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Abstract: In this manuscript, we study a system of extended general variational inequalities (SEGVI)
with several nonlinear operators, more precisely, six relaxed (α, r)-cocoercive mappings. Using the
projection method, we show that a system of extended general variational inequalities is equivalent
to the nonlinear projection equations. This alternative equivalent problem is used to consider the
existence and convergence (or approximate solvability) of a solution of a system of extended general
variational inequalities under suitable conditions.
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1. Introduction

In recent years, many theories of variational inequality types and its special forms have been
extended and generalized to research a variety of applications and problems arising from several
fields such as applied mathematics, optimization, control theory, equilibrium problems and nonlinear
programming problems, etc. In 1964, a variational inequality problem (VIP) was introduced by
Stampacchia [1].

In 2016, Noor [2] introduced and researched the existence of solution by using fixed point theory
for a system of extended general variational inequalities with six strongly monotone operators.

From the above results, we intend in this manuscript to consider a system of extended general
variational inequalities with nonlinear operators, more precisely, relaxed cocoercive operators which
are more generalized than strongly monotone operators. We show that a system of extended general
variational inequalities include general variational inequality and several other classes of variational
inequalities as special cases. Using the projection method, it is shown that a system of extended general
variational inequalities (SEGVI) are equivalent to the nonlinear projection equations. This alternative
equivalent problem is used to consider the existence and convergence of a solution of a system of
extended general variational inequalities under appropriate conditions.

2. Preliminaries

Hereafter, we take that H be a real Hilbert space whose norm and inner product are denoted by
‖ · ‖ and 〈·, ·〉, respectively. Let Ω1, Ω2 be two closed convex subsets in H.

For given nonlinear operators T1, T2, g1, g2, h1, h2: H → H, consider a problem of finding x, y ∈ H
with h1(y) ∈ Ω1, h2(x) ∈ Ω2 such that{

〈T1x, g1(ν)− h1(y)〉 ≥ 0, ∀ ν ∈ H, g1(ν) ∈ Ω1,

〈T2y, g2(ν)− h2(x)〉 ≥ 0, ∀ ν ∈ H, g2(ν) ∈ Ω2.
(1)
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The problem (1) is said to be a system of extended general variational inequalities (SEGVI) with
six nonlinear operators.

We consider some special cases of the (SEGVI) (1).

I. If g1 = g2 = g, h1 = h2 = h and Ω1 = Ω2 = Ω, a closed convex subset in H, then problem (1)
reduces to find x, y ∈ H with h(y), h(x) ∈ Ω such that{

〈T1x, g(ν)− h(y)〉 ≥ 0,

〈T2y, g(ν)− h(x)〉 ≥ 0,
(2)

for all ν ∈ H, g(ν) ∈ Ω. The system (2) is said to be a system of extended general variational
inequalities with four nonlinear operators.

II. If g1 = h1 = g, g2 = h2 = h and Ω1 = Ω2 = Ω, a closed convex subset in H, then problem (1)
reduces to find x, y ∈ H with g(y), h(x) ∈ Ω such that{

〈T1x, g(ν)− g(y)〉 ≥ 0,

〈T2y, h(ν)− h(x)〉 ≥ 0,
(3)

for all ν ∈ H, g(ν) ∈ Ω and h(ν) ∈ Ω. The system (3) is said to be a system of general variational
inequalities with four nonlinear operators.

III. If T1 = T2 = T, then problem (2) reduces to find u ∈ H with h(u) ∈ Ω such that

〈Tu, g(ν)− h(u)〉 ≥ 0, (4)

for all ν ∈ H, g(ν) ∈ Ω. The problem of type (4) is said to be an extended general variational
inequality (EGVI), which was studied by Noor [3].

For adequate and suitable conditions of spaces and operators, we can obtain several new and
known classes of variational inequalities. Recent applications, iteration methods, existence
problem and convergence theory are related to the above problems (see [4–14] and other
references therein).

Now, we digest some definitions and related basic properties which are indispensable in the
following discussions.

Lemma 1. ([15]) Let Ω be a closed and convex subset in H. Then, for a given h ∈ H, ω ∈ Ω satisfies

〈ω− h, v− h〉 ≥ 0, ∀ v ∈ Ω, (5)

if and only if
ω = PΩ(h),

where PΩ is the projection of H onto Ω in H.

Remark 1. It is very well known that the projection operator PΩ is nonexpansive, i.e.,

‖PΩ(s)− PΩ(t)‖ ≤ ‖s− t‖, ∀ s, t ∈ H. (6)

More information on the projection operator PΩ can be found in Section 3 of [16].

Definition 1. ([17]) Let H be a Hilbert space.
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(1) An operator T:H → H is said to be α-strongly monotone, if for each s, t ∈ H, we have

〈T(s)− T(t), s− t〉 ≥ α‖s− t‖2,

for a constant r > 0. This implies that

‖T(s)− T(t)‖ ≥ α‖s− t‖,

that is, T is α-expansive and when α = 1, it is expansive.
(2) An operator T:H → H is said to be β-Lipschitz continuous, if there exists a constant β ≥ 0 such that

‖T(s)− T(t)‖ ≤ β‖s− t‖, ∀ s, t ∈ H.

(3) An operator T:H → H is said to be µ-cocoercive, if there exists a constant µ > 0 such that

〈T(s)− T(t), s− t〉 ≥ µ‖T(s)− T(t)‖2, ∀ s, t ∈ H.

Clearly, every µ-cocoercive operator T is 1
µ -Lipschitz continuous.

(4) An operator T:H → H is said to be relaxed α-cocoercive, if there exists a constant α > 0 such that

〈T(s)− T(t), s− t〉 ≥ (−α)‖T(s)− T(t)‖2, ∀ s, t ∈ H.

(5) An operator T:H → H is said to be relaxed (α, r)-cocoercive, if there exists a constant α, r > 0
such that

〈T(s)− T(t), s− t〉 ≥ (−α)‖T(s)− T(t)‖2 + r‖s− t‖2, ∀ s, t ∈ H.

For α = 0, T is r-strongly monotone. This class of operators is more generalized than the class of
strongly monotone operators. One can easily show that the following implication:

r− strongly monotonicity ⇒ relaxed (α, r)− cocoercivity.

Lemma 2. ([18]) Let {sn} and {tn} be two nonnegative real sequences satisfying the following condition:

sn+1 ≤ (1− λn)sn + tn, ∀ n ≥ n0,

where n0 is some nonnegative integer and λn ∈ [0, 1] is a sequence with ∑∞
n=0 λn = ∞ and tn = o(λn). Then,

lim
n→∞

sn = 0.

From the auxiliary principle method of Glowinski et al. [19], it is easy to show that we have the
system (1) equivalent to the following:

Find x, y ∈ H with h1(y) ∈ Ω1, h2(x) ∈ Ω2 and{
〈ρ1T1x + h1(y)− g1(x), g1(ν)− h1(y)〉 ≥ 0,

〈ρ2T2y + h2(x)− g2(y), g2(ν)− h2(x)〉 ≥ 0,
(7)

where, for all ν ∈ H, g1(ν) ∈ Ω1, g2(ν) ∈ Ω2, ρ1 > 0 and ρ2 > 0 (see, [3,20]).
We use this equivalent problem to generate some iteration techniques for solving the system of

extended general variational inequalities and its other variant kinds.
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3. Results

In this section, we study about a system of extended general variational inequalities (SEGVI) (7)
being equivalent to a system of fixed point problems. This alternative equivalent problem is used to
generate iteration schemes for solving problem (7), by the method of Noor et al. [21].

Lemma 3. ([2]) The system of extended general variational inequalities (7) has a solution, x, y ∈ H with
h1(y) ∈ Ω1 ⊂ g1(H), h1(H) and h2(x) ∈ Ω2 ⊂ g2(H), h2(H) if and only if x, y ∈ H with h1(y) ∈ Ω1,
h2(x) ∈ Ω2 satisfies the relations

h1(y) = PΩ1 [g1(x)− ρ1T1x], (8)

h2(x) = PΩ2 [g2(y)− ρ2T2y], (9)

where ρ1 > 0 and ρ2 > 0.

Lemma 3 implies that problem (7) is equivalent to the relations of fixed point problems (8) and (9).
Using the fixed point problems (8) and (9), we can suggest and analyze some iteration forms:

y = (1− βn)y + βn{y− h1(y) + PΩ1 [g1(x)− ρ1T1x]}, (10)

x = (1− αn)x + αn{x− h2(x) + PΩ2 [g2(y)− ρ2T2y]}, (11)

where 0 ≤ αn, βn ≤ 1, n ≥ 0.
This alternative problem is used to propose the following iteration schemes for solving a system

of extended general variational inequalities (SEGVI) (7) and its variant kinds.

Algorithm 1. For given x0, y0 ∈ H: h1(y0) ∈ Ω1 and h2(x0) ∈ Ω2, find xn+1 and yn+1 by the
iterative schemes

yn+1 = (1− βn)yn + βn{yn − h1(yn) + PΩ1 [g1(xn)− ρ1T1xn]},
xn+1 = (1− αn)xn + αn{xn − h2(xn) + PΩ2 [g2(yn+1)− ρ2T2yn+1]},

(12)

where 0 ≤ αn, βn ≤ 1, n ≥ 0.

Algorithm 1 can be viewed as a Gauss–Seidel method for solving system of extended general
variational inequalities (SEGVI) (7).

For adequate and suitable conditions of spaces and operators, we can obtain several new and
known iteration schemes for solving system of extended general variational inequalities (SEGVI) and
related problems. It has been shown [22] that problem (1) has a solution under some suitable conditions.

Now, we investigate the convergence analysis of Algorithm 1. This is the core of our following result.

Theorem 1. Let T1, T2, g1, g2, h1, h2:H → H be relaxed (αT1 , kT1), (αT2 , kT2), (αg1 , kg1), (αg2 , kg2), (αh1 , kh1),
(αh2 , kh2)-cocoercive and lT1 , lT2 , lg1 , lg2 , lh1 , lh2-Lipschitz continuous operators, respectively. If the following
conditions hold:

(i) 0 < θ1 =
√

1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2
T1

< 1,

0 < θ2 =
√

1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2
T2

< 1,

(ii) 2kh1 − (2αh1 + 1)l2
h1

< 1, 2kh2 − (2αh2 + 1)l2
h2

< 1,
2kg1 − (2αg1 + 1)l2

g1
< 1, 2kg2 − (2αg2 + 1)l2

g2
< 1,

(iii) αn, βn ∈ [0, 1] for all n ≥ 0, 1− ν = αn(δ2 + θ2) ≥ 0,
1− ε1 = αn(1− µ2)− βn(δ1 + θ1) ≥ 0, 1− ε2 = βn(1− µ1) ≥ 0,
such that

∞

∑
n=0

αn(δ2 + θ2) = ∞,
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∞

∑
n=0

αn(1− µ2)− βn(δ1 + θ1) = ∞,

∞

∑
n=0

βn(1− µ1) = ∞,

where

δ1 =
√

1− 2kg1 + (2αg1 + 1)l2
g1

, δ2 =
√

1− 2kg2 + (2αg2 + 1)l2
g2

,

µ1 =
√

1− 2kh1 + (2αh1 + 1)l2
h1

, µ2 =
√

1− 2kh2 + (2αh2 + 1)l2
h2

,

then sequences {xn} and {yn} obtained from Algorithm 1 converge to x and y, respectively.

Proof. Let x, y ∈ H with h1(y) ∈ Ω1, h2(y) ∈ Ω2 be a solution of (7). Then, from (11) and (12), we have

‖xn+1 − x‖ = ‖(1− αn)xn + αn{xn − h2(xn) + PΩ2 [g2(yn+1)− ρ2T2yn+1]}
− (1− αn)x− αn{x− h2(x) + PΩ2 [g2(y)− ρ2T2y]}‖
≤ (1− αn)‖xn − x‖+ αn‖xn − x− (h2(xn)− h2(x))‖
+ αn‖PΩ2 [g2(yn+1)− ρ2T2yn+1]− PΩ2 [g2(y)− ρ2T2y]‖
≤ (1− αn)‖xn − x‖+ αn‖xn − x− (h2(xn)− h2(x))‖
+ αn‖g2(yn+1)− ρ2T2yn+1 − g2(y) + ρ2T2y‖
≤ (1− αn)‖xn − x‖+ αn‖xn − x− (h2(xn)− h2(x))‖
+ αn‖ − (yn+1 − y) + g2(yn+1)− g2(y)‖
+ αn‖yn+1 − y− ρ2(T2yn+1 − T2y)‖.

(13)

Since operator T2 is relaxed (αT2 , kT2)-cocoercive with constant αT2 > 0, kT2 > 0 and lT2 -Lipschitz
continuous, then it follows that

‖yn+1 − y− ρ2(T2yn+1 − T2y)‖2

= ‖yn+1 − y‖2 − 2ρ2〈T2yn+1 − T2y, yn+1 − y〉+ ρ2
2‖T2yn+1 − T2y‖2

≤ ‖yn+1 − y‖2 + 2ρ2αT2‖T2yn+1 − T2y‖2 − 2ρ2kT2‖yn+1 − y‖2 + ρ2
2‖T2yn+1 − T2y‖2

≤ ‖yn+1 − y‖2 + 2ρ2αT2 l2
T2
‖yn+1 − y‖2 − 2ρ2kT2‖yn+1 − y‖2 + ρ2

2l2
T2
‖yn+1 − y‖2

= (1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2
T2
)‖yn+1 − y‖2.

(14)

In a similar way, we have

‖xn − x− (h2(xn)− h2(x))‖2

= ‖xn − x‖2 − 2〈xn − x, h2(xn)− h2(x)〉+ ‖h2(xn)− h2(x)‖2

≤ ‖xn − x‖2 + 2αh2‖h2(xn)− h2(x)‖2 − 2kh2‖xn − x‖2 + ‖h2(xn)− h2(x)‖2

≤ ‖xn − x‖2 + 2αh2 l2
h2
‖xn − x‖2 − 2kh2‖xn − x‖2 + l2

h2
‖xn − x‖2

= (1− 2kh2 + (2αh2 + 1)l2
h2
)‖xn − x‖2

(15)

and

‖yn+1 − y− (g2(yn+1)− g2(y))‖2

= ‖yn+1 − y‖2 − 2〈yn+1 − y, g2(yn+1)− g2(y)〉+ ‖g2(yn+1)− g2(y)‖2

≤ ‖yn+1 − y‖2 + 2αg2‖g2(yn+1)− g2(y)‖2 − 2kg2‖yn+1 − y‖2 + ‖g2(yn+1)− g2(y)‖2

= (1− 2kg2 + (2αg2 + 1)l2
g2
)‖yn+1 − y‖2,

(16)
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where we have used the property of operators h2, g2, respectively. Combining (13)–(16), we obtain

‖xn+1 − x‖

≤ (1− αn)‖xn − x‖+ αn

√
1− 2kh2 + (2αh2 + 1)l2

h2
‖xn − x‖

+ αn

√
1− 2kg2 + (2αg2 + 1)l2

g2
‖yn+1 − y‖

+ αn

√
1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2

T2
‖yn+1 − y‖

=

(
1− αn

(
1−

√
1− 2kh2 + (2αh2 + 1)l2

h2

))
‖xn − x‖

+ αn

(√
1− 2kg2 + (2αg2 + 1)l2

g2
+
√

1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2
T2

)
‖yn+1 − y‖.

(17)

From (10) and (12), we have

‖yn+1 − y‖ = ‖(1− βn)yn + βn{yn − h1(yn) + PΩ1(g1(xn)− ρ1T1xn)}
− (1− βn)y− βn{y− h1(y) + PΩ1(g1(x)− ρ1T1x)}‖
≤ (1− βn)‖yn − y‖+ βn‖yn − y− (h1(yn)− h1(y))‖
+ βn‖PΩ1(g1(xn)− ρ1T1xn)− PΩ1(g1(x)− ρ1T1x)‖
≤ (1− βn)‖yn − y‖+ βn‖yn − y− (h1(yn)− h1(y))‖
+ βn‖g1(xn)− ρ1T1xn − g1(x) + ρ1T1x‖
≤ (1− βn)‖yn − y‖+ βn‖yn − y− (h1(yn)− h1(y))‖
+ βn‖xn − x− (g1(xn)− g1(x))‖
+ βn‖xn − x− ρ1(T1xn − T1x)‖.

(18)

In a similar way, from the property of operators h1, g1, we get

‖yn − y− (h1(yn)− h1(y))‖2 ≤ (1− 2kh1 + (2αh1 + 1)l2
h1
)‖yn − y‖2, (19)

‖xn − x− (g1(xn)− g1(x))‖2 ≤ (1− 2kg1 + (2αg1 + 1)l2
g1
)‖xn − x‖2, (20)

‖xn − x− ρ1(T1xn − T1x)‖2 ≤ (1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2
T1
)‖xn − x‖2. (21)

Combining (18)–(21), we have

‖yn+1 − y‖

≤ (1− βn)‖yn − y‖+ βn

√
1− 2kh1 + (2αh1 + 1)l2

h1
‖yn − y‖

+ βn

√
1− 2kg1 + (2αg1 + 1)l2

g1
‖xn − x‖

+ βn

√
1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2

T1
‖xn − x‖

=

(
1− βn

(
1−

√
1− 2kh1 + (2αh1 + 1)l2

h1

))
‖yn − y‖

+ βn

(√
1− 2kg1 + (2αg1 + 1)l2

g1
+
√

1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2
T1

)
‖xn − x‖.

(22)
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From (17) and (22), put√
1− 2kh1 + (2αh1 + 1)l2

h1
= µ1,

√
1− 2kh2 + (2αh2 + 1)l2

h2
= µ2,√

1− 2kg1 + (2αg1 + 1)l2
g1

= δ1,
√

1− 2kg2 + (2αg2 + 1)l2
g2

= δ2,√
1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2

T1
= θ1,

√
1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2

T2
= θ2,

we obtain

‖xn+1 − x‖+ ‖yn+1 − y‖ ≤ (1− αn(1− µ2))‖xn − x‖+ αn(δ2 + θ2)‖yn+1 − y‖
+ (1− βn(1− µ1))‖yn − y‖+ βn(δ1 + θ1)‖xn − x‖
≤ (1− αn(1− µ2) + βn(δ1 + θ1))‖xn − x‖
+ αn(δ2 + θ2)‖yn+1 − y‖+ (1− βn(1− µ1))‖yn − y‖.

Thus,

‖xn+1 − x‖+ (1− αn(δ2 + θ2))‖yn+1 − y‖
≤ (1− αn(1− µ2) + βn(δ1 + θ1))‖xn − x‖+ (1− βn(1− µ1))‖yn − y‖,

which implies that

‖xn+1 − x‖+ ν‖yn+1 − y‖ ≤ max{ε1, ε2} · (‖xn − x‖+ ‖yn − y‖)
= ε(‖xn − x‖+ ‖yn − y‖),

(23)

where

ν = 1− αn(δ2 + θ2), ε1 = 1− αn(1− µ2) + βn(δ1 + θ1),

ε2 = 1− βn(1− µ1), ε = max{ε1, ε2}.

From conditions, we obtain

ε < 1.

By Lemma 2, it follows from (23) that

lim
n→∞

(‖xn+1 − x‖+ ν‖yn+1 − y‖) = 0.

This implies that

lim
n→∞

‖xn+1 − x‖ = 0 = lim
n→∞

‖yn+1 − y‖.

This completes the proof.

Corollary 1. ([2], Theorem 4) Let T1, T2, g1, g2, h1, h2:H → H be strongly monotone with constants
kT1 > 0, kT2 > 0, kg1 > 0, kg2 > 0, kh1 > 0, kh2 > 0 and lT1 , lT2 , lg1 , lg2 , lh1 , lh2-Lipschitz continuous
operators, respectively. If the following conditions hold:

(i) 0 < θ1 =
√

1− 2ρ1kT1 + ρ2
1 l2

T1
< 1, 0 < θ2 =

√
1− 2ρ2kT2 + ρ2

2 l2
T2

< 1,

(ii) 2kh1 − l2
h1

< 1, 2kh2 − l2
h2

< 1, 2kg1 − l2
g1

< 1, 2kg2 − l2
g2

< 1,
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(iii) αn, βn ∈ [0, 1] for all n ≥ 0, 1− ν = αn(δ2 + θ2) ≥ 0,
1− ε1 = αn(1− µ2)− βn(δ1 + θ1) ≥ 0, 1− ε2 = βn(1− µ1) ≥ 0,
such that

∞

∑
n=0

αn(δ2 + θ2) = ∞,

∞

∑
n=0

αn(1− µ2)− βn(δ1 + θ1) = ∞,

∞

∑
n=0

βn(1− µ1) = ∞,

where

δ1 =
√

1− 2kg1 + l2
g1

, δ2 =
√

1− 2kg2 + l2
g2

,

µ1 =
√

1− 2kh1 + l2
h1

, µ2 =
√

1− 2kh2 + l2
h2

,

then sequences {xn} and {yn} obtained from Algorithm 1 converge to x and y, respectively.

Proof. In Theorem 1, from Definition 1, we take αT1 = αT2 = αg1 = αg2 = αh1 = αh2 = 0, we get the
result of Corollary 1.

On the other hand, using Lemma 3, one can easily show that x, y ∈ H with h1(y) ∈ Ω1, h2(x) ∈ Ω2

is a solution of (7) if and only if x, y ∈ H with h1(y) ∈ Ω1, h2(x) ∈ Ω2 satisfies

h1(y) = PΩ1(z), (24)

h2(x) = PΩ2(w), (25)

z = g1(x)− ρ1T1x, (26)

w = g2(y)− ρ2T2y. (27)

This alternative problem can be used to propose and analyze the following iteration scheme for
solving system (7).

Algorithm 2. For given x0, y0 ∈ H with h1(y0) ∈ Ω1, h2(x0) ∈ Ω2, find xn+1 and yn+1 by the
iteration schemes

yn+1 = (1− βn)yn + βn{yn − h1(yn) + PΩ1(zn)}, (28)

xn+1 = (1− αn)xn + αn{xn − h2(xn) + PΩ2(wn)}, (29)

zn = g1(xn)− ρ1T1xn, (30)

wn = g2(yn+1)− ρ2T2yn+1, (31)

where αn, βn ∈ [0, 1] for all n ≥ 0.

Now, we consider the convergence analysis of Algorithm 2, using the method of Theorem 1.
For the sake of completeness and to convey an idea, we include all the details.

Theorem 2. Let operators T1, T2, g1, g2, h1, h2:H → H be relaxed (αT1 , kT1), (αT2 , kT2), (αg1 , kg1), (αg2 , kg2),
(αh1 , kh1), (αh2 , kh2)-cocoercive and lT1 , lT2 , lg1 , lg2 , lh1 , lh2 -Lipschitz continuous, respectively. If the following
conditions hold:

(i) 0 < θ1 =
√

1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2
T1

< 1,

0 < θ2 =
√

1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2
T2

< 1,
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(ii) 2kh1 − (2αh1 + 1)l2
h1

< 1, 2kh2 − (2αh2 + 1)l2
h2

< 1,
2kg1 − (2αg1 + 1)l2

g1
< 1, 2kg2 − (2αg2 + 1)l2

g2
< 1,

(iii) αn, βn ∈ [0, 1] for all n ≥ 0, 1− ν = αn(δ2 + θ2) ≥ 0,
1− ε1 = αn(1− µ2)− βn(δ1 + θ1) ≥ 0, 1− ε2 = βn(1− µ1) ≥ 0
such that

∞

∑
n=0

αn(δ2 + θ2) = ∞,

∞

∑
n=0

αn(1− µ2)− βn(δ1 + θ1) = ∞,

∞

∑
n=0

βn(1− µ1) = ∞,

where

δ1 =
√

1− 2kg1 + (2αg1 + 1)l2
g1

, δ2 =
√

1− 2kg2 + (2αg2 + 1)l2
g2

,

µ1 =
√

1− 2kh1 + (2αh1 + 1)l2
h1

, µ2 =
√

1− 2kh2 + (2αh2 + 1)l2
h2

,

then sequences {xn} and {yn} which are defined by Algorithm 2 converge to x and y, respectively.

Proof. Let x, y ∈ H with h1(y) ∈ Ω1, h2(x) ∈ Ω2 be a solution of (7). Then, from (6), (14), (16), (27)
and (31), we have

‖wn − w‖
= ‖g2(yn+1)− ρ2T2yn+1 − (g2(y)− ρ2T2y)‖
≤ ‖yn+1 − y− (g2(yn+1)− g2(y))‖+ ‖yn+1 − y− ρ2(T2yn+1 − T2y)‖

≤
(√

1− 2kg2 + (2αg2 + 1)l2
g2
+
√

1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2
T2

)
‖yn+1 − y‖.

(32)

Thus, from (11), (15), (27), (29) and (32),

‖xn+1 − x‖
≤ (1− αn)‖xn − x‖+ αn‖xn − x− (h2(xn)− h2(x))‖+ αn‖PΩ2(wn)− PΩ2(w)‖

≤ (1− αn)‖xn − x‖+ αn

√
1− 2kh2 + (2αh2 + 1)l2

h2
‖xn − x‖

+ αn

(√
1− 2kg2 + (2αg2 + 1)l2

g2
+
√

1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2
T2

)
‖yn+1 − y‖.

(33)

From (20), (21), (26) and (30),

‖zn − z‖
= ‖g1(xn)− g1(x)− ρ1(T1xn − T1x)‖
≤ ‖xn − x− (g1(xn)− g1(x))‖+ ‖xn − x− ρ1(T1xn − T1x)‖

≤
√

1− 2kg1 + (2αg1 + 1)l2
g1
‖xn − x‖+

√
1− 2ρ1kT1 + (2αT1 + ρ1)ρ1l2

T1
‖xn − x‖

=

(√
1− 2kg1 + (2αg1 + 1)l2

g1
+
√

1− 2ρ1kT1 + (2αT1 + ρ1)ρ1l2
T1

)
‖xn − x‖.

(34)
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Thus, from (10), (19), (28) and (34),

‖yn+1 − y‖
≤ (1− βn)‖yn − y‖+ βn‖yn − y− (h1(yn)− h1(y))‖+ βn‖PΩ1(zn)− PΩ1(z)‖

≤ (1− βn)‖yn − y‖+ βn

√
1− 2kh1 + (2αh1 + 1)l2

h1
‖yn − y‖

+ βn

(√
1− 2kg1 + (2αg1 + 1)l2

g1
+
√

1− 2ρ1kT1 + (2αT1 + ρ1)ρ1l2
T1

)
‖xn − x‖.

(35)

Now, we put√
1− 2kh1 + (2αh1 + 1)l2

h1
= µ1,

√
1− 2kh2 + (2αh2 + 1)l2

h2
= µ2,√

1− 2kg1 + (2αg1 + 1)l2
g1

= δ1,
√

1− 2kg2 + (2αg2 + 1)l2
g2

= δ2,√
1− 2ρ1kT1 + (2αT1 + ρ1)ρ1 l2

T1
= θ1,

√
1− 2ρ2kT2 + (2αT2 + ρ2)ρ2 l2

T2
= θ2,

then (33) and (35) have

‖xn+1 − x‖ ≤ (1− αn(1− µ2))‖xn − x‖+ αn(δ2 + θ2)‖yn+1 − y‖, (36)

‖yn+1 − y‖ ≤ (1− βn(1− µ1))‖yn − y‖+ βn(δ1 + θ1)‖xn − x‖. (37)

Adding (36) and (37), we have

‖xn+1 − x‖+ ‖yn+1 − y‖ ≤
(

1− αn(1− µ2) + βn(δ1 + θ1)
)
‖xn − x‖

+ αn(δ2 + θ2)‖yn+1 − y‖+ (1− βn(1− µ1))‖yn − y‖.

Thus,

‖xn+1 − x‖+ (1− αn(δ2 + θ2))‖yn+1 − y‖

≤
(

1− αn(1− µ2) + βn(δ1 + θ1)
)
‖xn − x‖+ (1− βn(1− µ1))‖yn − y‖,

which implies that

‖xn+1 − x‖+ ν‖yn+1 − y‖ ≤ max{ε1, ε2} · (‖xn − x‖+ ‖yn − y‖)
= ε(‖xn − x‖+ ‖yn − y‖),

(38)

where

ν = 1− αn(δ2 + θ2) ≥ 0, ε1 = 1− (αn(1− µ2)− βn(δ1 + θ1)),

ε2 = 1− βn(1− µ1), ε = max{ε1, ε2}.

From conditions, we get
ε < 1.

Therefore, by Lemma 2, it follows from (38) that

lim
n→∞

(‖xn+1 − x‖+ ν‖yn+1 − y‖) = 0.

This implies that
lim

n→∞
‖xn+1 − x‖ = 0 = lim

n→∞
‖yn+1 − y‖.

This completes the proof.
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Corollary 2. ([2], Theorem 6) Let T1, T2, g1, g2, h1, h2: H → H be strongly monotone with constants
kT1 > 0, kT2 > 0, kg1 > 0, kg2 > 0, kh1 > 0, kh2 > 0 and lT1 , lT2 , lg1 , lg2 , lh1 , lh2-Lipschitz continuous
operators, respectively. If the following conditions hold:

(i) 0 < θ1 =
√

1− 2ρ1kT1 + ρ2
1 l2

T1
< 1, 0 < θ2 =

√
1− 2ρ2kT2 + ρ2

2 l2
T2

< 1,

(ii) 2kh1 − l2
h1

< 1, 2kh2 − l2
h2

< 1, 2kg1 − l2
g1

< 1, 2kg2 − l2
g2

< 1,

(iii) αn, βn ∈ [0, 1] for all n ≥ 0, 1− ν = αn(δ2 + θ2) ≥ 0,
1− ε1 = αn(1− µ2)− βn(δ1 + θ1) ≥ 0, 1− ε2 = βn(1− µ1) ≥ 0,
such that

∞

∑
n=0

αn(δ2 + θ2) = ∞,

∞

∑
n=0

αn(1− µ2)− βn(δ1 + θ1) = ∞,

∞

∑
n=0

βn(1− µ1) = ∞,

where

δ1 =
√

1− 2kg1 + l2
g1

, δ2 =
√

1− 2kg2 + l2
g2

,

µ1 =
√

1− 2kh1 + l2
h1

, µ2 =
√

1− 2kh2 + l2
h2

,

then sequences {xn} and {yn} obtained from Algorithm 2 converge to x and y, respectively.

Proof. In Theorem 2, we take αT1 = αT2 = αg1 = αg2 = αh1 = αh2 = 0, and we get the result of
Corollary 2.

Open Problem Do Theorems 1 and 2 hold for a Banach space or other spaces?

4. Conclusions

Theorems 1 and 2 generalize and improve the results which are discussed in [2] and others.
The system of extended general variational inequalities includes various classes of variational
inequalities and optimization problems as special cases, and its results proved in this paper continue
to hold for these problems. It is expected that this class will motivate and inspire further research in
this area.
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