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Abstract: In this paper, we revisit well-established domain decomposition (DD) schemes to perform
realistic simulations of coupled flow and poroelasticity problems on parallel computers. We define
distinct solution schemes to take into account different transmission conditions among subdomain
boundaries. Indeed, we examine two different approaches, i.e., Dirichlet-Neumann (DN) and the
mortar finite element method (MFEM), and we recognize their advantages and disadvantages.
The MFEM significantly lessens the computational cost of reservoir compaction and subsidence
calculations by dodging the conforming Cartesian grids that arise from the pay-zone onto its vicinity.
There is a manifest necessity of producing non-matching interfaces between the reservoir and its
neighborhood. We thus employ MFEM over nonuniform rational B-splines (NURBS) surfaces to
stick these non-conforming subdomain parts. We then decouple the mortar saddle-point problem
(SPP) using the Dirichlet-Neumann domain decomposition (DNDD) scheme. We confirm that this
procedure is proper for calculations at the field level. We also carry comprehensive comparisons
between the conventional and non-matching solutions to prove the method’s accuracy. Examples
encompass linking finite element codes for slightly compressible single-phase and poroelasticity.
We have used this program to a category of problems ranking from near-borehole applications to
whole field subsidence estimations.

Keywords: domain decomposition; Dirichlet-Neumann; mortar finite elements

1. Introduction

Oil production or fluids injection induce stress variations within the reservoir, driving compaction
and surface’s subsidence with severe effects in well-casings, cap-rock, fault reactivation, as well as
adverse environmental impact. We then require reliable computations to estimate these variations and
their influence. Towards that end, we must pair flow simulations with poroelasticity that substantially
rises memory consumption and processing time, e.g., the mechanics component can take as much as
90% of the total runtime [1–8]. Domain decomposition procedures have been intensively analyzed
to overwhelm the central processing unit (CPU) load related to these predictions, and they involve
splitting the whole domain into smaller subdomains in such a fashion that each part can be tackled
individually to use parallel computing.

Poroelasticity is the underlying theory to estimate compaction and related risks, i.e.,
surface subsidence and near-wellbore issues induced by hydrocarbons production [7,9–11]. Rice
and Cleary [12] reformulated Biot’s theory [13] to express the equations regarding coefficients that
are more suitable for practical applications [14,15]. The finite element method (FEM) is the most
popular tool to solve the poroelasticity equations. Indeed, Lewis and Schrefler [16] used such
techniques to 1- and 2-D consolidation problems. Phillips and Wheeler [17,18] showed the theoretical
convergence of 2-D models that pair both continuous (CG) and discontinuous Galerkin schemes for
the displacements with mixed finite element (FE) spaces for flow. Sanhu and Wilson [19] published an
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early FE application to 3-D consolidation that was reviewed by Yokoo [20]. Ghaboussi and Wilson [21]
considered fluid’s compressibility as well as the stability of CG schemes [22]. Zienkiewicz et al. [23]
incorporated solid grains’ compressibility while Booker and Small [24] performed the stability analysis
in time. Zienkiewicz and Shiomi [25] tackled various CG approaches for subsurface consolidation.
Mixed finite elements [17,18], reduced quadrature rules [26], and penalty factors [27], which were
analyzed and applied for tackling incompressibility in elasticity, was purposed for compaction
computations coupled with the incompressible fluid flow. Many CG schemes have been used for
various practical poromechanics applications. The reader can find particular models in petroleum
engineering in [6,28–30].

MFEM is a reliable means to enforce a weaker continuity requirement at the boundary of subdomains
in which we use various grids, e.g., non-matching. The technique permits pairing elasticity and
poroelasticity on multiple domains, which is a need for flow combined with geomechanics. The reader
can find a brief intro to MFEM, its evolution, and traditional references in [1–3,31]. Bernardi et al.
proposed MFEM for Poisson’s equation to express a relaxed continuity requirement across subdomain
boundaries that we use either non-conforming grids or distinct variational forms [32]. We summarized
historical and recent developments regarding MFEM in Florez [1]. For instance, we refer the reader
to papers in [33–37] for applications for elasticity with curved surfaces in solid mechanics, and dual
spaces [38,39]. Also, Florez [1,40] introduced a mortar scheme able to glue subdomains on curved
interfaces geometrically modeled using NURBS entities, i.e., curves and surfaces. His paper included
computer implementation details.

We introduced in [41] a reservoir geometry rebuilding algorithm that generates matching
hexahedral grids that we can employ for the application herein. The simplicity of the earlier procedure
advises remodeling the reservoir in an equal way but letting non-matching grids in the various
reservoir levels as we depict in Figure 1. We thus reviewed our method in [40,42] to enhance its
execution and to enable distinctive grids in the overburden and underburden compared with the
pay-zone level. We present herein an MFEM that sticks these three non-conforming subdomains
ensuring continuous displacements over the given boundaries that we geometrically represent via
NURBS entities. We determine the SPP to require continuity among subdomains, and we further
decouple the SPP with the Dirichlet-Neumann domain decomposition method (DNDDM). We briefly
introduce MFEM, and we also discuss on calculating the mortar projector including all algorithms in
pseudo-code. The preliminary numerical results confirm that MFEM can undertake problems whose
size is of practical interest yet at the whole reservoir field.

Figure 1. Nonconforming discretization by levels.
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The remaining sections are: Section 2 defines the mathematical model and finite element
formulation for single-phase flow coupled with poroelasticity. Section 3 comprises MFEM and
emphasizes on computing the projection matrix, and thus Section 4 includes uncoupling procedures
applying domain decomposition approaches. Section 5 involves numerical examples while the three
last sections encompass conclusions, path-forward, and acknowledgments sequentially.

2. Governing Equations and Finite Element Formulation

We examine the equations that govern homogeneous linear isotropic poroelasticity and introduce
their FE formulation. We exclude all particulars herein for the sake of conciseness. The reader can find
a more comprehensive development in [2–4,6,16,22]. We consider a bordered domain Ω ⊂ R3 and its
outskirt Γ = ∂Ω, and Th is a non-deteriorated, almost even conforming triangulation of Ω based on
hexahedra. We can show that [43], for flexible porous media, the single-phase flow model develops
from the incompressible equation of continuity and Darcy’s law, this is:

∂φ∗

∂t
+∇ ·

(
− 1

µ
K (∇p− ρg∇z)

)
= q (1)

where φ∗ is a particular algorithm porosity, K means the absolute permeability, fluid properties are the
dynamic viscosity, µ, and ρ, the density. Gravity acceleration constant is g, p refers to fluid pressure
while q expresses sources and sinks, e.g., injector and producer wells. The resulting model porosity,
φ∗ appears as:

φ∗ = φ0 + α ·
(
∇ · u− ε0

v

)
+

1
M

(
p− p0

)
(2)

above α means Biot’s constant, u refers the displacement vector while ε0
v comprises the original

volumetric strain, M means Biot’s modulus [15], φ0 and p0 refer to initialization quantities.
The common boundary conditions (BCS) for p involve no-flow or homogenous Neumann, i.e.:

∇p · n̂ = 0 on Γ, (3)

we also require the original pressure in the volume, and n̂ corresponds to the outer unitary
normal vector. For mechanics, we consider the quasi-steady equilibrium equation, i.e., we neglect
velocity variations:

−∇ · σ = f in Ω ; Γ = Γu
D ∪ Γu

N

u = 0 on Γu
D

t = σ · n̂ on Γu
N

(4)

where the stress tensor is σ, f means the body forces vector, e.g., gravity. BCS often concern given
tractions on the part of the border. We can decompose boundary conditions in categories such as
Dirichlet, i.e., Γu

D, and Neumann, Γu
N , i.e., where we prescribe the remote tractions. Biot’s poroelasticity

theory and Hooke’s law determine σ by:

σ = C : ε− α
(

p− p0
)

δ

C = λδ⊗ δ + 2GI
(5)

where the elastic moduli for linear isotropic elasticity is C, δ means the Kronecker delta whereas λ, G,
are the Lamé constants, and I denotes the fourth order identity tensor. The symmetrical gradient or
strain tensor, ε gives:

ε = ∇su =
1
2

[
∇u + (∇u)T

]
(6)
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We develop a weak form by replacing Equation (2) into Equation (1), and we multiply by a
test-function v ∈ H1

0 (Ω). We then integrate across the domain and employ the theorem of divergence:

∫

Ω

(
1
M

∂p
∂t

v + αv∇ · u̇ +
1
µ

K · ∇p(∇v)T
)
· dx =

∫

Ω

q · vdx+

∫

Ω

(
ρg
µ

K · ∇z(∇v)T
)

dx +
∫

∂Ωp
N

v
1
µ

K (∇p− ρg∇z) · n̂Tds
(7)

We obtain Equation (4) weak form similarly by testing against the virtual displacement, χ,
which yields: ∫

Ω

(
∇χ
)T

: σdΩ =
∫

∂Ωu
N

χT · tds +
∫

Ω

χT · f dΩ (8)

where t = σ · n̂ means tractions exerted in the boundary. The above equation resembles the virtual
work theorem. We often take the continuous FE space as a finite-dimensional subset of the Sobolev
spaces [44], thus:

Ck (Th) =
{

v ∈ L2 (Ω) : ∀e ∈ Th, v|e ∈ Pk (e)
}

(9)

where Pk (e) refers to the space of polynomials of total degree less than or equal to k, Ck (Th) denotes
test functions that are continuous across element boundaries. We expand primary variables within the
element e, i.e., p and u, as nodal quantities multiplied by shape functions [45,46]:

ph
e (x) = (Πe)T · pe ; uh

e (x) = Ψe · ue (10)

where Πe and Ψe are shape function matrices:

Πi
e = ψi

e (x)

Ψij
e =

{
ψk

e (x) if j = j
0 otherwise

j = nDOF · (k− 1) + i ; k = 1, . . . , nn

(11)

above nn means given element’s number of nodes while nDOF denotes the number of
degrees-of-freedom that ties the space dimension, n. The engineering strain ε̂ corresponds to:

ε̂ = B · ue ; B = D ·Ψe (12)

where the linear operator D becomes:

DT =




∂x 0 0 ∂y ∂z 0
0 ∂y 0 ∂x 0 ∂z

0 0 ∂z 0 ∂x ∂y


 . (13)

We finalize replacing Equation (5) into (8) and using (7), which renders the FE formulation, i.e.:

[
0 0

QT S

]
d
dt

{
u
p

}
+

[
K −Q

0 H

]{
u
p

}
=

{
fu

fp

}
(14)
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the above matrices expressions are:

S =
∫

Ω

1
M

Π ·ΠTdx ; Q =
∫

Ω

BTαv ·Πdx

K =
∫

Ω

BTC Bdx ; fu =
∫

∂Ωu
N

t ·ΨTds +
∫

Ω

ΨT f · dx

H =
∫

Ω

1
µ

K∇Π · (∇Π)Tdx ; v = (1, 1, 1, 0, 0, 0)T

fp =
∫

∂Ωp
N

(
1
µ

K∇p · n
)
·Πds +

∫

Ω

ΠTq · dx +
∫

Ω

(
ρg
µ

K · ∇Π(∇z)T
)

dx

(15)

We can arrive at the loosely coupled method in various ways. We present an instance in
Equation (16) whereas we first solve displacements by considering pressures from the prior time
step. Next, we update them using the latest displacements:

K · uk+1 = fu + Q
(

pk − p0
)

S′ · pk+1 = S′′ · pk + fp · ∆t−QT
(

uk+1 − uk
) (16)

and the new matrixes are:
S′ = S + θ · ∆t ·H
S′′ = S− (1− θ) · ∆t ·H

(17)

where the factor of implicitness is θ ∈ [0, 1] while ∆t represents the timestep size. We remark
that an iterative coupling scheme relies on the loosely coupled by internally iterating to refresh
lagged quantities [6,22]. We realized in [1,2] that flow simulations, in particular, multi-phase,
demand mass-conservation. Indeed, besides we discretize herein the single-phase flow equation
with a Continuous Galerkin (CG) formulation is possible to post-process to produce mass-conservative
fluxes locally as indicated in [47]. We believe that CG produces meaningful pressure fields that we can
employ for coupling with the mechanics.

3. The Mortar Approach

The fundamental goal here is to advance MFEM to stick rounded interfaces such as the one that
Figure 1 displays. We can describe MFEM, i.e., for linear isotropic elasticity via the following bilinear
forms, a and β, that become [36,37]:

a (u, v) =
∫

Ω

ε(v)T · C · ε (u) dx

l (v) =
∫

∂ΩN

tT · vds +
∫

Ω

f T · vdx

β (u, Φ) =
∫

Γ

[u]T ·Φds ; [u] =
(

u(1) − u(2)
)

(18)

where β enforces for the pasting condition across subdomain boundaries, whereas we require the
displacement jump, i.e., [u], to be zero in a “weak” or integral sense:





a (uh, vh) + β (vh, Λh) = l (vh)

β (uh, Φh) = 0
(19)
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in Equation (19) Φh is the mortar space while vh and Λh are the weighting and Lagrange multiplier
spaces, respectively. Let S = S (ξ, η) : R2 → R3 be a two-parameter mapping that describes a given
mortar geometry, i.e., NURBS surface, where the parameters (ξ, η), correspond to orthogonal directions
related with the surface in the reference or computational plane, Ω, a rectangle whose image becomes
the surface in 3-D. Let T h

M
be a conforming triangulation of the reference plane, Ω, whose mapping

or image depicts the mortar as a discrete geometrical object, e.g., a quadrilateral surface. We also take
the mortar space as a finite-dimensional subset of the continuous set of Sobolev spaces:

Ck

(
T h

M
)
=
{

Φ ∈ L2 (Ω
)

: ∀eM ∈ T h
M

, Φ|eM ∈ Pk

(
eM
)}

(20)

where Pk
(
eM) means the set of polynomials whose total degree is less than or equal to k, Ck

(
T h

M
)

denotes continuous test functions across eM edges. We can write (19) in matrix form as:




K(1) 0 β(1),T

0 K(2) −β(2),T

β(1) −β(2) 0


 ·




u(1)

u(2)

Λ


 =




l(1)

l(2)

0


 (21)

The above equation is the so-called saddle-point problem (SPP). Notice that subdomains are
only glued by the Lagrange multiplier Λ, if these latter were known (i.e., for elasticity, they are the
uncomputed tractions on the subdomain interfaces), then we can unlink the system (21). For further
details, please refer to the following references [1,48,49].

We denote the rectangular matrixes β(i), i = 1, . . . , 2, “projectors” because they permit us to map
onto and from the mortar space. For 3-D problems, they are defined by:

β
(k)
ij =

∫∫

Ω

ϕ
(k)
j

(
ξ
)

Φi

(
ξ
)
·
∥∥∥∂ξS

(
ξ
)
× ∂ηS

(
ξ
)∥∥∥ dξ dη (22)

where
∥∥∂ξS × ∂ηS

∥∥ represents the surface’s normal vector metric and ξ = (ξ, η)T is the vector
of parameters. We already presented implementation details in Florez [1]. Herein we extend the
previous treatment, and we keep some of the algorithms already reported for the sake of completeness.
MFEM requires a pre-processing step to ensuring that most computations are explicit [1], which implies
possessing certain data structures. Such a step encompasses the geometrical modeling of the mortar
interfaces, and surface and volume mesh generation. Algorithm 1 depicts high-level steps that
preprocessor executes, where nMOR and nSD are the numbers of mortar entities and subdomains,
and the mortar and non-mortar quadrilateral grids, in the physical plane, are represented as Th

M

and Th
NM separately. The function dimh(·) yields the argument’s number of elements. We denote

non-mortar and mortar sides as NM- and M-side respectively. For instance, Figure 2 depicts the
topology that we are interested in, i.e., three non-conforming levels. We anticipate the level in the
middle, i.e., the pay-zone, to be the finer one. The figure also exhibits a sample mortar surface that is
an interpolation NURBS bicubic surface. The color map resembles the u ≡ ξ surface’s parameter.
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Figure 2. Nonconforming discretization subdomains and one mortar surface.

In Algorithm 1 mesh generation begins with surface discretization. Over mortar interfaces, S j,
though, we have to save both physical xk and parametric (ξk, ηk) coordinates. Having the former,
i.e., (ξk, ηk), bypasses determining them [1]. Before producing a volume mesh on the subdomains,
we enforce preservation of the NM-side’s surface grid points. We then map the surface-to-volume
numeration. We will require such mapping table while we are assembling the global SPP or passing
messages for the decoupled case. The table designates the global degrees-of-freedom (DOF) that we
have to glue (notice Figure 3).

Algorithm 1: Preprocessing high-level steps.

We denote the rectangular matrixes β(i), i = 1 . . . 2, “projectors” because they permit us to map onto128

and from the mortar space. For 3-D problems, they are defined by:129

β
(k)
ij =

¨

Ω

ϕ
(k)
j

(
ξ
)

Φi
(
ξ
)
·
∥∥∂ξS

(
ξ
)
× ∂ηS

(
ξ
)∥∥ dξ dη (22)

where ‖∂ξS × ∂ηS‖ represents the surface’s normal vector metric and ξ = (ξ, η)
T

is the vector of param-130

eters. We already presented implementation details in Florez [1]. Herein we extend the previous treatment,131

and we keep some of the algorithms already reported for the sake of completeness. MFEM requires a pre-132

processing step to ensuring that most computations are explicit [1], which implies possessing certain data133

structures. Such a step encompasses the geometrical modeling of the mortar interfaces, and surface and134

volume mesh generation. Algorithm 1 depicts high-level steps that preprocessor executes, where nMOR135

and nSD are the numbers of mortar entities and subdomains, and the mortar and non-mortar quadrilateral136

grids, in the physical plane, are represented as ThM and ThNM separately. The function dimh(·) yields the137

argument’s number of elements. We denote non-mortar and mortar sides as NM- and M-side respectively.138

For instance, Figure 2 depicts the topology that we are interested in, i.e., three non-conforming levels. We139

anticipate the level in the middle, i.e., the pay-zone, to be the finer one. The figure also exhibits a sample140

mortar surface that is an interpolation NURBS bicubic surface. The color map resembles the u ≡ ξ surface’s141

parameter.142

143

Data: Geometrical representation of Ω and mortar interfaces Sj
Result: Input data structures for MFEM computation

1 for j = 1; j <= nMOR; j = j + 1 do
2 for i = 1; i <= 2; i = i+ 1 do

3 ThNM = Generate mesh over Sj in the ji-th NM-side;

4 Store nodal points xk and corresponding (ξk, ηk) pairs;

5 for i = 1; i < nSD; i = i+ 1 do
6 Generate volume mesh in Ωi honoring NM-side surface meshes;
7 for j = 1; j < nMOR; j = j + 1 do
8 if ∂Ωi ∩ Sj then
9 Store surface-to-volume mapping on this NM-side;

10 break;

144

In algorithm 1 mesh generation begins with surface discretization. Over mortar interfaces, Sj , though,145

we have to save both physical xk and parametric (ξk, ηk) coordinates. Having the former, i.e., (ξk, ηk), by-146

passes determining them [1]. Before producing a volume mesh on the subdomains, we enforce preservation147

of the NM-side’s surface grid points. We then map the surface-to-volume numeration. We will require such148

mapping table while we are assembling the global SPP or passing messages for the decoupled case. The149

table designates the global DOF that we have to glue (notice Figure 3).150

151

7

Algorithm 2 outlines the high-level steps to compute the projector while Figure 4 reveals the
mortar and non-mortar grids in the computational plane. These grids correspond to the problem
that Figure 2 describes. To obtain a given point’s (PT) hat function (HFNT), we first compute the
compact-support (CS),NPT (Th), of that PT, i.e., the array of all elements (ELMT) that include the given
PT. For instance, for quadrilateral meshes, the number of ELMT in the CS can be one, two or four.
ELMT in the corners, in the boundary and interior ones (excluding corners), explain these numbers.
Figure 4 also depicts the HFNT, that exists only on the CS of the given PT. Notice that the CS has an
associated convex-hull, outside of this box the HFNT is nil. Steps 2 and 6, in Algorithm 2, correspond to
computing these CS and their HFNT.
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Algorithm 2: High-level steps to compute the projector.

Figure 3: Physical space to computational mappings and vice-versa

152

153

Data: Mortar interfaces Si and space Φh and NM-sides surface data

Result: Mortar projectors β(ji)

1 for j = 1; j <= nMOR; j = j + 1 do

2 Compute dimh(T h
M

) hat functions;
3 for i = 1; i <= 2; i = i+ 1 do
4 Obtain ji-th NM-side data;

5 Map NM-side mesh to computational space Ω;

6 Compute dimh(T h
NM

) hat functions;

7 for k = 1; k <= dimh(ThM ); k = k + 1 do

8 for l = 1; l <= dimh(ThNM ); l = l + 1 do
9 if ϕMk ∩ ΦNMl then

10 β
(ji)
kl = Integral in Eq. (22);

154

Algorithm 2 outlines the high-level steps to compute the projector while Figure 4 reveals the mortar155

and non-mortar grids in the computational plane. These grids correspond to the problem that Figure 2156

describes. To obtain a given point’s (PT) hat function (HFNT), we first compute the compact-support157

(CS), NPT (Th), of that PT, i.e., the array of all elements (ELMT) that include the given PT. For instance,158

for quadrilateral meshes, the number of ELMT in the CS can be one, two or four. ELMT in the corners, in159

the boundary and interior ones (excluding corners), explain these numbers. Figure 4 also depicts the HFNT,160

that exists only on the CS of the given PT. Notice that the CS has an associated convex-hull, outside of this161

box the HFNT is nil. Steps 2 and 6, in algorithm 2, correspond to computing these CS and their HFNT.162

163

8

Figure 3. Physical space to computational mappings and vice-versa.

Figure 4. Mortar and non-mortar hat functions for their respective pair of mesh points.

Now, the conditional in step 9 intersects the convex hulls of the given CS. Notice that the
intersection can be empty. Figure 5 represents the intersection in which the product of HFNT exists.
The volume beneath this surface is the given projector entry, according to Equation (22). To accurately
compute the integral, we exploit the resulting box in four quadrilateral elements as shown, and we then
use a six order Gauss-Legendre quadrature rule to evaluate every sub-integral. This latter provides
enough accuracy for our purposes. Since the computational burden to calculate the projector lies in
crossing CS, then we can implement an efficient range-search algorithm based on quadtrees [1,40] to
expedite this task.
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Figure 5. Zoom-in the given hat-function.

Finally, Figure 6 depicts the mortar projector as a matrix, for the problem described in Figure 5,
its dimensions are (11 × 11) × (9 × 9). It is indeed, in this case, a symmetric matrix. The highest values
correspond to those entries where the mortar and non-mortar points are at their closest locations.
The mortar projector resembles a L2 projector which permits mapping onto the mortar space by using
the matrix β(i). Also, mapping to a non-mortar side relies on another method that we particularly
described in [1].

Figure 6. The mortar projector is a sparse matrix.

4. Domain Decomposition Techniques

Domain Decomposition Methods (DDM) are robust algorithms to determine sizable problems on
high-performance computing machines. These techniques partition the global domain into various
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subdomains to determine the overall answer through iterative-coupling, i.e., solving the unknown
BCS on the interfaces of them [5,50]. There is vast literature relating these schemes, but we present
a simple foundation herein for the sake of completeness. Bjørstad and Widlund [51], Bramble et al.
and Marini and Quarteroni [52] examined the Dirichlet-Neumann scheme (DNDDM), for instance,
among other scholars [53].

Let L be a symbolic differential linear operator, i.e., Laplace’s operator for example. The DNDDM
scheme comprises determining a sequence of problems in the proper chain that demands a coloring
tool (see Figure 7). We paint the Dirichlet subdomains in white color while Neumann’s are black.
Notice too that the border separating subdomains is Γ. After guessing initial values for the primary
variables over Γ, i.e., we must provide γk, we can then resolve the problem on the white subdomains
(type Dirichlet) that corresponds to step 1 in Equation (23).

(1)





Lu1
k+1 = f in Ω1

u1
k+1 = 0 on ∂Ω1 ∩ ∂Ω

u1
k+1 = γk on Γ

(2)





Lu2
k+1 = f in Ω2

u2
k+1 = 0 on ∂Ω2 ∩ ∂Ω

∂nu2
k+1 = κk+1 on Γ

(23)

Figure 7. Dirichlet-Neumann (DN, left) and the Neumann-Neumann (right) schemes.

We denote the primary variable “displacements” while “tractions” correspond to their orthogonal
derivative in the border. We calculate the former on the boundary Γ after determining the first step
on the white subdomains. We then transfer them to complete the second step on the Neumann
subdomains. On them, since we know the tractions, we thus determine the displacements to update
them for the next iteration. We relax both quantities to improve the convergence where the loosening
parameters θD and θN belong to I = [0, 1] as shown in Equation (24):

κk+1 =
(
−θN · ∂nu1

k+1 +
(

1− θN
)
· ∂nu2

k
)

on Γ

γk+1 =
(

θD · u2
k+1 +

(
1− θD

)
· u1

k
)

on Γ
(24)

We repeat scheme (23) until the traction residual, namely, ‖∂n(u2 − u1)‖Γ, in the interface lies
below a given tolerance. We also fix an allowable number of iterations to stop the process in the
event of divergence. It happens that this approach entails at minimum a two-color palette for coloring
or yet more [5]. We lose parallelism since black subdomains need to wait for the whites to report
their tractions. We might provide an initial-guess for tractions to alleviate this difficulty, but it is not
simple for most situations. We can easily produce such guess for the multiplier γk by determining
a coarser-run that intends obtaining the answer over a coarser grid and then interpolating γk on Γ.
We refer the reader to [54,55] for more details.
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5. Numerical Cases

The author coded these FE formulations into a parallel C++ application termed “Integrated
Parallel Finite Element Analysis (IPFA)” whose principal features were described in [2,4,5]. We ran
all samples herein on a MacBook Pro laptop armed with an Intel(R) Quad-Core(TM) i7-7920HQ
CPU @ 3.1GHz and sixteen GB of RAM. Notice that, we attain parallelism because the CPU is
multi-core. Our iterative linear solver, i.e., conjugate gradient, uses incomplete LU decomposition
(ILU) as the preconditioner, and we also use a postprocessor called “LogProc” [56]. Currently, both
IPFA and LogProc are proprietary applications [56], but a free LogProc’s community version will be
available for download. We are also considering to offer IPFA as an open-source project. We are still
defining a timetable to achieve that, and we thus refer readers interested to the website listed in the
above reference.

Our continuous shape functions for the spatial discretization are Lagrange polynomials, Pk (e),
as well as mortar entities Pk

(
eM). We only consider piecewise linear polynomials and the following

numerical values for θD = θN = 0.5 for all DN examples below. We include four sample problems
next. The first one tackles single-phase steady-state flow where we prescribe the pressure field to
allows us to compute errors in L2 for MFEM via SPP and DN. The second one corresponds to the
near-borehole section that we solve both serially, in parallel, and with MFEM. We provide time data
and relative errors on the displacements to compare these DD schemes. The last two examples
encompass coupled flow and mechanics computations on realistic reservoirs to prove the application
of the recommended approaches to industrial size problems. We also estimate relative errors on
displacements for comparison purposes.

5.1. Example 1: Manufactured Steady-State, Single-Phase Flow

The example encompasses a fabricated problem where we propose a pressure field, and then plug
it into the continuity equation to obtain the reciprocal source term. The problem’s partial differential
equation is as follows:

−∇ ·
(
K∇p

)
= f in Ω ,

p = p0 on ΓD = Γ ,
(25)

we consider a unitary cube as the domain with Dirichlet BCS. We assume the pressure to be:

p (x, y, z) = 103xyz · (x− 1) · (y− 1) · (z− 1) · exp
[
−
(

x2 + y2 + z2
)]

; K = I , (26)

knowing p allows us computing the error of our MFEM approximation.
Figure 8 shows the three subdomains whose meshes are hexahedral. Table 1 summarizes the

metrics of these meshes. A NURBS interpolation surface represents the mortar geometry, whose finite
element space corresponds to a tensor-product grid of (20 × 20) linear piecewise rectangular elements.
We employed a frontal-direct solver to determine the global SPP (21) [1]. The results that Figure 9
depicts have good accordance with the assumed pressure field. The L2 error is 5.68 × 10−1 in the
pay-zone level for instance.

Snapshots in Figure 10 display unfolding matching steps for DN, where the iteration levels
progress in reading order as indicated. The discontinuities among subdomains are evident in the three
first snaps. The DNDDM used twelve internal iterations to lessen the residual in tractions below 10−4.
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Figure 8. Subdomain meshes in Example 1 in Section 5.1.

Figure 9. SPP (saddle-point problem) solution to Example 1 in Section 5.1.
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Table 1. Grids for Example 1 in Section 5.1.

Level # Elements # Points Coloring

Overburden 1728 2197 Dirichlet
Pay-zone 3200 3969 Neumann
Underburden 1728 2197 Dirichlet

Figure 10. Pressure variation during DN steps.

Figure 11 pictures the final parallel answer, which agrees well with the above-assumed pressure.
The L2-error for the Dirichlet subdomain is about 3.60 × 10−1, and for the Neumann improves to
4.05 × 10−2. The resulting error values are small related to the magnitude of p.

We now proceed to compare the DNDDM and MFEM for a simple manufactured 2-D problem.
We now assume for Equation (25) the following pressure field:

p (x, y) = 100× xy · (x− 1) · (y− 1) · exp
[
−
(

x2 + y2
)]

; K = I (27)

and the domain is the unitary square with pure homogeneous Dirichlet boundary conditions.
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Figure 11. DNDDM solution to Example 1 in Section 5.1.

Figure 12 depicts the meshes partitioning and coloring to solve the problem with both schemes.
In the left-hand side, we employ for the DNDDM a global conforming mesh that encompasses
9600 quadrilateral elements, and we partition it into three almost even subdomains as depicted.
We color the center domain as Neumann and the remainders as Dirichlet type. Similarly, for MFEM
we consider three subdomains, two of them (the top and bottom ones) are triangular meshes while
the one in the middle is a regular Cartesian quadrilateral mesh as shown in the right-hand-side of
the figure. Table 2 describes the type, the number of elements and points of each mesh from top to
bottom. We first focus on the MFEM problem and thus the mortars as geometrical entities consist
of two B-Splines interpolants that we constructed by interpolating a sinusoidal wave as revealed.
We employed thirty-two quadratic mortar elements per curve to stick these three subdomains by
solving the global saddle-point problem (21) with a direct frontal solver [57]. The results depicted on
Figure 13 reproduce the analytical solution, we thus also display the absolute error against the later,
which is on the order of 10−2. The error increases towards the interfaces as expected.

Table 2. DNDDM and MFEM meshes.

DNDDM MFEM

Kind of mesh Elements Points Type Kind of mesh Elements Points
Hexahedral 3200 3321 Dirichlet Triangular 1814 980
Hexahedral 3120 3240 Neumann Quadrilateral 1472 1560
Hexahedral 3280 3402 Dirichlet Triangular 7858 4090
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Table 2: DNDDM and MFEM meshes

DNDDM MFEM
Kind of mesh Elements Points Type Kind of mesh Elements Points
Hexahedral 3200 3321 Dirichlet Triangular 1814 980
Hexahedral 3120 3240 Neumann Quadrilateral 1472 1560
Hexahedral 3280 3402 Dirichlet Triangular 7858 4090

Figure 12: Partitioning for DN and MFEM problems
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Figure 12. Partitioning for DN (left) and MFEM (right) problems.

Figure 13. MFEM solution to problem (25) with pressure field (27) (left) and its error (right).

We tried to manufacture a good benchmark problem to compare these schemes, but the DN
subdomains have a more refined mesh that the MFEM ones. However, for the topological point of
view, the meshes are equivalent. MFEM offers the flexibility of gluing nonmatching interfaces while DN
operates over conforming ones. We wish to emphasize that these schemes are rather complementary
than competitive. Indeed, we foresee that DN will help us decouple MFEM’s SPP for realistic 3-D
problems via the mortar mappings that we presented in [1].

Figure 14 displays pressure snapshots that correspond to four different Dirichlet-Neumann
iteration levels, namely 2, 4, 6 and 8, evolving from left-to-right and top-to-bottom. We employ the
mesh in the left-hand-side of Figure 12. We provide no initial guess for pressure, which explains the
mismatch in the first snapshots. Notice then how the process to match up those subdomains could
reduce discrepancies in just a few iterations. As for stopping criterion, we require that the residual in
the tractions in the interface lies below a given tolerance. For this problem, we spent sixteen iterations
to achieve a traction residual smaller than 10−4.

The DN final solution that we obtained after merging the subdomain results reproduces the
analytical solution as well but exhibits larger errors compared to the MFEM, see Figure 15. Indeed,
the error triplicates in particular in the bottom interface among subdomains. Part of the issue may be
the fact that we are partitioning in the area where the pressure experiences strong gradients, as smarter
partitioning strategy might lead to better results but with a detrimental in balance loading.
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Figure 14: DN snapshots to solving (25) with pressure field (27)
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Figure 14. DN snapshots to solving (25) with pressure field (27).

Figure 15. DN solution to problem (25) with pressure field (27) (left) and its error (right).

Finally, Table 3 compares timing data for both schemes. We employ multi-threading assembling
for all subdomains. MFEM duplicates DN preprocessing time since we need to compute the mortar
projectors and still need communication tables. However, since we employ the SPP approach for
MFEM, we do not need to match subdomains iteratively as DN does, which explains the time savings.
The DN meshes were finer than MFEM ones, and thus it takes longer to both assemble and solve
those subdomains problems. The next example will cover on detail the overhead associated with DN.
There is a clear winner for this benchmark problem, but results are relative, we repeat that these are
complementary methods and not competitive.
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Table 3. MFEM versus DNDDM.

Scheme Prep. Time Solving Runtime

MFEM 6 s, 964 ms 12 s, 475 ms
DNDDM 3 s, 572 ms 26 s, 463 ms

5.2. Example 2: 3-D Near Wellbore Problem

We revisit herein the well-known Bradley’s problem that we discussed already in [1] (see Figure 16).
We consider homogeneous linear isotropic elasticity. Figure 16 depicts the problem geometry and
BCS for a 2-D case where we prescribed pressure in the borehole, symmetrical displacements becomes
zero on the bottom and left surfaces while we enforce the in situ or remote stresses in the remaining
surfaces, as depicted in the figure. The hole’s radius is 5.0 inches, and the square length is 25.0 inches.
Table 4 below shows the mechanical properties, pressure unit is MPa, and values for BCS where we
divide the parameters by the mean remote stress, i.e., σ = (σH + σh)

/
2.0, (x)∗ = (x/σ), to normalize

them. We extend Bradley’s problem to 3-D as proceeds. The geometrical entity encompasses a cube at
the origin with a side of 25.0 inches, and we subtract an aligned cylinder whose radius is 5.0 inches as
pictured in Figure 17. Additionally to the 2-D conditions above, we axially enforce, i.e., z-direction, no uz

displacement in the bottom face while the top surface is traction-free, as displayed in the figure.
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Figure 16. Bradley’s 2-D geometry, BCS, and a sample mesh.

Table 4. Parameters for Bradley’s problem.

Variable Value

pw 50.0
σH 80.0
σh 20.0
E 5.0× 103

υ 0.25

Our objectives with this example are twofold. First, we compare the global serial solution with
its parallel counterpart for a conforming mesh case. Second, we employ MFEM to glue nonmatching
interfaces that discretize the problem accordingly. We compare the runtimes of the above procedures.
We first tackle Bradley’s problem serially with a global conforming mesh that has 98,304 elements and
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105,105 points. Assembling the stiffness matrix takes 3 min, and 14 s and solving the sparse system
last 39.5 s. We use ILU as preconditioner and CG as an iterative solver which spent 283 iterations to
achieve a tolerance of 9.315 × 10−9. Table 5 summarizes the overall runtime for getting a solution.
The global solution renders the displacements to lie within the following intervals: ux = [−0.42786, 0],
uy = [−0.01154, 0.103155], and uz = [0, 0.188838]. We now employ the DNDDM over a pair of processors
as depicted in Figure 18, which also shows on the right-hand-side the resulting parallel solution
obtained after executing ten internal iterations to attain traction residual of 4.8 × 10−4. We number the
conforming subdomains starting at the bottom, Table 5 compiles timing and partitioning data.

Figure 17. Bradley’s 3-D problem.

Table 5. Bradley’s problem partitioning and parallel solution.

Subdomain # Elements Type Runtime

- 98304 Global 4 min, 48 s
0 52224 Neumann 9 min, 4 s
1 46080 Dirichlet 6 min, 20 s

Snaps in Figure 19 show the DN matching process evolution, where we illustrate the ux

displacement. We show the first four iterations in reading order. This parallel answer matches its serial
counterpart which we gauged against commercial software, and we obtained excellent accordance [2]
(see Figure 18 for instance). Indeed, for example, the relative error in the ux displacement against the
global solution is less than 0.14%. For the other two displacements, namely, uy and uz, the errors are
0.19% and 1% respectively. We can claim that the parallel solution reproduces the global solution.
However, its runtimes are disappointing. Table 5 highlights the fact that the parallel solution took
more than twice the time spent by the global one. The Neumann subdomain contributed the longer
runtime. Besides we solve smaller subdomain problems, i.e., the sparse systems are about a half in
rank, we must match the subdomain which takes up to 10 iterations. We solve the smaller matrixes
that many times. Also, for the Neumann’s subdomain, we compute another solution by switching
the boundary conditions in the interface to Dirichlet type, so that we can overrelax the tractions
as indicated in Equation (24). Bottom line, Neumann’s subdomain acts as preconditioner and thus
requires two local solves per iteration. This overhead explains the additional runtime. We must point
out that partitioning and iterative coupling by the BCS makes plausible to solve huge problems that
we cannot tackle in a single computer, though.
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Figure 18. Partitioning (left) and parallel (right) answer for Bradley 3-D example, (ux (in)).

Figure 19. DN snapshots for ux (in).

We undertake Bradley’s 3-D problem with non-conforming grids as follows. Hence, we radially
divided the domain into two subdomains as shown in Figure 20. The inner subdomain has a finer
mesh than the outer one. Both are tensor-product hexahedral meshes. Table 6 summarizes information
concerning these subdomain. In the table, the mesh’s size refers to the tangential times radial times the
axial number of points respectively. We consider two successively refined meshes for MFEM purposes
via SPP. Figure 20 depicts the case with the finer meshes. The table also includes the number of elements
and points on those subdomains as well as the runtime to assemble the local stiffness matrixes.
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Figure 20. Meshes for MFEM.

Table 6. Meshes employed with MFEM.

Subdomain Mesh’s Size Elements Points Assembling Time

Case 1: coarser meshes

Inner 25 × 7 × 17 2304 2975 4 s, 484 ms
Outer 17 × 13 × 13 2304 2873 4 s, 453 ms

Case 2: finer meshes

Inner 33 × 11 × 25 7680 9075 10 s, 781 ms
Outer 25 × 17 × 17 6144 7225 8 s, 515 ms

We geometrically describe the mortar plane by using a NURBS circular surface as pictured in
Figure 20. The pseudo-color map presents the u ≡ ξ variable of the entity [2,41]. The mortar grid
resembles a regular Cartesian mesh of size 25× 17. We consider piecewise linear rectangular elements.

Table 7 presents relevant information concerning these MFEM computations. We include details
such as the preprocessing time, i.e., computing the projectors and preparing BCS, the time that the
direct solver employed to solve the SPP, and also the overall runtime for MFEM. We observe that
Case 1 attains proportional uz-error to the DN case but with a substantial speedup. If we refine the
subdomain further, as Case 2, we reduce the error in half, i.e., commensurable to DN, with a coarser
mesh in the outer ring, but runtime is similar to the global case. Indeed, the SPP becomes highly
ill-conditioned, and the direct frontal solver [57] struggles to solve it. However, the fact of gluing these
nonconforming interfaces is what makes MFEM attractive. It is also possible to improve the direct
solver performance by using dual mortar spaces that yield a diagonal projector or to decouple the SPP
via DD-schemes. Wohlmuth [38] insists that her procedure is superior because the pairing condition
is simpler to accomplish because fewer elements are in the compact-support of the basis functions.
In such a scheme, we can represent the mortar projector by a diagonal matrix [37]. Finally, Figure 21
depicts these MFEM solutions that look relatively smooth.
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Table 7. MFEM solutions via SPP.

Case Prep. Time SPP Time Overall Runtime uz Errors (%)

1 2 s, 328 ms 15 s, 968 ms 22.7 s 2.02
2 2 s, 93 ms 4 min, 4 s, 500 ms 4 min, 18.3 s 0.89

Figure 21. MFEM solutions for Bradley 3-D.

5.3. Example 3: Synthetic 3-D Reservoir

This example encompasses a realistic reservoir geometry including a pay-zone of size
(20 × 20 × 10) and its surroundings as depicted in Figure 22. We enforce far-field BCS to all cuboid
faces, i.e., no displacement in the orthogonal direction to the given face, except in the top one, which is
traction-free. For the sake of simplicity, we assume a constant pressure drop of 1000.0 Psi in the
pay-zone, which resembles a reservoir compaction and subsidence scenario [58,59]. The global
conforming mesh, see Figure 22, consists of 13,824 hexahedral elements. We consider isotropic linear
elasticity with constant mechanical properties, for both the reservoir and its vicinity thus E = 30.0 Ksi
and v = 0.30.

Figure 22. Conforming mesh.
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Figure 23 depicts half of the domain as cut-away to show the resulting vertical displacement field.
The deformation pattern is the standard blue compaction dome in the cap and the red build up in
the base. The displacement is not symmetric, though. We employ this global conforming solution to
benchmark our MFEM procedure.

We now partition the conforming case in the fashion that Figure 24 depicts. We keep the same
discretization in the pay-zone level, but we have aerially coarser overburden (12 × 12 × 8) and
underburden (12 × 12 × 6). The mesh was attracted towards the pay-zone as usual. Since this is a
graded mesh, we also have to grade the mortar space mesh, in the parametric plane, in a similar manner
as Figure 25 depicts. Table 8 compiles information concerning these subdomains. We geometrically
represent the mortar spaces using NURBS surfaces as in the earlier example.

Figure 23. Solution uz displacement.

Figure 24. Meshes to use with MFEM.
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Figure 25. Mortar (left) and non-mortar (right) meshes.

Table 8. Grids for Example 3 in Section 5.3.

Level # Elements # Points Coloring

Overburden 2048 2601 Dirichlet
Pay-zone 5760 5760 Neumann
Underburden 1536 2023 Dirichlet

The mortar space considers a graded tensor-product grid of 25 × 25 linear piecewise rectangular
elements. Figure 26 presents the MFEM answer via SPP. This solution is a suitable approximation to
the conforming one, notice that the maximum compaction is within 6% while the build-up has a 7%
relative error. These results are striking besides the mesh in the overburden and underburden have
four times fewer elements than their equivalents in the conforming case.

Figure 26. MFEM solution for Example 3 in Section 5.3.

Alternatively, successive snapshots, in reading order, in Figure 27 show the evolution of the
DN pairing workflow, uz is the displacement depicted; this decoupled solution agrees very well with
both the serial and the one based on SPP. Figure 27 depicts the answer achieved after completing
12 iterations to attain traction residual less than 10−4. This last snapshot looks relatively smooth.
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Figure 27. DN solution for Example 3 in Section 5.3.

5.4. Example 4: Realistic Synthetic Reservoir

We now modify the third example to tackle a more realistic reservoir geometry as shown in
Figure 28. We employ the loosely coupled formulation (16). The isotropic porosity and permeability
fields arise from the SPE10 related project (see Figure 29). The fluid viscosity equals 0.0133 cp while
the entire compressibility is 1.4 × 10 −5 Psi−1. We consider no gravity for both flow and elasticity
equations. We retain the same mesh sizes, mechanical properties, and BCS as the example before.

Figure 28. Conforming mesh for mechanics and the pay-zone’s mesh.
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We consider two vertical producer wells in the corners, with prescribed bottom hole pressure,
as depicted in Figure 30. The initial condition comprises a uniform pressure of 1000.0 Psi in the entire
pay-zone while we assume p in the wells as 0.0 Psi that resembles a depletion situation. We also consider
no-flow BCS on all reservoir surfaces. The initial displacement field is zero as well. Figure 30 depicts,
in reading order, pressure evolution snapshots after 0, 20, and 40 years of production. We analyze
these last two snapshots for MFEM purposes.

Figure 31 depicts pictures with the unfolding of the vertical displacement, for the conforming
mesh. A compaction dome develops just above the section where the most significant pressure drop
occurs. The deformation-pattern is again the usual one where a compaction skull sits on the head
while a build-up happens in the base of the reservoir.

We repeat the same numerical experiment, this time by solving the SPP, and we observe that
the resulting MFEM solutions once again accord very well with the conforming case as depicted in
Figure 32. The discrepancies between the conforming and MFEM solutions are within 6%.

Figure 29. KX (mD) permeability in the pay-zone.

Figure 30. Pressure (Psi) snapshots at 0, 20, and 40 years.
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Figure 31. uz snapshots at 20 and 40 years of evolution for conforming case.

Figure 32. uz snapshots at 20 and 40 years of evolution for MFEM.

6. Concluding Remarks

We introduced herein a comparably comprehensive MFEM scheme on curved interfaces described
using NURBS surfaces. We explained in detail the steps that are necessary to compute the mortar
projector, and we also included their algorithms in pseudo-code. The examples considered a steady-state
single-phase flow problem, Bradley’s near-borehole problem, and two coupled flow and mechanics
simulations with a realistic reservoir geometry. These last two field level compaction computations
showed that the suggested method has the potential to tackle problems of practical interest.

We benchmarked these schemes for a topologically equivalent 2-D problem and we find out about
the pros and cons of every approach. MFEM offers the flexibility of gluing nonmatching interfaces
while DN operates over conforming ones. DN must match the subdomains in an iterative fashion
which consumes CPU. Regarding runtime, MFEM certainly speeds up a given problem where we can
glue coarser meshes in those areas with smaller gradients. On the other hand, MFEM via SPP requires
solving an ill-condition problem that may not be tractable in challenging 3-D problems. We thus
emphasize that these schemes are rather complementary than competitive.

We demonstrated that the DNDDM could decouple the global SPP that is imperative to continue
this methodology to 3-D domains with a substantial number of DOF, where solving the latter is not
feasible at all. We found that often parallel solution runtimes are disappointing when compared with
the serial ones. Indeed, the Neumann subdomain contributed the longer runtime since we compute
another solution by switching the BCS in the interface to Dirichlet type so that we can overrelax the
tractions. Bottom line, Neumann’s subdomain acts as preconditioner and thus requires two local solves
per iteration. We must point out that partitioning and iterative coupling by the BCS makes plausible
to solve huge problems that we cannot tackle in a single computer, though. This study reveals new
prospects to advance parallel codes for reservoir simulation linked with poroelasticity.
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7. Path Forward

1. Hook up IPFA to given black oil and compositional reservoir simulators by using loosely and
iterative couplings.

2. We need further testing on Linux cluster machines. IPFA was coded and examined already
on MS-Windows for the sake of directness as well as the existence of free-of-charge debugging
software. Our expectation remains compiling, linking and running only on different operating
systems to release in a cross-platform fashion.

3. We will extend the scheme presented herein to nonlinear problems such as those arising
from thermal poroplasticity. We also plan to reduce the DN solving time per iteration
employing model-order reduction ideas, e.g., creating an oblique subspace via proper orthogonal
decomposition to speed up solving the subdomain problems.
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