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Abstract: In this paper we investigate some fixed-circle theorems using Ćirić’s technique (resp.
Hardy-Rogers’ technique, Reich’s technique and Chatterjea’s technique) on a metric space. To do
this, we define new types of Fc-contractions such as Ćirić type, Hardy-Rogers type, Reich type and
Chatterjea type. Two illustrative examples are presented to show the effectiveness of our results.
Also, it is given an application of a Ćirić type Fc-contraction to discontinuous self-mappings which
have fixed circles.

Keywords: fixed circle; Ćirić type Fc-contraction; Hardy–Rogers type Fc-contraction; Reich type
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1. Introduction

Fixed point theory has become the focus of many researchers lately (see [1–4]). One of the main
important results of fixed point theory is when we show that a self mapping on a metric space under
some specific conditions has a unique fixed point. In some cases when we do not have uniqueness of
the fixed point, such a map fixes a circle which we call a fixed circle, the fixed-circle problem arises
naturally in practice. There exist a lot of examples of self-mappings that map a circle onto itself and
fixes all the points of the circle, whereas the circle is not fixed by the self-mapping. For example,
let (C, d) be the usual metric space and C0,1 be the unit circle. Let us consider the self-mappings
T1 : C→ C and T2 : C→ C defined by

T1z =

{
1
z if z 6= 0
0 if z = 0

and

T2z =

{
1
z if z 6= 0
0 if z = 0

,

for all z ∈ C where z is the complex conjugate of the complex number z. Then, we have Ti(C0,1) = C0,1

(i = 1, 2), but C0,1 is the fixed circle of T1 while it is not the fixed circle of T2 (especially T2 fixes only
two points of the unit circle). Thus, a natural question arises as follows:

What is (are) the necessary and sufficient condition(s) for a self-mapping T that make a given
circle as the fixed circle of T? Therefore, it is important to investigate new fixed-circle results.

Various fixed-circle theorems have been obtained using different approaches on metric and some
generalized metric spaces (see [5–9] for more details). For example, in [5], fixed-circle results were
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proved using the Caristi’s inequality on metric spaces. In [8], it was given a fixed-circle theorem for a
self-mapping that maps a given circle onto itself. In [9], it was extended known fixed-circle results in
many directions and introduced a new notion called as an Fc-contraction. In addition, some generalized
fixed-circle theorems were investigated on an S-metric space (see [6,7]).

Motivated by the above studies, we present some new fixed-circle theorems using the ideas
given in [10,11]. In [10], it was proved some fixed-point results using an F-contraction of the
Hardy-Rogers-type and in [11], it was obtained a fixed-point theorem using a Ćirić type generalized
F-contraction. We generate some fixed-circle results from these types of contractions using
Wardowski’s technique. For some fixed-point results obtained by this technique, one can consult the
references [10–13]. In Section 2, we define the notions of a Ćirić type Fc-contraction, Hardy-Rogers
type Fc-contraction, Reich type Fc-contraction and Chatterjea type Fc-contraction. Using these concepts,
we prove some results related to the fixed-circle problem. In Section 3, we present an application of
our obtained results to a discontinuous self-mapping that has a fixed circle.

2. New Fixed-Circle Results via Some Classical Techniques

Let (X, d) be a metric space and T : X → X be a self-mapping in the whole paper. Now we
investigate some new fixed-circle theorems using the ideas of some classical fixed-point theorems.

At first, we recall some necessary definitions and a theorem related to fixed circle. A circle and a
disc are defined on a metric space as follows, respectively:

Cu0,r = {u ∈ X : d(u, u0) = r}

and
Du0,r = {u ∈ X : d(u, u0) ≤ r} .

Definition 1 ([5]). Let Cu0,r be a circle on X. If Tu = u for every u ∈ Cu0,r then the circle Cu0,r is said to be a
fixed circle of T.

Definition 2 ([13]). Let F be the family of all functions F : (0, ∞)→ R such that
(F1) F is strictly increasing,
(F2) For each sequence {αn} in (0, ∞) the following holds

lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞,

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

Definition 3 ([9]). If there exist t > 0, F ∈ F and u0 ∈ X such that for all u ∈ X the following holds:

d(u, Tu) > 0⇒ t + F(d(u, Tu)) ≤ F(d(u0, u)),

then T is said to be an Fc-contraction on X.

Theorem 1 ([9]). Let T be an Fc-contractive self-mapping with u0 ∈ X and

r = min {d(u, Tu) : u 6= Tu} . (1)

Then Cu0,r is a fixed circle of T. Especially, T fixes every circle Cu0,ρ where ρ < r.

Now we define new contractive conditions and give some fixed-circle results.
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Definition 4. If there exist t > 0, F ∈ F and u0 ∈ X such that for all u ∈ X the following holds:

d(u, Tu) > 0 =⇒ t + F(d(u, Tu)) ≤ F(m(u, u0)), (2)

where

m(u, v) = max
{

d(u, v), d(u, Tu), d(v, Tv),
1
2
[d(u, Tv) + d(v, Tu)]

}
,

then T is said to be a Ćirić type Fc-contraction on X.

Proposition 1. If T is a Ćirić type Fc-contraction with u0 ∈ X then we have Tu0 = u0.

Proof. Assume that Tu0 6= u0. From the definition of a Ćirić type Fc-contraction, we get

d(u0, Tu0) > 0 =⇒ t + F(d(u0, Tu0)) ≤ F(m(u0, u0))

= F

(
max

{
d(u0, u0), d(u0, Tu0), d(u0, Tu0),

1
2 [d(u0, Tu0) + d(u0, Tu0)]

})
= F(d(u0, Tu0)),

a contradiction because of t > 0. Then we have Tu0 = u0.

Theorem 2. Let T be a Ćirić type Fc-contraction with u0 ∈ X and r be defined as in (1). If d(u0, Tu) = r for
all u ∈ Cu0,r then Cu0,r is a fixed circle of T. Especially, T fixes every circle Cu0,ρ with ρ < r.

Proof. Let u ∈ Cu0,r. Since d(u0, Tu) = r, the self-mapping T maps Cu0,r into (or onto) itself.
If Tu 6= u, by the definition of r, we have d(u, Tu) ≥ r. So using the Ćirić type Fc-contractive property,
Proposition 1 and the fact that F is increasing, we get

F(r) ≤ F(d(u, Tu)) ≤ F(m(u, u0))− t < F(m(u, u0))

= F
(

max
{

d(u, u0), d(u, Tu), d(u0, Tu0),
1
2
[d(u, Tu0) + d(u0, Tu)]

})
= F (max {r, d(u, Tu), 0, r}) = F(d(u, Tu)),

a contradiction. Therefore, d(u, Tu) = 0 and so Tu = u. Consequently, Cu0,r is a fixed circle of T.
Now we show that T also fixes any circle Cu0,ρ with ρ < r. Let u ∈ Cu0,ρ and assume that

d(u, Tu) > 0. By the Ćirić type Fc-contractive property, we have

F(d(u, Tu)) ≤ F(m(u, u0))− t < F(m(u, u0)) = F(d(u, Tu)),

a contradiction. Thus we obtain d(u, Tu) = 0 and Tu = u. So, Cu0,ρ is a fixed circle of T.

Corollary 1. Let T be a Ćirić type Fc-contractive self-mapping with u0 ∈ X and r be defined as in (1).
If d(u0, Tu) = r for all u ∈ Cu0,r then T fixes the disc Du0,r.

Definition 5. If there exist t > 0, F ∈ F and u0 ∈ X such that for all u ∈ X the following holds:

d(u, Tu) > 0 =⇒ t + F(d(u, Tu)) ≤ F

(
αd(u, u0) + βd(u, Tu) + γd(u0, Tu0)

+δd(u, Tu0) + ηd(u0, Tu)

)
, (3)

where
α + β + γ + δ + η = 1, α, β, γ, δ, η ≥ 0 and α 6= 0,

then T is said to be a Hardy-Rogers type Fc-contraction on X.
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Proposition 2. If T is a Hardy-Rogers type Fc-contraction with u0 ∈ X then we have Tu0 = u0.

Proof. Assume that Tu0 6= u0. From the definition of a Hardy-Rogers type Fc-contraction, we get

d(u0, Tu0) > 0 =⇒ t + F(d(u0, Tu0))

≤ F

(
αd(u0, u0) + βd(u0, Tu0) + γd(u0, Tu0)

+δd(u0, Tu0) + ηd(u0, Tu0)

)
= F ((β + γ + δ + η) d(u0, Tu0))

< F(d(u0, Tu0)),

a contradiction because of t > 0. Then we have Tu0 = u0.

Using Proposition 2, we rewrite the condition (3) as follows:

d(u, Tu) > 0 =⇒ t + F(d(u, Tu)) ≤ F

(
αd(u, u0) + βd(u, Tu)

+δd(u, Tu0) + ηd(u0, Tu)

)
,

where
α + β + δ + η ≤ 1, α, β, δ, η ≥ 0 and α 6= 0.

Using this inequality, we obtain the following fixed-circle result.

Theorem 3. Let T be a Hardy-Rogers type Fc-contraction with u0 ∈ X and r be defined as in (1). If d(u0, Tu) = r
for all u ∈ Cu0,r then Cu0,r is a fixed circle of T. Especially, T fixes every circle Cu0,ρ with ρ < r.

Proof. Let u ∈ Cu0,r. Using the Hardy-Rogers type Fc-contractive property, Proposition 2 and the fact
that F is increasing, we get

F(r) ≤ F(d(u, Tu))

≤ F (αd(u, u0) + βd(u, Tu) + δd(u, Tu0) + ηd(u0, Tu))− t

< F(αr + βd(u, Tu) + δr + ηr)

≤ F((α + β + δ + η)d(u, Tu)) ≤ F(d(u, Tu)),

a contradiction. Therefore, d(u, Tu) = 0 and so Tu = u. Consequently, Cu0,r is a fixed circle of T. By the
similar arguments used in the proof of Theorem 2, T also fixes any circle Cu0,ρ with ρ < r.

Corollary 2. Let T be a Hardy-Rogers type Fc-contractive self-mapping with u0 ∈ X and r be defined as in (1).
If d(u0, Tu) = r for all u ∈ Cu0,r then T fixes the disc Du0,r.

Remark 1. If we consider α = 1 and β = γ = δ = η = 0 in Definition 5, then we get the notion of an
Fc-contractive mapping.

In Definition 5, if we choose δ = η = 0, then we obtain the following definition.

Definition 6. If there exist t > 0, F ∈ F and u0 ∈ X such that for all u ∈ X the following holds:

d(u, Tu) > 0 =⇒ t + F(d(u, Tu)) ≤ F (αd(u, u0) + βd(u, Tu) + γd(u0, Tu0)) , (4)

where
α + β + γ < 1 and α, β, γ ≥ 0,

then T is said to be a Reich type Fc-contraction on X.
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Proposition 3. If a self-mapping T on X is a Reich type Fc-contraction with u0 ∈ X then we have Tu0 = u0.

Proof. From the similar arguments used in the proof of Proposition 2, the proof follows easily since
β + γ < 1.

Using Proposition 3, we rewrite the condition (4) as follows:

d(u, Tu) > 0 =⇒ t + F(d(u, Tu)) ≤ F (αd(u, u0) + βd(u, Tu)) ,

where
α + β < 1 and α, β ≥ 0.

Using this inequality, we obtain the following fixed-circle result.

Theorem 4. Let T be a Reich type Fc-contraction with u0 ∈ X and r be defined as in (1). Then Cu0,r is a fixed
circle of T. Especially, T fixes every circle Cu0,ρ with ρ < r.

Proof. It can be easily seen since

F(r) ≤ F(d(u, Tu)) ≤ F((α + β)d(u, Tu)) < F(d(u, Tu)).

Corollary 3. Let T be a Reich type Fc-contractive self-mapping with u0 ∈ X and r be defined as in (1). Then T
fixes the disc Du0,r.

In Definition 5, if we choose α = β = γ = 0 and δ = η, then we obtain the following definition.

Definition 7. If there exist t > 0, F ∈ F and u0 ∈ X such that for all u ∈ X the following holds:

d(u, Tu) > 0 =⇒ t + F(d(u, Tu)) ≤ F (η(d(u, Tu0) + d(u0, Tu))) , (5)

where

η ∈
(

0,
1
2

)
,

then T is said to be a Chatterjea type Fc-contraction on X.

Proposition 4. If a self-mapping T on X is a Chatterjea type Fc-contraction with u0 ∈ X then we have
Tu0 = u0.

Proof. From the similar arguments used in the proof of Proposition 2, it can be easily proved.

Theorem 5. Let T be a Chatterjea type Fc-contraction with u0 ∈ X and r be defined as in (1). If d(u0, Tu) = r
for all u ∈ Cu0,r then Cu0,r is a fixed circle of T. Especially, T fixes every circle Cu0,ρ with ρ < r.

Proof. By the similar arguments used in the proof of Theorem 3 and Definition 7, it can be
easily checked.

Corollary 4. Let T be a Chatterjea type Fc-contractive self-mapping with u0 ∈ X and r be defined as in (1).
If d(u0, Tu) = r for all u ∈ Cu0,r then T fixes the disc Du0,r.

Now we give two illustrative examples of our obtained results.
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Example 1. Let X =
{

1, 2, e3 − 1, e3, e3 + 1
}

be the metric space with the usual metric. Let us define the
self-mapping T : X → X as

Tu =

{
2 if u = 1
u otherwise

,

for all u ∈ X.
The Ćirić type Fc-contractive self-mapping T: The self-mapping T is a Ćirić type Fc-contractive

self-mapping with F = ln u, t = ln(e3 − 1) and u0 = e3. Indeed, we get

d(u, Tu) = d(1, T1) = d(1, 2) = 1 > 0

for u = 1 and

m(u, u0) = m(1, e3) = max
{

d(1, e3), d(1, 2),
1
2

[
d(1, e3) + d(e3, 2)

]}
= max

{
e3 − 1, 1, e3 − 3

2

}
= e3 − 1.

Then, we have

t + F(d(u, Tu)) = ln(e3 − 1) + ln(d(1, 2)) = ln(e3 − 1)

≤ ln(d(m(u, u0))) = ln(e3 − 1).

The Hardy-Rogers type Fc-contractive self-mapping T: The self-mapping T is a Hardy-Rogers type
Fc-contractive self-mapping with F = ln u, t = ln(e3)− ln 3, α = β = 1

3 , δ = η = 0 and u0 = e3. Indeed,
we get

d(u, Tu) = d(1, T1) = d(1, 2) = 1 > 0

for u = 1 and

αd(u, u0) + βd(u, Tu) + δd(u, Tu0) + ηd(u0, Tu) =
1
3

[
d(1, e3) + d(1, 2)

]
=

1
3

[
e3 − 1 + 1

]
=

e3

3
.

Then, we have

t + F(d(u, Tu)) = ln(e3)− ln 3 + ln(d(1, 2)) = ln(e3)− ln 3

≤ ln(d(αd(u, u0) + βd(u, Tu) + δd(u, Tu0) + ηd(u0, Tu)))

= ln(e3)− ln 3.

The Reich type Fc-contractive self-mapping T: The self-mapping T is a Reich type Fc-contractive
self-mapping with F = ln u, t = ln(e3)− ln 4, α = β = 1

4 and u0 = e3. Indeed, we get

d(u, Tu) = d(1, T1) = d(1, 2) = 1 > 0

for u = 1 and

αd(u, u0) + βd(u, Tu) =
1
4

[
d(1, e3) + d(1, 2)

]
=

1
4

[
e3 − 1 + 1

]
=

e3

4
.
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Then, we have

t + F(d(u, Tu)) = ln(e3)− ln 4 + ln(d(1, 2)) = ln(e3)− ln 4

≤ ln(d(αd(u, u0) + βd(u, Tu))) = ln(e3)− ln 4.

The Chatterjea type Fc-contractive self-mapping T: The self-mapping T is a Chatterjea type Fc-contractive
self-mapping with F = ln u, t = ln

( 2
3 e3 − 1

)
, η = 1

3 and u0 = e3. Indeed, we get

d(u, Tu) = d(1, T1) = d(1, 2) = 1 > 0

for u = 1 and

η(d(u, Tu0) + d(u0, Tu)) =
1
3

[
d(1, e3) + d(e3, 2)

]
=

1
3

[
e3 − 1 + e3 − 2

]
=

2e3

3
− 1.

Then, we have

t + F(d(u, Tu)) = ln
(

2
3

e3 − 1
)
+ ln(d(1, 2)) = ln

(
2
3

e3 − 1
)

≤ ln(η(d(u, Tu0) + d(u0, Tu))) = ln
(

2
3

e3 − 1
)

.

Also, we obtain
r = min {d(u, Tu) : u 6= Tu} = {d(1, 2)} = 1.

Consequently, T fixes the circle Ce3,1 =
{

e3 − 1, e3 + 1
}

and the disc De3,1 =
{

e3 − 1, e3, e3 + 1
}

.

In the following example, we see that the converse statements of Theorems 2–5 are not always true.

Example 2. Let x0 ∈ X be any point and the self-mapping T : X → X be defined as

Tu =

{
u if u ∈ Du0,µ

u0 if u /∈ Du0,µ
,

for all u ∈ X with µ > 0. Then T is not a Ćirić type Fc-contractive self-mapping (resp. Hardy-Rogers
type Fc-contractive self-mapping, Reich type Fc-contractive self-mapping and Chatterjea type Fc-contractive
self-mapping). But T fixes every circle Cx0,ρ where ρ ≤ µ.

3. An Application to Discontinuity Problem

In this section, we give some examples of discontinuous functions and obtain a discontinuity
result related to fixed circle.

Example 3. Let X =
{

1, 2, e3 − 1, e3, e3 + 1
}

be the metric space with the usual metric. Let us define the
self-mapping T : X → X as

Tu =

{
2 if u < e3 − 1
u if u ≥ e3 − 1

,

for all u ∈ X. As in Example 1, it is easily verified that the self-mapping T is a Ćirić type Fc-contractive
self-mapping and Ce3,1 =

{
e3 − 1, e3 + 1

}
is a fixed circle of T. We note that the self-mapping T is continuous

at the point e3 + 1 while the self-mapping T is discontinuous at the point e3 − 1.
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Example 4. Let X =
{

1, 2, e3 − 1, e3, e3 + 1
}

be the metric space with the usual metric. Let us define the
self-mapping T : X → X as

Tu =


2 if u < e3 − 1

e3 − 1 if e3 − 1 ≤ u < e3

u if e3 ≤ u ≤ e3 + 1
u− 1 if u > e3 + 1

,

for all u ∈ X. As in Example 1, it is easily checked that the self-mapping T is a Ćirić type Fc-contractive
self-mapping and Ce3,1 =

{
e3 − 1, e3 + 1

}
is a fixed circle of T. We note that the self-mapping T is discontinuous

at the center e3 and on the circle Ce3,1.

Consider the above examples, we give the following theorem.

Theorem 6. Let T be a Ćirić type Fc-contraction with u0 ∈ X and r be defined as in (1). If d(u0, Tu) = r for
all u ∈ Cu0,r then Cu0,r is a fixed circle of T. Also T is discontinuous at u ∈ Cu0,r if and only if lim

v→u
m(u, v) 6= 0.

Proof. From Theorem 2, we see that Cu0,r is a fixed circle of T. Used the idea given in Theorem 2.1 on
page 1240 in [14], we see that T is discontinuous at u ∈ Cu0,r if and only if lim

v→u
m(u, v) 6= 0.

4. Conclusions

We have presented new generalized fixed-circle results using new types of contractive conditions
on metric spaces. The obtained results can be also considered as fixed-disc results. By means of
some known techniques which are used to obtain some fixed-point results, we have generated useful
fixed-circle theorems. As we have seen in the last section, our main results can be applied to other
research areas.
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