(b) and ψ(·) = | · | are not unique as stated in Introduction. Hence, we decide s, r by
a = sb + r with s = ba/bc. In other words, we have a = sb + r with 0 ≤ r/b < 1, or equivalently,
with br/bc = 0, because:

s =
⌊ a

b

⌋
⇐⇒ s ≤ a

b
< s + 1⇐⇒ 0 ≤ r

b
< 1⇐⇒

⌊ r
b

⌋
= 0.

Then, s, r are unique because of the expression s = ba/bc. (Alternatively, if a = sb + r = s′b + r′,
then 0 = (s− s′)b + (r− r′) and it follows from 0 ≤ r/b < 1 and 0 ≤ r′/b < 1 that |(r− r′)/b| < 1
and s− s′ = 0.) There are some choices to indicate unique s, r, e.g.,

s = ba/bc ⇐⇒ br/bc = 0, s = da/be ⇐⇒ dr/be = 0,

s = ba/b + 1/2c ⇐⇒ br/b + 1/2c = 0, s = da/b− 1/2e ⇐⇒ dr/b− 1/2e = 0,

where, for x ∈ R, dxe denotes a unique n ∈ Z such that n − 1 < x ≤ n. We adopt s = ba/bc
for simplicity.
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The case of R = Z[i]. For a, b ∈ R with b 6= 0, the results s, r of Euclidean division a = sb + r
with ψ(r) < ψ(b) and ψ(·) = | · |2 are not unique because 1 = 1 · 2− 1 = 0 · 2 + 1. We decide s, r with
a = sb + r and ψ(r) < ψ(b) by

s =
⌊

Re
( a

b

)
+

1
2

⌋
+

⌊
Im
( a

b

)
+

1
2

⌋
i. (16)

(Similarly, s = dRe (a/b)− 1/2e + dIm (a/b)− 1/2e i is also satisfactory. On the other hand,
s = bRe (a/b)c+ bIm (a/b)c i dose not satisfy ψ(a − sb) < ψ(b) in general, e.g., a = 3 + 3i and
b = 4.)

Because:

Re(s) ≤ Re
( a

b

)
+

1
2
< Re(s) + 1 and Im(s) ≤ Im

( a
b

)
+

1
2
< Im(s) + 1,

(16) deduces |Re(a/b)− Re(s)| ≤ 1/2 and |Im(a/b)− Im(s)| ≤ 1/2 of (4). Moreover, (16) is
equivalent to the property on r, through the equation a = sb + r,⌊

Re
( r

b

)
+

1
2

⌋
=

⌊
Im
( r

b

)
+

1
2

⌋
= 0. (17)

Then, s, r are unique because of the expression (16) on s. Alternatively, if a = sb + r = s′b + r′,

then 0 = (s− s′)b + (r− r′) and it follows from
⌊

Re
( r

b

)
+

1
2

⌋
=

⌊
Re
(

r′

b

)
+

1
2

⌋
= 0 that:

0 ≤ Re
( r

b

)
+

1
2
< 1 and 0 ≤ Re

(
r′

b

)
+

1
2
< 1

and −1 < Re
( r

b

)
− Re

(
r′

b

)
= Re(s′ − s) < 1 deduces Re(s′ − s) = 0, and similarly, Im(s′ − s) = 0.

Thus, we take (16) or (17) as “the additional property” to indicate unique quotient and remainder
in Euclidean division in R. A numerical example is shown in Figure 1.

Real part of r
-6 -4 -2 0 2 4 6

Im
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g
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a
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-2

0
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6

Figure 1. The remainders r of Euclidean division by b = 5 + 9i in Z[i]. There are 52 + 92 = 106 = |b|2

crosses, which can be all representatives of Z[i]/〈b〉, satisfying (17). If we adopt s with the ceiling
function, then r = −2 + 7i is included instead of r = 2− 7i.
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The case of R = Z[ω]. For a, b ∈ R with b 6= 0, the results s, r of Euclidean division a = sb + r with
ψ(r) < ψ(b) and ψ(·) = | · |2 are not unique because 1 = 1 · 2− 1 = 0 · 2 + 1. Similarly to Z[i], we may
decide s, r with a = sb + r and ψ(r) < ψ(b) by s = bq1 + 1/2c + bq2 + 1/2cω if a/b = q1 + q2ω,
which is equivalent to bt1 + 1/2c = bt2 + 1/2c = 0 if r/b = t1 + t2ω. (Similarly, s = dq1 − 1/2e+
dq2 − 1/2eω is also satisfactory.) However, unlike Z[i], we can decide s, r with a = sb + r and
ψ(r) < ψ(b) by:

s = bq1c+ bq2cω if
a
b
= q1 + q2ω, q1, q2 ∈ Q. (18)

Because (18) deduces 0 ≤ q1 − bq1c < 1 and 0 ≤ q2 − bq2c < 1,

ψ(a− sb) =
∣∣∣ a
b
− s
∣∣∣2 ψ(b) =

{
(q1 − bq1c)2 − (q1 − bq1c)(q2 − bq2c) + (q2 − bq2c)2

}
ψ(b) < ψ(b),

where the last inequality follows from the fact that x2 − xy + y2 takes the maximum on 0 ≤ x, y ≤ 1
only at (x, y) = (1, 0), (0, 1), (1, 1) and that, for 0 ≤ x, y < 1, x2 − xy + y2 < 1. Moreover, (18) is
equivalent to the property on r, through the equation a = sb + r,

bt1c = bt2c = 0 if
r
b
= t1 + t2ω, t1, t2 ∈ Q. (19)

Then, s, r are unique because of the expression (18) on s. Thus, we take (18) or (19) as “the
additional property” to indicate unique quotient and remainder in Euclidean division in R. A numerical
example is shown in Figure 2.
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Figure 2. The remainders r of Euclidean division by b = 2+ 10ω in Z[ω]. There are 22 − 2 · 10+ 102 =

84 = |b|2 crosses, which can be all representatives of Z[ω]/〈b〉, satisfying (19).

The case of R = Zp. For a, b ∈ R with b 6= 0, the results s, r of Euclidean division a = sb + r
with ψ(r) < ψ(b) and ψ(·) = pord(·) or ψ(0) = 0 are not unique because 3 = 0 · 2 + 3 = 1 · 2 + 1 for
p = 2. Let Qp be the field of fractions of R. For c ∈ Qp, there exists w ∈ Z such that c = ∑∞

h=w ch ph

with ch ∈ {0, 1, . . . , p− 1}. For c = ∑∞
h=w ch ph ∈ Qp, we uniquely define {c}p = ∑h<0 ch ph ∈ Qp and
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bccp = ∑∞
h=0 ch ph ∈ Zp such that c = {c}p + bccp. Then, for a, b ∈ R with b 6= 0, we decide s, r ∈ R by

a = sb + r with s = ba/bcp. In other words, we have a = sb + r with br/bcp = 0 because:

s =
⌊ a

b

⌋
p
⇐⇒ r

b
=

a
b
− s =

{ a
b

}
p
⇐⇒

⌊ r
b

⌋
p
= 0.

Moreover, br/bcp = 0 implies ψ(r) < ψ(b) because r = b {a/b}p. Finally, we show the uniqueness
of such s, r. Suppose that, for a, b ∈ R with b 6= 0, a = sb + r = s′b + r′ and br/bcp = br′/bcp = 0.
Then, from 0 = (s− s′)b + (r− r′), we say c = (r− r′)/b ∈ R. In view of r/b = {r/b}p + br/bcp =

r′/b + c, the uniqueness of {r/b}p and br/bcp implies that {r/b}p = r′/b and br/bcp = c = 0.
The case of R = K[[x]]. For a, b ∈ R with b 6= 0, the results s, r of Euclidean division a = sb + r

with ψ(r) < ψ(b) are not unique because 1 = 0 · x + 1 = 1 · x + x + 1 for K = F2 and ψ(·) = 2ord(·)

or ψ(0) = 0. Let K((x)) be the field of fractions of R. For c ∈ K((x)), there exists w ∈ Z such that
c = ∑∞

h=w chxh with ch ∈ K. For c = ∑∞
h=w chxh ∈ K((x)), we uniquely define {c}K = ∑h<0 chxh ∈

K((x)) and bccK = ∑∞
h=0 chxh ∈ R such that c = {c}K + bccK. Then, for a, b ∈ R with b 6= 0, we decide

s, r ∈ R by a = sb + r with s = ba/bcK. In other words, we have a = sb + r with br/bcK = 0 because:

s =
⌊ a

b

⌋
K
⇐⇒ r

b
=

a
b
− s =

{ a
b

}
K
⇐⇒

⌊ r
b

⌋
K
= 0.

Moreover, br/bcK = 0 implies ψ(r) < ψ(b) because r = b {a/b}K. The uniqueness of such s, r can
be shown similarly to the case of R = Zp.

Hereafter, we denote the quotient field of R by Q(R) = {a/b | a, b ∈ R, b 6= 0}. For any
a/b ∈ Q(R), a, b ∈ R with gcd(a, b) = 1 are uniquely determined up to units because 0 = a/b −
a′/b′ = (ab′ − a′b)/bb′ implies 〈a〉 = 〈a′〉 and 〈b〉 = 〈b′〉.

Definition 3. For a ∈ Q(R), we define [[a]] ∈ R by

[[a]] =



s if a = r/b + s and deg(r) < deg(b) R = K[x]

bac R = Z
bRe (a) + 1/2c+ bIm (a) + 1/2c i R = Z[i]
bq1c+ bq2cω if a = q1 + q2ω, q1, q2 ∈ Q R = Z[ω]

bacp R = Zp

bacK R = K[[x]].

In the case of R = K[x], this definition is well-defined because, if a = r/b + s = r′/b′ + s′ with
r, b, s, r′, b′, s′ ∈ R, b, b′ 6= 0, deg(r) < deg(b), and deg(r′) < deg(b′), then (rb′ − r′b)/bb′ + s− s′ = 0
and deg(rb′ − r′b) ≤ max{deg(rb′), deg(r′b)} < deg(bb′) deduce s = s′.

Lemma 2. For any a, a′ ∈ Q(R), if [[a]] = [[a′]] = 0 and a− a′ ∈ R, then a = a′.

Proof. In the case of R = K[x], let a = r/b and a′ = r′/b′ with r, b, r′, b′ ∈ R, b, b′ 6= 0, deg(r) < deg(b),
and deg(r′) < deg(b′). Then, a− a′ = (rb′ − r′b)/bb′ ∈ R deduces a = a′. The other cases follow from
the argument in each case.

Hereafter, for a, b ∈ R with b 6= 0, the quotient s and the remainder r of the Euclidean division
a = sb + r with ψ(r) < ψ(b) are determined uniquely such that s = [[a/b]], or equivalently, [[r/b]] = 0.
Note that ψ(r) < ψ(b) follows from [[r/b]] = 0.
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Proposition 6. Let G =
(

gi,j
)
∈ Ml(R) be upper triangular. Then, for any a = (a1 . . . al) ∈ L, there exist

unique s = (s1 . . . sl) , r = (r1 . . . rl) ∈ L such that a = sG + r, i.e.,

(a1 . . . al) = (s1 . . . sl) G + (r1 . . . rl) ,

with [[ri/gi,i]] = 0 for all 1 ≤ i ≤ l. In other words, the result of the division in Proposition 2 is unique.

Proof. Suppose that s, s′, r, r′ ∈ L satisfy a = sG + r = s′G + r′ and [[ri/gi,i]] = [[r′i/gi,i]] = 0
for all 1 ≤ i ≤ l. Then, subtracting one expression for a from the other, we obtain
(0 . . . 0) = (s− s′)G + (r− r′), which is equivalent to 0 = ∑i

h=1(sh− s′h)gh,i +(ri− r′i) for all 1 ≤ i ≤ l.
For i = 1, we have 0 = (s1 − s′1)g1,1 + (r1 − r′1), which deduces s1 − s′1 = r1 − r′1 = 0 by Lemma 2.
Supposing sh − s′h = rh − r′h = 0 for all h = 1, . . . , i− 1, we have 0 = (si − s′i)gi,i + (ri − r′i), which
deduces si − s′i = ri − r′i = 0 by Lemma 2. By induction on i, we obtain s− s′ = r − r′ = (0 . . . 0),
which completes the proof.

Reduced Generator Matrices of R-Modules in M

Definition 4. For a ∈ R, we say that a is monic if and only if a 6= 0 and a satisfies the following condition:

aw = 1 if a = ∑w
h=0 ahxh, deg(a) = w R = K[x]

a > 0 R = Z
Re(a) > 0, Im(a) ≥ 0 R = Z[i]
a1 > 0, a2 ≥ 0 if a = a1 + a2ω, a1, a2 ∈ Z R = Z[ω]

aw = 1 if a = ∑∞
h=w ah ph, ord(a) = w R = Zp

aw = 1 if a = ∑∞
h=w ahxh, ord(a) = w R = K[[x]].

If ea = a′ for e, a, a′ ∈ R with monic a, a′ and invertible e, then we have e = 1 and a = a′.

Definition 5. We say that G =
(

gi,j
)
∈ Ml(R) is reduced if and only if G is upper triangular, gi,i is monic for

all 1 ≤ i ≤ l and [[gi,j/gj,j]] = 0 for all 1 ≤ i < j ≤ l.

If a generator matrix G of C is given, then the reduced generator matrix G̃ with LG = LG̃ is
obtained through the row operations for G, cf. [14]. In fact, the result of the row operations is written
as G̃ = EG for some E ∈ GLl(R).

Example 5. (Continued from Example 1.) G2 =

(
2 + i 1 + 3i

0 5

)
is not reduced because

bRe ((1 + 3i)/5) + 1/2c = 0 and bIm ((1 + 3i)/5) + 1/2c = 1. From 1 + 3i − i · 5 = 1 − 2i,(
1 −i
0 1

)
G2 =

(
2 + i 1− 2i

0 5

)
is reduced.

In the case where R = Z, the reduced G̃ of G is called the Hermite normal form of G, which is
unique for each R-module LG, according to Theorem 4.2 in [11]. Here, we prove the uniqueness of the
reduced generator matrix in the cases of Euclidean domains with unique Euclidean division.

Proposition 7. There exists a unique reduced generator matrix of each C.
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Proof. Let G = (gi,j), G′ = (g′i,j) be two reduced generator matrices of C. Then, it follows from
LG = LG′ that there exists an upper triangular E = (ei,j) ∈ GLl(R) such that EG = G′. Note that:

EG = G′ ⇐⇒ ∑
i≤k≤j

ei,kgk,j = g′i,j for all 1 ≤ i ≤ j ≤ l.

Then, ei,i is invertible in R for all 1 ≤ i ≤ l because det(E) = ∏l
i=1 ei,i is invertible in R. If i = j,

then ei,igi,i = g′i,i implies that ei,i = 1 and gi,i = g′i,i because gi,i and g′i,i are monic. If i + 1 = j, then:

gi,i+1 + ei,i+1gi+1,i+1 = g′i,i+1.

Because of gi+1,i+1 = g′i+1,i+1, [[gi,i+1/gi+1,i+1]] = [[g′i,i+1/g′i+1,i+1]] = 0, and Lemma 2, we have
ei,i+1 = 0 and gi,i+1 = g′i,i+1. If ei,i+1 = · · · = ei,j−1 = 0, then:

∑
i≤k≤j

ei,kgk,j = gi,j + ei,jgj,j = g′i,j.

Because of gj,j = g′j,j, [[gi,j/gj,j]] = [[g′i,j/g′j,j]] = 0, and Lemma 2, we have ei,j = 0 and gi,j = g′i,j.
It follows from induction on j that G = G′, which completes the proof.

Example 6. (Continued from Remark 2.) Let R = Z, l = 2, u = 6, u1 = 2, and u2 = 3. Then, |{G1}2| = 5
and |{G2}3| = 6 are explicitly given as:

{G1}2 =

{(
1 0
0 1

)
,

(
1 0
0 2

)
,

(
1 1
0 2

)
,

(
2 0
0 1

)
,

(
2 0
0 2

)}
,

{G2}3 =

{(
1 0
0 1

)
,

(
1 0
0 3

)
,

(
1 1
0 3

)
,

(
1 2
0 3

)
,

(
3 0
0 1

)
,

(
3 0
0 3

)}
.

Thus, all G with |{G}6| = 30 can be obtained by G1G2. Although G1G2 is not always reduced, e.g.,(
2 0
0 1

)(
1 2
0 3

)
=

(
2 4
0 3

)
, we can find E ∈ GLl(R) such that EG1G2 is reduced.

Example 7. In [15], an ideal generated by g(x) = x3 + λx2 + (λ − 1)x − 1 in a ring Z2[x]/(x7 − 1) is
considered, where g(x) divides x7− 1 in Z2[x] and λ = 2+ 22 + 25 + 27 + 28 + · · · ∈ Z2 is a root of λ2− λ +

2 = 0. This ideal is called the two-adic lift of the binary [7,4] Hamming code because g(x) ≡ x3 + x + 1 mod 2
agrees with its generator polynomial. Moreover, it is pointed out that Z2-module (Z2)

4 U ⊂ (Z2)
8, where:

U =


1 λ λ− 1 −1 0 0 0 1
0 1 λ λ− 1 −1 0 0 1
0 0 1 λ λ− 1 −1 0 1
0 0 0 1 λ λ− 1 −1 1

 ,

can be called a self-dual code over Z2 because U
(tU

)
is all-zero, where tU denotes the transpose matrix of U.

Then, there exists E1 ∈ GL4(Z2) such that:

E1U =


1 0 0 0 −1 −λ 1− λ −1
0 1 0 0 1− λ 1 1 −λ

0 0 1 0 1 1 λ 1− λ

0 0 0 1 λ λ− 1 −1 1

 .
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We say E1U = [I | V] for V ∈ M4(Z2). Note that A1G1 = diag
[
2b, . . . , 2b

]
holds for any positive

b ∈ Z, where A1 =

(
2b I −V
0 I

)
and G1 =

(
I V
0 2b I

)
. Then, various notable codes appear as the image

of (Z2)
4 U by F : (Z2)

8 →
(
Z2/2bZ2

)8
, where Z2/2bZ2 = Z/2bZ, and Proposition 7 assures that their

unique reduced generator matrices can be computed from E2G1 for some E2 ∈ GL8(Z2). For example, If b = 1,
then C = F

(
(Z2)

4 U
)

is equal to the binary [8,4] extended Hamming code and there exists A2 ∈ M8(Z) such
that its unique reduced generator matrix G2 satisfies A2G2 = diag[2, . . . , 2], where:

G2 =



1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2


.

If b = 2, then C = F
(
(Z2)

4 U
)

is equal to the octacode, cf. [15], and there exists A3 ∈ M8(Z) such that
its unique reduced generator matrix G3 satisfies A3G3 = diag[4, . . . , 4], where:

G3 =



1 0 0 0 3 2 3 3
0 1 0 0 3 1 1 2
0 0 1 0 1 1 2 3
0 0 0 1 2 1 3 1
0 0 0 0 4 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 4


.

7. Application to Hecke Rings

In this section, we continue to focus on the Euclidean domain R described above.
Furthermore, if R = K[x] or R = K[[x]], then we take K = Fq. Under these assumptions, for all
b ∈ R with b 6= 0, ψ(b) = |R/〈b〉| has a positive finite value in Z.

7.1. Preliminaries on Hecke Rings

We define:

H(Γ, ∆) =

{
∑

α∈∆
cαΓαΓ

∣∣∣∣∣ cα ∈ Z, cα 6= 0 for finite number of α ∈ ∆

}
,

where Γ = GLl(R) and ∆ = {α ∈ Ml(R) | det(α) 6= 0}. We call H(Γ, ∆) a Hecke ring [12,13] with
respect to Γ and ∆ with a commutative multiplication (cf. the next subsection) and a unit ΓI Γ = Γ.

Hereafter, for two R-modules A and B, we write A ' B if A is isomorphic to B as R-modules.
The theory of elementary divisors [14] asserts that, for α ∈ ∆, ΓαΓ = Γdiag[a1, . . . , al ]Γ for unique
〈a1〉 ⊃ · · · ⊃ 〈al〉 with a1, . . . , al ∈ R. Then, we denote T(a1, . . . , al) = ΓαΓ. Let β ∈ ∆ and
T(b1, . . . , bl) = ΓβΓ. We note that:
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ΓαΓ = ΓβΓ⇐⇒ Lα = Lβγ for some γ ∈ Γ

⇐⇒ 〈a1〉 = 〈b1〉 , . . . , 〈al〉 = 〈bl〉
⇐⇒ L/Lα ' L/Lβ (20)

because ΓαΓ = T(a1, . . . , al)⇐⇒ L/Lα ' ⊕l
i=1 R/〈ai〉. On the other hand, so far, we have frequently

used the fact that:
Γα = Γβ⇐⇒ Lα = Lβ. (21)

Remark 3. Let C,D ⊂ L/uL be R-modules. Then, C ' D as R-modules does not in general mean C = D as
sets. For example, in the case of L = F2[x]2, consider three different G of {G}x, i.e.,

AG =

(
x 0
0 1

)(
1 0
0 x

)
=

(
x 1
0 1

)(
1 1
0 x

)
=

(
1 0
0 x

)(
x 0
0 1

)
= xI.

Because these three A are in Γdiag[1, x]Γ, and we have:

LG
uL =

LG
LAG

' L
LA

,

it follows from (20) that three R-modules LG/xL are all isomorphic R-modules. On the other hand, because
L/xL = (F2)

2, three R-modules LG/xL have two elements and equal:

{(0 0), (1 0)}, {(0 0), (1 1)}, {(0 0), (0 1)},

respectively. Note that their values of the minimum Hamming distance are 1, 2 and 1, respectively.
This example shows that isomorphic R-modules could have distinct values of the minimum

Hamming distance.

Lemma 3. For all α ∈ ∆, if ΓαΓ = T(a1, . . . , al), then we have Lα ⊃ alL ⊃ det(α)L.

Proof. Let ι : L/Lα → ⊕l
i=1 R/〈ai〉 be the isomorphism of R-modules. Because ι(alr) = al ι(r) =

(0 . . . 0) ∈ ⊕l
i=1 R/〈ai〉, alr ∈ Lα for all r ∈ L. Thus, we have Lα ⊃ alL. On the other hand,

ΓαΓ = T(a1, . . . , al) implies that γ1αγ2 = diag[a1, . . . , al ] for some γ1, γ2 ∈ Γ. Then, det(α) = ε ∏l
i=1 ai

with a unit ε implies alL ⊃ det(α)L.

Because Γ acts from the left on ∆, we can consider a quotient set Γ\∆ similarly to (12). Let Tl
denote a complete system of representatives of Γ\∆. As one choice of Tl , we can take:

Tl = {G ∈ Ml(R) |G is reduced}.

Let ΓαΓ =
⊎

k Γαk be the disjoint decomposition into the left cosets, where the number of the left
cosets is actually finite as shown now. In view of (20) and (21), there exists a one-to-one correspondence:{

αk

∣∣∣∣∣ ΓαΓ =
⊎
k

Γαk

}
−→ {G ∈ Tl |L/LG ' L/Lα}

by αk 7→ γαk ∈ Tl for some γ ∈ Γ. Thus, the disjoint decomposition ΓαΓ =
⊎

k Γαk has a finite number
of cosets because Lemma 3 deduces that AG = al I for some A ∈ Ml(R) and there exists a finite
number of G ∈ Tl such that AG = al I. Hereafter, we denote:

Tl(α) = {G ∈ Tl |L/LG ' L/Lα} ,
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which is equivalent to, in the notation of Section 5,

Tl(α) =
{

G ∈ {G}al

∣∣L/LG ' L/Lα
}
=
{

G ∈ {G}det(α)

∣∣∣L/LG ' L/Lα
}

.

Hereafter, for a finite set S, we also use #S = |S| to denote the number of elements in S.
Then, we define:

ind (ΓαΓ) = #Tl(α) and ind

(
∑

α∈∆
cαΓαΓ

)
= ∑

α∈∆
cαind (ΓαΓ)

for all ∑α∈∆ cαΓαΓ ∈ H(Γ, ∆). It is shown (cf. the next subsection) that ind(·) (deg(·) in [13]) is a ring
homomorphism of H(Γ, ∆).

7.2. Multiplication in Hecke Rings

There exists finite disjoint decomposition ΓαΓβΓ =
⊎

ξ ΓξΓ because we have:

ΓαΓ =
⊎

i
Γαi, ΓβΓ =

⊎
j

Γβ j,

and moreover:
ΓαΓβΓ =

⋃
j

ΓαΓβ j =
⋃
i,j

Γαiβ j.

Then, we define the multiplication · in H(Γ, ∆) by:

ΓαΓ · ΓβΓ = ∑
ξ

mξ(α, β) ΓξΓ ∈ H(Γ, ∆)

where:

mξ(α, β) = #
{
(i, j) | Γαiβ j = Γξ

}
= # {(G1, G2) ∈ Tl(α)× Tl(β) |LG1G2 = Lξ} . (22)

We note:

mξ(α, β) = # {G2 ∈ Tl(β) |LG2/Lξ ' L/Lα} (23)

= # {G ∈ Tl |L/LG ' L/Lβ, LG/Lξ ' L/Lα} (24)

because LG1G2 = Lξ deduces LG2/Lξ = LG2/LG1G2 ' L/LG1 ' L/Lα and (G1, G2) 7→ G2 and
G2 7→ (ξG−1

2 , G2) determine the bijections between the sets in (22) and (23). Then, mξ(α, β) does
not depend on the choices of {αi},

{
β j
}

, and {ξ} and the operation · defines the multiplication;
moreover, this multiplication is commutative, cf. [13].

There is another formula #
{
(i, j) | Γαiβ jΓ = ΓξΓ

}
= mξ(α, β) ind (ΓξΓ) because:

#
{
(i, j) | Γαiβ jΓ = ΓξΓ

}
= # {(G1, G2) ∈ Tl(α)× Tl(β) |L/LG1G2 ' L/Lξ}

= # {(G1, G2) ∈ Tl(α)× Tl(β) |LG1G2 = Lξγ for some γ ∈ Γ}

=
m

∑
k=1

# {(G1, G2) ∈ Tl(α)× Tl(β) |LG1G2 = Lξk} if ΓξΓ =
m⊎

k=1

Γξk

= # {(G1, G2) ∈ Tl(α)× Tl(β) |LG1G2 = Lξ}
m

∑
k=1

1 = mξ(α, β) ind (ΓξΓ) .
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Then, the fact that ind(·) is a ring homomorphism of H(Γ, ∆) follows from:

ind (ΓαΓ · ΓβΓ) = ∑
ξ

mξ(α, β) ind (ΓξΓ) = # {all (i, j)} = ind (ΓαΓ) · ind (ΓβΓ) .

Note that, if ξ ∈ ΓαΓβΓ, then we have ind (ΓξΓ) > 0 and:

ind (ΓξΓ) ≤ ind (ΓαΓ · ΓβΓ) = ind (ΓαΓ) · ind (ΓβΓ) . (25)

Proposition 8. For α, β ∈ ∆, suppose that gcd(det(α), det(β)) = 1. Then, we have ΓαΓ · ΓβΓ = ΓαβΓ,
in other words,

T(a1, . . . , al)T(b1, . . . , bl) = T(a1b1, . . . , albl)

if ΓαΓ = T(a1, . . . , al) and ΓβΓ = T(b1, . . . , bl).

Proof. For (G1, G2) ∈ Tl(α)× Tl(β), there exists an exact sequence:

0→ LG2

LG1G2
→ L

LG1G2
→ L

LG2
→ 0.

Moreover, we have
LG2

LG1G2
' L

LG1
' ⊕l

i=1 R/〈ai〉 and
L

LG2
' ⊕l

i=1 R/〈bi〉, and we say

L
LG1G2

' ⊕l
i=1 R/〈ci〉. Then, there exist exact sequences 0→ R/〈ai〉 → R/〈ci〉 → R/〈bi〉 → 0 for all

1 ≤ i ≤ l. It follows from the uniqueness of elementary divisors that 〈ci〉 = 〈aibi〉 for all 1 ≤ i ≤ l. Thus,

we deduce
L

LG1G2
' ⊕l

i=1 R/〈aibi〉. In particular, if (G1, G2) = (α, β), then
L

Lαβ
' ⊕l

i=1 R/〈aibi〉.

Hence, G1G2 ∈ Tl(αβ). Moreover, it follows from Theorem 2 that (G1, G2) 7→ G1G2 is an injective
map Tl(α)× Tl(β) → Tl(αβ). Thus, ind(ΓαΓ) · ind(ΓβΓ) = #Tl(α)× #Tl(β) ≤ #Tl(αβ) = ind(ΓαβΓ).
Together with (25), we have ind(ΓαΓ) · ind(ΓβΓ) = ind(ΓαβΓ), which shows that mαβ(α, β) = 1 and
ΓαΓ · ΓβΓ = ΓαβΓ.

7.3. A Generating Function of ind (T( f ))

For a nonzero f ∈ R, define:

T( f ) = ∑
α∈∆, det(α)= f

ΓαΓ ∈ H(Γ, ∆),

where the sum runs over all distinct ΓαΓ with α ∈ ∆ and det(α) = f . LetM = (R/〈 f 〉)l = L/ fL.
Then, we have:

ind(T( f )) = #

{
G ∈ Tl

∣∣∣∣∣ L/LG '
l⊕

i=1

R/〈bi〉 for some 〈b1〉 ⊃ · · · ⊃ 〈bl〉 with
l

∏
i=1

bi = f

}
= #{G ∈ Tl | deg(G) = f }. (26)

By Proposition 8 and (26), for nonzero f , g ∈ R with gcd( f , g) = 1, we have T( f g) = T( f )T(g).
We say that π ∈ R is a prime element if 〈ab〉 ⊂ 〈π〉 implies 〈a〉 ⊂ 〈π〉 or 〈b〉 ⊂ 〈π〉 for all a, b ∈ R.
Because a Euclidean domain R is a principal ideal domain, π is a prime element if and only if 〈π〉 is a
maximal ideal. Moreover, all nonzero f ∈ R has a prime factorization f = ε ∏s

i=1 π
ei
i , where ε denotes

a unit, πi is a prime element, and ei ∈ Z is positive and unique for all 1 ≤ i ≤ s.
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Thus, we can compute ind (T( f )) by calculating ind (T(πe)) for each prime power factor πe || f ,
where πe || f means 〈 f 〉 ⊂ 〈πe〉 but 〈 f 〉 6⊂

〈
πe+1〉 for a positive e ∈ Z. For πe || f , we have:

T(πe) = ∑
0≤d1≤···≤dl
d1+···+dl=e

T
(

πd1 , . . . , πdl
)

.

Lemma 4. Let π ∈ R be a nonzero prime element. For A = (ai,j), G = (gi,j) ∈ Ml(R), if AG = π I
with the reduced G, then gi,i = π implies ai,j = gi,j = 0 for all 1 ≤ i 6= j ≤ l. Conversely, if a reduced
G = (gi,j) ∈ Ml(R) satisfies gi,i = 1 or π for all 1 ≤ i ≤ l and gi,i = π implies gi,j = 0 for all 1 ≤ i 6= j ≤ l,
then there exists A ∈ Ml(R) such that AG = π I.

Proof. By the assumption, A and G are upper triangular. If gi,i = π and i < j, then AG = π I implies

∑
j
h=i ai,hgh,j = 0, ai,i = 1, and gj,j = 1 or π. Supposing j = i + 1, we have gi,j + ai,jgj,j = 0. In both

cases of gj,j = 1 and π, the reduced condition implies gi,j = 0 and ai,j = 0. Suppose the induction
hypothesis ai,h = gi,h = 0 for all i < h < j. Then, we have gi,j + ai,jgj,j = 0. In both cases of gj,j = 1
and π, the reduced condition implies gi,j = ai,j = 0.

On the other hand, from the assumption of G, there exists E ∈ GLl(R) such that GE is diagonal.
Then, we put A′ = (GE)−1π I ∈ Ml(R). Thus, (GE)A′ = G(EA′) = (EA′)G = π I with
EA′ ∈ Ml(R).

We denote T(l)
k = T(

l−k︷ ︸︸ ︷
1, . . . , 1,

k︷ ︸︸ ︷
π, . . . , π) ∈ H(Γ, ∆).

Remark 4. Let the notation be as in Lemma 4. Let r = |R/〈π〉| = ψ(π). We will show:

ind
(

T(l)
k

)
= ∑

1≤j1<···<jk≤l
r(j1−1)+···+(jk−k) = r−k(k−1)/2 ∑

0≤i1<···<ik≤l−1
ri1+···+ik . (27)

Note that:

ind
(

T(l)
k

)
= #

{
G ∈ Tl

∣∣∣det(G) = πk, AG = π I for some A ∈ Ml(R)
}

.

We count such G =
(

gi,j
)

by Lemma 4. Let j(1), . . . , j(k) ∈ Z such that 1 ≤ j(1) < · · · < j(k) ≤ l.

If gj(1),j(1) = · · · = gj(k),j(k) = π, then
{

gi,j(h)

∣∣∣ 1 ≤ i < j(h), 1 ≤ h ≤ k
}

may be nonzero and the total

number of these gi,j(h) is equal to ∑k
h=1(j(h) − 1) = ∑k

h=1 j(h) − k. By Lemma 4, we have gj(h),j = 0 for
j = j(h + 1), . . . , j(k) and the total number of these gj(h),j = 0 is equal to ∑k

h=1(k− h) = k(k− 1)/2. Thus,
G has nonzero entries at most:

k

∑
h=1

j(h)− k− k(k− 1)
2

=
k

∑
h=1

j(h)− k(k + 1)
2

=
k

∑
h=1

(j(h)− h),

which proves (27). There is another expression ind
(

T(l)
k

)
= c(l)k (r) of (15), cf. [13].

It follows from (27) that:

l

∑
k=0

(−1)krk(k−1)/2ind
(

T(l)
k

)
Xk =

l

∑
k=0

(−1)k

(
∑

0≤i1<···<ik≤l−1
ri1+···+ik

)
Xk =

l−1

∏
i=0

(
1− riX

)
.
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On the other hand, we have:

l−1

∏
i=0

1
1− riX

=
l−1

∏
i=0

∞

∑
di=0

ridi Xdi =
∞

∑
e=0

 ∑
0≤d1,d2,...,dl

d1+d2+···+dl=e

rd2 . . . r(l−1)dl

Xe =
∞

∑
e=0

ind (T(πe)) Xe,

where the last equality follows from (26) and the fact that any reduced G ∈ Ml(R) with det(G) = πe

is of the form: 
πd1 g1,2 . . . g1,l

0 πd2
. . .

...
...

. . . . . . gl−1,l
0 . . . 0 πdl

 ,

where d1 + · · ·+ dl = e and [[gi,j/πdj ]] = 0 for all i < j. Thus, ind (T(πe)) can be computed by:

∞

∑
e=0

ind (T(πe)) Xe =

[
l

∑
k=0

(−1)krk(k−1)/2ind
(

T(l)
k

)
Xk

]−1

=
l−1

∏
i=0

1
1− riX

.

Actually, T(πe) has the generating function [13]:

∞

∑
e=0

T(πe)Xe =

[
l

∑
k=0

(−1)krk(k−1)/2T(l)
k Xk

]−1

.

Summarizing the above results, for a nonzero f = ε ∏s
i=1 π

ei
i ∈ R, we decompose

T( f ) = ∏s
i=1 T

(
π

ei
i
)

and, by the multiplication, obtain all G of C ⊂ (R/〈 f 〉)l with deg(G) = f .

Example 8. In case of R = Z[i] and l = 3, ind (T (πe)) with π = 2 + i is computed by:

∞

∑
e=0

ind (T (πe)) Xe =
1

1− 31X + 155X2 − 125X3

= 1 + 31x + 806X2 + 20306X3 + 508431X4 + . . . .

For example, we have ind
(
T(π2)

)
= 806. On the other hand, because we have T(π2) = T(1, π, π) +

T(1, 1, π2), all reduced generator matrices are:

 1 ∗ ∗
π ∗

π

 (53)

 π 0 ∗
1 ∗

π

 (52)

 π ∗ 0
π 0

1

 (5)

 1 0 ∗
1 ∗

π2

 (252)

 1 ∗ 0
π2 0

1

 (25)

 π2 0 0
1 0

1

 (1),

where (·) indicates the number of reduced generator matrices of each type. Thus, we can list all 806 reduced G

for C ⊂ (R/π2R)3 with |C| = ψ(π)4 = 54.

8. Conclusions

In this study, we have found various useful properties of the codes over some Euclidean residue
rings and proven that many characteristics of the generator matrices of GQC codes (in particular,
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the uniqueness of the reduced generator matrices) remain valid for the case analyzed here. If the
moduli of the codes are equal among all symbols, i.e., C ⊂ L/uL for some nonzero u ∈ R, then we
have shown that the product of the generator matrices constructs all generator matrices. In addition,
if the moduli of the codes are relatively prime, then this construction has been shown to be a one-to-one
correspondence among the classes of generator matrices.

In the case of QC and GQC codes, the results in [2,3] have a similarity with ours in the sense of
producing codes of a modulus from those of factored moduli. We compare these results as follows.

Table 1 is supplementally explained as follows. For the classes of codes, we have treated the
codes C ⊂ (R/〈u〉)l with Euclidean domain R, which generalize the case of QC codes with R = Fq[x].
Whereas, in [2,3], the producing methods is the concatenation which is represented by, e.g., Turyn’s
(x + a, x + b, x + a + b)-method, our producing method is the multiplication G = G1G2 of generator
matrices in Theorems 1,2. In [2,3], the self-duality is preserving, i.e., roughly speaking, if codes mod
u1 and mod u2 are self-dual in a sense, then the produced code mod u = u1u2 is also self-dual.
Unfortunately, our producing method does not have this preserving property of self-duality. From the
viewpoint of computational complexity, our method can have an advantage over those of [2,3]
because, whereas Turyn-type methods require overall combination of codewords in the worst case, our
method requires only multiplying two l-by-l matrices. Consequently, it is important to use different
methods according to the desired types of codes. For example, for GQC or self-dual codes, the
methods of [2,3] should be chosen, and for high-rate QC codes, where “high-rate” means that the ratio
k/n of dimension k and length n is greater than 1/2, our method is appropriate because of its less
computational complexity.

Table 1. Comparison of various methods which produce a code mod u = u1u2 from codes mod u1 and
mod u2.

Papers [2] [3] Ours

classes of codes C ⊂
( Fq [x]
〈xm−1〉

)l

QC codes

C ⊂ ⊕l
i=1

Fq [x]
〈xmi−1〉

GQC codes
C ⊂ (R/〈u〉)l

R: Euclidean domain

producing methods concatenation concatenation
multiplication of

generator matrices
self-duality preserving preserving not preserving

computational complexity generally large generally large approximately O(l3)

As an application, for specified standard Euclidean domains, we have applied the theory of
reduced generator matrices to Hecke rings, and we have shown the enumeration formulae of the
number of a certain types of generator matrices. Future work will focus on developing a method for the
efficient enumeration of general GPC codes. Another area of research will involve the establishment of
the theory of parity-check matrices for these codes, especially a formula for extracting them from the
equalities such as in [5,7].
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