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Abstract: The Klein-Gordon equation is a model for free particle wave function in relativistic quantum
mechanics. Many numerical methods have been proposed to solve the Klein-Gordon equation.
However, efficient high-order numerical methods that preserve energy and linear momentum of the
equation have not been considered. In this paper, we propose high-order numerical methods to solve
the Klein-Gordon equation, present the energy and linear momentum conservation properties of our
numerical schemes, and show the optimal error estimates and superconvergence property. We also
verify the performance of our numerical schemes by some numerical examples.

Keywords: high-order numerical methods; the Klein-Gordon equation; energy-conserving
method; linear momentum conservation; local discontinuous Galerkin methods; optimal error
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1. Introduction

The Klein-Gordon equation is a widely used model in relativistic quantum mechanics. It is used
to describe the free particle wave function. Many numerical methods, including finite difference
methods [1–4], finite element methods [5] and spectral methods [6,7], have been proposed to solve
the Klein-Gordon equation. In particular, the authors in [2] proposed a simple second order centered
difference in time and space, an explicit scheme to solve the Klein-Gordon equation. The finite
difference schemes proposed in [1,4] used the same treatment for second order spatial and temporal
derivatives, but different treatment for the source term of the equation. In [3], a finite difference
method along with an operator splitting method was proposed to solve the equation on an unbounded
domain. All of these finite difference schemes have second-order convergence in space and time. Some
types of spectral methods were proposed in order obtain a higher order of convergence in space. In [6],
a pseudo-spectral method was proposed for the spatial discretization, and Crank-Nicolson or leap-frog
method was used for the temporal discretization. In [7], Legendre wavelets incorporated with a spectral
method were used to solve Klein-Gordon and Sine-Gordon equations. As far as the family of finite
element methods is concerned, Ref. [5] proposed Galerkin finite element methods for the Klein-Gordon
equation with homogeneous Dirichlet boundary conditions. However, none of the aforementioned
work focused on the conservation properties of energy and momentum. The advantage of high-order
energy and linear momentum conserving methods is that they can lead to accurate and physically
relevant solutions with relatively coarse mesh. Moreover, the structure-preserving property is a
significant factor when judging the performance of numerical schemes [8].

In this paper, we propose high-order local discontinuous Galerkin (LDG) methods that have
provable properties of energy and linear momentum conservation, optimal convergence and
superconvergence. Discontinuous Galerkin (DG) methods belong to the family of finite element
methods, and have drawn great attention since the work by Cockburn and Shu in [9–12]. LDG methods,
as a special type of DG method, were then proposed to solve diffusion equations [13], partial differential
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equations with high spatial derivatives [14,15], and wave equations [16–19]. In this work, we propose
new methods for the Klein-Gordon equation based on the local discontinuous Galerkin methods
because LDG methods have some advantage of classical finite element methods. That is, it is easy to
design LDG methods with arbitrary order of convergence, and it is suitable for mesh adaptivity and
complex geometry. More importantly, DG methods can be designed to conserve mass and energy for
certain systems of partial differential equations [20,21].

The outline of this paper is as follows. In Section 2, we present our semi-discrete LDG methods,
prove the conservation properties of energy and linear momentum of the Klein-Gordon equation,
and show the optimal convergence of our numerical solutions. All of the theoretical results from this
section are based on our semi-discrete LDG schemes. In Section 3, we give rigorous proof about the
superconvergence property of our numerical solution. In Section 4, we present two types of temporal
discretizations and discuss their properties. In Section 5, we conclude this paper by performing some
numerical experiments to test the optimal convergence, superconvergence and conservation properties.
We can show that our numerical results are consistent with our theoretical results.

2. Local Discontinuous Galerkin Discretization

2.1. Semi-Discrete Local Discontinuous Galerkin Methods for the Klein-Gordon Equation

The original form of the Klein-Gordon equation is given by(
1
c2

∂2

∂t2 −∇
2 +

m2c2

h2

)
φ = 0, (1)

where φ is the wave function, c is the speed of light, m is the mass and h̄ is the Planck constant.
Applying the following transformation

x̃ =
mc
h

x, t̃ =
mc2

h
t, u(x, t) = φ(x̃, t̃) (2)

to Equation (1), we have the non-dimensional Klein-Gordon equation

utt − ∆u + u = 0. (3)

In this paper, we develop high-order numerical methods to solve Equation (3) using the method
of lines. We first define the semi-discrete local discontinuous Galerkin scheme for a one-dimensional
Klein-Gordon equation, and the multi-dimensional equation can be defined in the same manner.
We consider the Klein-Gordon equation defined on a one-dimensional spatial domain I = [a, b] with
initial conditions u(x, 0) = f (x), ut(x, 0) = g(x) and a periodic boundary condition.

Before we present our numerical methods, we introduce the important notations that we
will need later. We use Hm to denote the L2-Sobolev space of order m whose equipped norm is
represented by ‖ · ‖m. We use L2 instead of H0, when m = 0, and its corresponding norm is
denoted by ‖ · ‖. Similarly, we use Wm,∞ to represent the L∞-Sobolev space of order m whose
equipped norm is denoted by ‖ · ‖m,∞. When m = 0, we simply use ‖ · ‖∞ to denote the
L∞ norm. Suppose we partition the spatial domain I into N subintervals, each of which is
denoted by Ij for j = 1, 2, . . . , N. Let a = x 1

2
< x 3

2
< · · · < xN+ 1

2
= b be the endpoints of these

subintervals, and Ij = [xj− 1
2
, xj+ 1

2
] for all j. For each j, let xj = 1

2 (xj− 1
2
+ xj+ 1

2
) be the midpoint

of each subinterval Ij. The mesh size is given by h := max
j

hj, where hj := xj+ 1
2
− xj− 1

2
.

We define a piecewise polynomial space: Vk
h = {v : v|Ij ∈ Pk(Ij), ∀j}, where Pk is the space of

polynomials of degree at most k. Note that the continuity of any function in Vk
h is not required.

For vh ∈ Vk
h , we define (vh)

+
j+ 1

2
:= lim

ε→0+
vh(xj+ 1

2
+ ε) and (vh)

−
j+ 1

2
:= lim

ε→0+
vh(xj+ 1

2
− ε). We use
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{vh}j+ 1
2
= 1

2

(
(vh)

+
j+ 1

2
+ (vh)

−
j+ 1

2

)
and [vh]j+ 1

2
= 1

2

(
(vh)

+
j+ 1

2
− (vh)

−
j+ 1

2

)
to denote the average and

jump at xj+ 1
2
, respectively.

In order to define local discontinuous Galerkin methods, we rewrite Equation (3) using an
auxiliary variable q. Therefore, we have a (u, q) system given by utt = qx − u and q = ux. Our local
discontinuous Galerkin methods for such a (u, q) system can be defined as the following. We look for
uh and qh ∈ Vk

h , such that∫
Ij

uh,tt v dx = −
∫

Ij

qh vx dx + (q̂h)j+ 1
2
v−

j+ 1
2
− (q̂h)j− 1

2
v+

j− 1
2
−
∫

Ij

uh v dx, (4)∫
Ij

qh w dx = −
∫

Ij

uh wx dx + (ûh)j+ 1
2
w−

j+ 1
2
− (ûh)j− 1

2
w+

j− 1
2
, (5)

for any v, w ∈ Vk
h . Here, (ûh)j+ 1

2
is the so-called numerical flux which depends on (uh)

+
j+ 1

2
and (uh)

−
j+ 1

2
.

Similarly, (q̂h)j+ 1
2

depends on (qh)
+
j+ 1

2
and (qh)

−
j+ 1

2
. The choice of numerical fluxes plays a great role in

conservation properties, stability and convergence of the numerical schemes. In this paper, we take the
following numerical fluxes

ûh = u+
h , q̂h = q−h . (6)

Alternatively, one can also choose ûh = u−h , q̂h = q+h .

2.2. Conservation Properties

In this subsection, we show the conservation properties of our semi-discrete
schemes (4) and (5). The energy and linear momentum of the Klein-Gordon equation are
given by H(t) = 1

2

∫
I
(
u2

t + u2
x + u2) dx and P(t) =

∫
I utuxdx, respectively. In the PDE level,

the energy and linear momentum of the Klein-Gordon equation are conserved. Our numerical scheme
also satisfies the conservation properties.

Theorem 1. (Energy Conservation) The numerical solutions uh and qh to the schemes (4) and (5) with
numerical flux (6) satisfy:

1
2

d
dt

∫
I

(
u2

h,t + q2
h + u2

h

)
dx = 0. (7)

Proof. Let v = uh,t and q̂h = q−h in our semi-discrete scheme (4). We then sum over all the subintervals
Ij and obtain

∫
I

uh,ttuh,t dx = −
∫

I
qhuh,tx dx−

N

∑
j=1

(qh)
−
j+ 1

2
[uh,t]j+ 1

2
−
∫

I
uhuh,t dx. (8)

Here, we have used the periodic boundary condition of qh in the equation above. Next, we take a
time derivative on both sides of Equation (5). We then let w = qh and ûh = u+

h and take the sum over
all the subintervals Ij. We can obtain

∫
I

qh,tqh dx = −
∫

I
uh,tqh,x dx−

N

∑
j=1

(uh,t)
+
j+ 1

2
[qh]j+ 1

2
. (9)
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Here, we have used the periodic boundary condition of uh. We take the sum of Equations (8)
and (9) and get the following equation:∫

I
(uh,ttuh,t + qh,tqh + uhuh,t) dx

= −
∫

I
(qhuh,tx + uh,tqh,x)dx−

N

∑
j=1

(qh)
−
j+ 1

2
[uh,t]j+ 1

2
−

N

∑
j=1

(uh,t)
+
j+ 1

2
[qh]j+ 1

2

=
N

∑
j=1

(
[qhuh,t]j+ 1

2
− (qh)

−
j+ 1

2
[uh,t]j+ 1

2
− (uh,t)

+
j+ 1

2
[qh]j+ 1

2

)
= 0. (10)

It is easy to see that the equation above leads to the energy conservation Equation (7), and this
concludes the proof.

Theorem 1 shows the energy conserving property of our numerical schemes. A direct conclusion
of Theorem 1 is that ‖uh,t‖2 + ‖qh‖2 + ‖uh‖2 = C, where C is a constant that depends only on the
initial data uh(x, 0), qh(x, 0) and uh,t(x, 0). Therefore, we have the following estimates: ‖uh‖ ≤ C,
‖qh‖ ≤ C and ‖uh,t‖ ≤ C, which implies the stability of our schemes. We then present the conservation
property of linear momentum.

Theorem 2. (Linear Momentum Conservation) The numerical solutions uh and qh to the schemes (4) and (5)
with numerical flux (6) satisfy:

d
dt

∫
I

uh,tqhdx =
1
2

N

∑
j=1

∣∣∣[qh]j+ 1
2

∣∣∣2 + 1
2

N

∑
j=1

∣∣∣[uh]j+ 1
2

∣∣∣2 − 1
2

N

∑
j=1

∣∣∣[uh,t]j+ 1
2

∣∣∣2 . (11)

Proof. Let v = qh and q̂h = q−h in (4) and sum over all Ij, we have

∫
I

uh,ttqh dx = −
∫

I
qhqh,xdx−

N

∑
j=1

(qh)
−
j+ 1

2
[qh]j+ 1

2
−
∫

I
uhqh dx. (12)

Let w = uh in (5) and we sum over all Ij, we can get

∫
I

qhuh dx = −
∫

I
uhuh,xdx−

N

∑
j=1

(uh)
+
j+ 1

2
[uh]j+ 1

2
. (13)

Plugging the right side of (13) into (12), we have

∫
I

uh,ttqh dx = −
∫

I
qhqh,xdx−

N

∑
j=1

(qh)
−
j+ 1

2
[qh]j+ 1

2
+
∫

I
uhuh,xdx +

N

∑
j=1

(uh)
+
j+ 1

2
[uh]j+ 1

2

=
1
2

N

∑
j=1

∣∣∣[qh]j+ 1
2

∣∣∣2 + 1
2

N

∑
j=1

∣∣∣[uh]j+ 1
2

∣∣∣2 . (14)

We then take a t derivative on both sides of Equation (5), sum over all subintervals Ij, and let
w = uh,t, we have

∫
I

qh,tuh,t dx = −
∫

I
uh,tuh,txdx−

N

∑
j=1

(uh,t)
+
j+ 1

2
[uh,t]j+ 1

2
= −1

2

N

∑
j=1

∣∣∣[uh,t]j+ 1
2

∣∣∣2 . (15)

By taking the sum of Equations (14) and (15), we can complete the proof.



Mathematics 2018, 6, 200 5 of 17

Remark 1. Theorem 2 shows that the linear momentum is conserved up to some combination of interior jumps
of qh, uh and uh,t. In fact, both the linear momentum and energy can be conserved exactly, if we choose central
fluxes in schemes (4) and (5), i.e., (q̂h)j+ 1

2
= {qh}j+ 1

2
and (ûh)j+ 1

2
= {uh}j+ 1

2
for all j. This can be proved

using the equalities 1
2 [ f 2]−{ f }[ f ] = 0 and [ f g]−{ f }[g]− [ f ]{g} = 0 for f , g ∈ Vk

h . However, such a choice
of numerical fluxes would lead to sub-optimal orders of convergence. That is, when we use piecewise-defined
polynomials of degree k, the L2 errors of u, q and ut are only of order k, instead of (k + 1) as in Theorem 3.
In order to obtain the optimal accuracy, we choose alternating fluxes given by Equation (6).

2.3. Error Estimates

In this subsection, we present the error estimates of our semi-discrete schemes. Let u be the exact
solution of the Klein-Gordon (3) and q = ux. We denote the error of u and q by eu := uh − u and
eq := qh − q, respectively, where uh and qh are the numerical solutions to the semi-discrete schemes (4)
and (5) with numerical flux (6). We then define the Gauss-Radau projections, denoted by Π− and Π+,
as follows. For any function v ∈ H1(I), the Gauss-Radau projection of v, i.e., Π+v, is a unique function
in Vk

h , such that∫
Ij

(Π+v)w dx =
∫

Ij

vw dx, ∀w ∈ Pk−1(Ij); Π+v(x+
j− 1

2
) = v(x+

j− 1
2
), (16)

for any j = 1, 2, . . . , N. Another kind of Gauss-Radau projection, Π−v, can be defined similarly. That is,
Π−v, is a unique function in Vk

h , such that∫
Ij

(Π−v)w dx =
∫

Ij

vw dx, ∀w ∈ Pk−1(Ij); Π−v(x−
j+ 1

2
) = v(x−

j+ 1
2
), (17)

for all j. Since the standard L2 projection will also be needed, we give its definition below. The L2

projection of v, denoted by Πv, is a unique function in Vk
h , such that∫

Ij

(Πv)w dx =
∫

Ij

vw dx, ∀w ∈ Pk(Ij). (18)

Both Gauss-Radau and standard L2 projections satisfy the following approximation properties.
For any function v ∈ Hk+1(I), there exists a positive constant C such that

‖v−Qv‖ ≤ Chk+1, (19)

where Q can be Π+, Π− or Π. Here, C depends on ‖v‖k+2 when Q = Π− or Π+, and it depends
on ‖v‖k+1 when Q = Π. Moreover, C is independent of h. Using Gauss-Radau projections, we can
rewrite eu = ξu − ηu, where ξu = uh −Π+u and ηu = u−Π+u. We also rewrite eq = ξq − ηq, where
ξq = qh −Π−q and ηq = q−Π−q. Based on the approximation property (19), we know that ‖ηq‖ and
‖ηu‖ ≤ Chk+1, and are independent of the scheme.

Now, we are ready to present the error estimates of our semi-discrete schemes.

Theorem 3. (Error Estimates) Let uh and qh be the numerical solutions to the schemes (4) and (5) with
numerical flux (6), and u and q be the exact solutions to the Klein-Gordon Equation (3). If we take uh(x, 0) =
Π+u(x, 0) and uh,t(x, 0) = Πut(x, 0), then the following error estimates hold:

‖u(·, t)− uh(·, t)‖ ≤ Chk+1, ‖q(·, t)− qh(·, t)‖ ≤ Chk+1, ‖ut(·, t)− uh,t(·, t)‖ ≤ Chk+1,

where C is a positive constant that depends on t and exact solution, and is independent of the mesh size h.
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Proof. We apply numerical flux (6) to Equation (4) and summing over all subinterval Ij, we can obtain

∫
I

uh,ttv dx = −
∫

I
qhvxdx−

N

∑
j=1

(qh)
−
j+ 1

2
[v]j+ 1

2
−
∫

I
uhv dx. (20)

We then take the t derivative on both sides of (5) and summing over all subinterval Ij, we get

∫
I

qh,tw dx = −
∫

I
uh,twxdx−

N

∑
j=1

(uh,t)
+
j+ 1

2
[w]j+ 1

2
. (21)

It is easy to show that the exact solution u and q also satisfy similar equations:

∫
I

uttv dx = −
∫

I
qvxdx−

N

∑
j=1

q−
j+ 1

2
[v]j+ 1

2
−
∫

I
uv dx, (22)

∫
I

qtw dx = −
∫

I
utwxdx−

N

∑
j=1

(ut)
+
j+ 1

2
[w]j+ 1

2
. (23)

Subtracting (22) from (20), we have

∫
I

ξu,ttv dx =
∫

I
ηu,ttv dx−

∫
I

ξqvxdx−
N

∑
j=1

(ξq)
−
j+ 1

2
[v]j+ 1

2
−
∫

I
ξuv dx +

∫
I

ηuv dx. (24)

Note that we have used
∫

I ηqvxdx = 0 for any v ∈ Vk
h , as well as the fact that

(ηq)
−
j+ 1

2
= q(x−

j+ 1
2
)−Π−q(x−

j+ 1
2
) = 0, due to the definition of Gauss-Radau projection. Similarly,

subtracting (23) from (21), one can get

∫
I

ξq,tw dx =
∫

I
ηq,tw dx−

∫
I

ξu,twxdx−
N

∑
j=1

(ξu,t)
+
j+ 1

2
[w]j+ 1

2
, (25)

since
∫

I ηu,twxdx = (ηu,t)
+
j+ 1

2
= 0.

Let v = ξu,t in (24) and w = ξq in (25), and summing up these two equations, we have∫
I

(
ξu,ttξu,t + ξq,tξq

)
dx := Λ1 + Λ2 + Λ3, (26)

where

Λ1 =
∫

I

(
ηu,ttξu,t + ηq,tξq + ηuξu,t

)
dx, (27)

Λ2 = −
∫

I

(
ξqξu,tx + ξu,tξq,x

)
dx−

N

∑
j=1

(ξq)
−
j+ 1

2
[ξu,t]j+ 1

2
−

N

∑
j=1

(ξu,t)
+
j+ 1

2
[ξq]j+ 1

2
, (28)

Λ3 = −
∫

I
ξuξu,tdx. (29)

Applying Cauchy-Schwartz inequality and the approximation property (19) to the formulation of
Λ1, we can show that Λ1 ≤ Chk+1 (‖ξu,t‖+ ‖ξq‖

)
. In addition, due to the periodic boundary condition,

we have

Λ2 =
N

∑
j=1

[ξqξu,t]j+ 1
2
−

N

∑
j=1

(ξq)
−
j+ 1

2
[ξu,t]j+ 1

2
−

N

∑
j=1

(ξu,t)
+
j+ 1

2
[ξq]j+ 1

2
= 0. (30)



Mathematics 2018, 6, 200 7 of 17

Combining the estimates about Λ1 and Λ2, Equation (26) leads to

1
2

d
dt

(
‖ξu,t‖2 + ‖ξq‖2 + ‖ξu‖2

)
≤ Chk+1 (‖ξu,t‖+ ‖ξq‖

)
≤ Chk+1

(
‖ξu,t‖2 + ‖ξq‖2 + ‖ξu‖2

) 1
2 .

Therefore, we have
d
dt

(
‖ξu,t‖2 + ‖ξq‖2 + ‖ξu‖2

) 1
2 ≤ Chk+1. (31)

We integrate the equation above over time [0, t] to obtain

(
‖ξu,t(·, t)‖2 + ‖ξq(·, t)‖2 + ‖ξu(·, t)‖2) 1

2 ≤
(
‖ξu,t(·, 0)‖2 + ‖ξq(·, 0)‖2 + ‖ξu(·, 0)‖2) 1

2 + Chk+1. (32)

Next, we estimate ‖ξu,t(·, 0)‖, ‖ξq(·, 0)‖ and ‖ξu(·, 0)‖. Since uh(x, 0) = Π+u(x, 0),
we have ξu(x, 0) = uh(x, 0) − Π+u(x, 0) = 0, which leads to ‖ξu(·, 0)‖ = 0. In addition,
‖ξu,t(·, 0)‖ = ‖Πut(·, 0)−Π+ut(·, 0)‖ = ‖Π(ut(·, 0)−Π+ut(·, 0))‖ ≤ ‖ut(·, 0)−Π+ut(·, 0)‖ ≤ Chk+1.
In order to estimate ‖ξq(·, 0)‖, we consider (5) at t = 0 and get

∫
I

ξq(·, 0)w dx =
∫

I
ηq(·, 0)w dx−

∫
I

ξu(·, 0)wxdx−
N

∑
j=1

(ξu(x, 0))+
j+ 1

2
[w]j+ 1

2
. (33)

Here, we have used the fact that
∫

I q(·, 0)w dx = −
∫

I u(·, 0)w dx − ∑N
j=1 u(x, 0)+

j+ 1
2
[w]j+ 1

2
.

Since ξu(x, 0) = 0, Equation (33) leads to
∫

I ξq(·, 0)w dx =
∫

I ηq(·, 0)w dx for any w ∈ Vk
h .

Let w = ξq(x, 0), we have

‖ξq(·, 0)‖2 =
∫

I
ηq(·, 0)ξq(·, 0)dx ≤ ‖ηq(·, 0)‖‖ξq(·, 0)‖ ≤ Chk+1‖ξq(·, 0)‖, (34)

which leads to ‖ξq(·, 0)‖ ≤ Chk+1. Combining all the estimates above, we have

(
‖ξu,t(·, t)‖2 + ‖ξq(·, t)‖2 + ‖ξu(·, t)‖2

) 1
2 ≤ Chk+1. (35)

Therefore, we obtain the error estimate of u as follows: ‖u(·, t)− uh(·, t)‖ = ‖ξu(·, t)− ηu(·, t)‖ ≤
‖ξu(·, t)‖+ ‖ηu(·, t)‖ ≤ Chk+1. The error estimate of q can be obtained in the same manner.

3. Superconvergence of Local Discontinuous Galerkin Discretization

In this section, we discuss the superconvergence property of our semi-discrete schemes. Before we
present the main theorem, we give some important lemmas that will be used in the proof of the main
theorem.

Lemma 1. For any x ∈ Ij, let ξu(x, t) = rj(t)+ sj(x, t)
x−xj

hj
, where rj(t) is a constant and sj(x, t) ∈ Pk−1(Ij)

for any fixed t. Let s(x, t) ∈ Vk−1
h , and s(x, t) = sj(x, t), ∀x ∈ Ij, for j = 1, 2, . . . , N. Then, the L2 norm of

the function s(x, t) satisfies the following inequality

‖s(·, t)‖ ≤ Chk+2. (36)

Proof. It is easy to show that (5) leads to∫
Ij

eqw dx = −
∫

Ij

ξuwxdx + (ξu)
+
j+ 1

2
w−

j+ 1
2
− (ξu)

+
j− 1

2
w+

j− 1
2
. (37)
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Here, we have used the fact that
∫

Ij
ηuwxdx = 0 and (ηu)

+
j+ 1

2
= 0, ∀j. By applying integration by

parts to the term
∫

Ij
ξuwxdx, we can rewrite Equation (37) as

∫
Ij

eqw dx =
∫

Ij

ξu,xw dx + [ξu]j+ 1
2
w−

j+ 1
2
. (38)

We then take w = sj(x, t)(x− xj+ 1
2
)/hj in (38) to obtain

∫
Ij

eqw dx =
∫

Ij

(
sj

x− xj

hj

)
x

sj

x− xj+ 1
2

hj
dx

=
∫

Ij

(
sj

x− xj+ 1
2

hj

)
x

sj

x− xj+ 1
2

hj
dx +

1
2

∫
Ij

sjsj,x

x− xj+ 1
2

hj
dx

= −1
2

(
sj(xj− 1

2
, t)
)2

+
1
2

∫
Ij

sjsj,x

x− xj+ 1
2

hj
dx. (39)

Since
∫

Ij
sjsj,x

x−x
j+ 1

2
hj

dx =
(

sj(xj− 1
2
)
)2
−
∫

Ij
sj,xsj

x−x
j+ 1

2
hj

dx− 1
hj

∫
Ij

s2
j dx, we get

∫
Ij

sjsj,x

x− xj+ 1
2

hj
dx =

1
2

(
sj(xj− 1

2
, t)
)2
− 1

2hj

∫
Ij

s2
j dx. (40)

Combining Equations (39) and (40), we have

−
∫

Ij

eqsj

x− xj+ 1
2

hj
dx =

1
4

(
sj(xj− 1

2
, t)
)2

+
1

4hj

∫
Ij

s2
j dx. (41)

Thus, ∫
Ij

s2
j dx ≤ −4

∫
Ij

eqsj(x− xj+ 1
2
)dx. (42)

Let d(x) be a piecewise linear polynomial on I, and d(x)|Ij = x− xj+ 1
2

on each subinterval Ij. It is
easy to show ‖d‖∞ = h. Therefore, Equation (42) leads to

‖s‖2 =
∫

I
(s(x, t))2dx ≤ −4

∫
I

eqs(x, t)d(x)dx ≤ 4‖eq‖‖s‖‖d‖∞. (43)

We cancel the term ‖s‖ in the inequality above, and applying Theorem 3 to the resulting inequality,
we can eventually get

‖s‖ ≤ 4‖eq‖‖d‖∞ = 4h‖eq‖ ≤ Chk+2. (44)

For convenience, let τ be any fixed time, we define Eξ
u(x, t) :=

∫ τ
t ξudt, Eξ

q(x, t) :=
∫ τ

t ξqdt,
Eη

u(x, t) :=
∫ τ

t ηudt, Eη
q (x, t) :=

∫ τ
t ηqdt, Ee

u(x, t) =
∫ τ

t eudt and Ee
q(x, t) =

∫ τ
t eqdt. Based on these

definitions, we have the following estimate.

Lemma 2. For any x ∈ Ij, let Eξ
q = oj(t) + pj(x, t)

x−xj
hj

, where oj(t) is a constant and pj(x, t) ∈ Pk−1(Ij)

for any fixed t. Letting p(x, t) ∈ Vk−1
h , and p(x, t) = pj(x, t), ∀x ∈ Ij, for j = 1, 2, . . . , N. Then, the L2 norm

of the function p(x, t) satisfies the following inequality:

‖p(·, t)‖ ≤ Chk+2. (45)
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Proof. It is easy to show that (4) leads to∫
Ij

(eu)ttv dx = −
∫

Ij

ξqvxdx + (ξq)
−
j+ 1

2
v−

j+ 1
2
− (ξq)

−
j− 1

2
v+

j− 1
2
−
∫

Ij

euv dx. (46)

Here, we have used the fact that
∫

Ij
ηqvxdx = 0 and (ηq)

−
j+ 1

2
= 0, ∀j. By applying integration by

parts to the term
∫

Ij
ξqvxdx, we can rewrite Equation (46) as

∫
Ij

((eu)tt + eu) v dx =
∫

Ij

ξq,xv dx + [ξq]j− 1
2
v+

j− 1
2
. (47)

We then take time integral from t to τ to obtain∫
Ij

(eu,t(x, τ)− eu,t(x, t)) v dx +
∫

Ij

Ee
u(x, t)v dx =

∫
Ij

(Eξ
q)xv dx + [Eξ

q ]j− 1
2
v+

j− 1
2
. (48)

Let v = pj(x, t)(x− xj− 1
2
)/hj in (48), we have [Eξ

q ]j− 1
2
v+

j− 1
2
= 0 and

∫
Ij

(Eξ
q)xv dx =

∫
Ij

(
pj

x− xj

hj

)
x

pj

x− xj− 1
2

hj
dx

=
∫

Ij

(
pj

x− xj− 1
2

hj

)
x

pj

x− xj− 1
2

hj
dx− 1

2

∫
Ij

pj pj,x

x− xj− 1
2

hj
dx

=
1
2

(
pj(xj+ 1

2
, t)
)2
− 1

2

∫
Ij

pj pj,x

x− xj− 1
2

hj
dx. (49)

Since
∫

Ij
pj pj,x

x−x
j− 1

2
hj

dx =
(

pj(xj+ 1
2
)
)2
−
∫

Ij
pj,x pj

x−x
j− 1

2
hj

dx− 1
hj

∫
Ij

p2
j dx, we get

∫
Ij

pj pj,x

x− xj− 1
2

hj
dx =

1
2

(
pj(xj− 1

2
, t)
)2
− 1

2hj

∫
Ij

p2
j dx. (50)

Combining Equations (48)–(50), we have

∫
Ij

(eu,t(x, τ)− eu,t(x, t) + Ee
u(x, t)) pj

x− xj− 1
2

hj
dx =

1
4

(
pj(xj+ 1

2
, t)
)2

+
1

4hj

∫
Ij

p2
j dx.

Thus, ∫
Ij

p2
j dx ≤ 4

∫
Ij

(eu,t(x, τ)− eu,t(x, t) + Ee
u(x, t)) pj(x− xj− 1

2
)dx. (51)

Let d2(x) be a piecewise linear polynomial on I, and d2(x)|Ij = x− xj− 1
2

on each subinterval Ij.
It is easy to show ‖d2‖∞ = h. Therefore, Equation (42) leads to

‖p‖2 =
∫

I
(p(x, t))2dx ≤ 4 (‖eu,t(·, τ)‖+ ‖eu,t(·, t)‖+ ‖Ee

u(·, t)‖) ‖p‖‖d2‖∞. (52)

One can show that Theorem 3 leads to ‖eu,t(·, τ)‖, ‖eu,t(·, t)‖, ‖Ee
u(·, t)‖ ≤ Chk+1. Note that the

constant C in this inequality also depends on t and τ. We then cancel the term ‖p‖ in (52), and apply the
estimates about ‖eu,t(·, τ)‖, ‖eu,t(·, t)‖ and ‖Ee

u(·, t)‖ to the resulting inequality, we can eventually get

‖p‖ ≤ Chk+1‖d2‖∞ ≤ Chk+2. (53)
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The next lemma provides some important estimates which will be used in the proof of
superconvergence.

Lemma 3. The following inequalities are satisfied∫ τ

0
dt
∫

I
ηu,tξudx ≤ Ch2k+3, (54)∫ τ

0
dt
∫

I
Eη

q ξqdx ≤ Ch2k+3. (55)

Proof. We first consider (54). Let d3(x) be a piecewise linear function such that d3(x) = (x− xj)/hj
when x ∈ Ij, for j = 1, 2, . . . , N. Thus, ‖d3‖∞ = 1

2 . From Lemma 2, we obtain

∫ τ

0
dt
∫

I
ηu,tξudx =

N

∑
j=1

∫ τ

0
dt
∫

Ij

(
rj + sj

x− xj

hj

)
ηu,tdx

=
N

∑
j=1

∫ τ

0
dt
∫

Ij

sj
x− xj

hj
ηu,tdx

=
∫ τ

0
dt
∫

I
s d3 ηu,tdx ≤

∫ τ

0
‖s‖‖ηu,t‖‖d3‖∞dt ≤ Ch2k+3. (56)

Here, we used the fact that
∫

Ij
rjηu,tdx = 0 in the first equality above, and applied Lemma 1 in the

last inequality above. This completes the proof of (54).
Next, we consider

∫ τ
0 dt

∫
I Eη

q ξqdx. Due to the definition of Eξ
q , we know d

dt Eξ
q = −ξq and

d
dt Eη

q = −ηq. In addition noting that Eη
q (x, τ) = Eξ

q(x, τ) = 0, we thus have

∫ τ

0
dt
∫

I
Eη

q ξqdx = −
∫ τ

0

∫
I

Eη
q

d
dt

Eξ
q dx

= −
∫ τ

0

∫
I

d
dt

(
Eη

q Eξ
q

)
dx +

∫ τ

0

∫
I

(
d
dt

Eη
q

)
Eξ

q dx

=
∫

I
Eη

q (x, 0)Eξ
q(x, 0)dx−

∫ τ

0
dt
∫

I
ηqEξ

q(x, t)dx

=
N

∑
j=1

∫
Ij

Eη
q (x, 0)pj(x, 0)

x− xj

hj
dx−

N

∑
j=1

∫ τ

0
dt
∫

Ij

ηq pj(x, t)
x− xj

hj
dx

=
∫

I
Eη

q (x, 0)p(x, 0)d3(x)dx−
∫ τ

0
dt
∫

I
ηq p(x, t)d3(x)dx

≤ ‖Eη
q (·, 0)‖‖p(·, 0)‖‖d3‖∞ +

∫ τ

0
‖ηq‖‖p(·, t)‖‖d3‖∞dt

≤ Ch2k+3. (57)

Note that the last inequality in (57) is based on the estimates about ‖p(·, 0)‖ and ‖p(·, t)‖ from
Lemma 2, as well as the approximation property about ‖ηq‖ and ‖Eη

q ‖.

Now, we are ready to present the main theorem about the superconvergence property of our
scheme.

Theorem 4. (Superconvergence) Let uh and qh be the numerical solutions to the schemes (4) and (5) with
numerical flux (6), and u and q be the exact solutions to the Klein-Gordon Equation (3). If we take uh(x, 0) =
Π+u(x, 0) and uh,t(x, 0) = Πut(x, 0), then the following error estimates hold:

‖Π+u(·, t)− uh(·, t)‖ ≤ Chk+ 3
2 ,
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where C is a positive constant that depends on t and the exact solution, and is independent from the mesh size h.

Proof. From Equation (24), we get

∫
I

ξu,ttv dx =
∫

I
ηu,ttv dx−

∫
I

ξqvxdx−
N

∑
j=1

(ξq)
−
j+ 1

2
[v]j+ 1

2
−
∫

I
euv dx.

By rewriting
∫

I ξu,ttv dx as d
dt

∫
I ξu,tv dx−

∫
I ξu,tvt dx, the equation above leads to

−
∫

I
ξu,tvt dx =

∫
I

ηu,ttv dx−
∫

I
ξqvxdx−

N

∑
j=1

(ξq)
−
j+ 1

2
[v]j+ 1

2
−
∫

I
euv dx− d

dt

∫
I

ξu,tv dx.

We take v = Eξ
u(x, t) in the equality above and recall Eξ

u(x, t) =
∫ τ

t ξudt which implies vt = −ξu;
thus, we can obtain

∫
I

ξu,tξudx =
∫

I
ηu,ttE

ξ
udx−

∫
I

euEξ
udx− d

dt

∫
I

ξu,tE
ξ
udx−

∫
I

ξq(Eξ
u)xdx−

N

∑
j=1

(ξq)
−
j+ 1

2
[Eξ

u]j+ 1
2
. (58)

From Equation (5), we can show

∫
I

eqw dx = −
∫

I
ξuwxdx−

N

∑
j=1

(ξu)
+
j+ 1

2
[w]j+ 1

2
. (59)

We then take an integral with respect to t from τ to t on both sides of Equation (59), and let w = ξq

to get ∫
I

Eξ
q ξq dx =

∫
I

Eη
q ξq dx−

∫
I

Eξ
u(ξq)xdx−

N

∑
j=1

(Eξ
u)

+
j+ 1

2
[ξq]j+ 1

2
. (60)

Note that

∫
I

ξq(Eξ
u)xdx +

N

∑
j=1

(ξq)
−
j+ 1

2
[Eξ

u]j+ 1
2
+
∫

I
Eξ

u(ξq)xdx +
N

∑
j=1

(Eξ
u)

+
j+ 1

2
[ξq]j+ 1

2
= 0. (61)

We add Equations (58) and (60) and apply (61) to the resulting equation, and we can show that∫
I

(
ξu,tξu + Eξ

q ξq + euEξ
u

)
dx =

∫
I

ηu,ttE
ξ
udx +

∫
I

Eη
q ξqdx− d

dt

∫
I

ξu,tE
ξ
udx

= − d
dt

∫
I

eu,tE
ξ
udx +

∫
I

ηu,tξudx +
∫

I
Eη

q ξqdx. (62)

Since Eξ
q ξq = − 1

2
d
dt (Eξ

q)
2 and euEξ

u = − 1
2

d
dt (Eξ

u)
2, Equation (62) leads to

1
2

d
dt

(
‖ξu‖2 − ‖Eξ

q‖2 − ‖Eξ
u‖2
)

dx =
∫

I
ηu,tξudx +

∫
I

Eη
q ξqdx− d

dt

∫
I

eu,tE
ξ
udx. (63)

We take the time integral from 0 to τ in the equation above, and get the following equation

1
2

(
‖ξu(·, τ)‖2 − ‖ξu(·, 0)‖2 + ‖Eξ

q(·, 0)‖2 + ‖Eξ
u(·, 0)‖2

)
=

∫ τ

0
dt
∫

I
ηu,tξudx +

∫ τ

0
dt
∫

I
Eη

q ξqdx +
∫

I
eu,t(x, 0)Eξ

u(x, 0)dx. (64)
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Here, we have used the fact that Eξ
q(x, τ) = Eξ

u(x, τ) = 0, ∀x ∈ I. The first
two terms on the right side of Equation (64) can be estimated using Lemma 3. That is,∫ τ

0 dt
∫

I ηu,tξudx +
∫ τ

0 dt
∫

I Eη
q ξqdx ≤ Ch2k+3. Since uh(x, 0) = Π+u(x, 0), there is ‖ξu(·, 0)‖2 = 0.

In addition, uh,t(x, 0) = Πut(x, 0) implies
∫

I eu,t(x, 0)Eξ
u(x, 0)dx = 0 since Eξ

u(x, 0) ∈ Vk
h . To sum up,

Equation (64) becomes

1
2

(
‖ξu(·, τ)‖2 + ‖Eξ

q(·, 0)‖2 + ‖Eξ
u(·, 0)‖2

)
≤ Ch2k+3. (65)

Such an inequality indicates ‖uh(·, τ) − Π+u(·, τ)‖2 = ‖ξu(·, τ)‖2 ≤ Ch2k+3 for any fixed τ,
which concludes the proof of this theorem.

4. Time Discretizations

In Sections 2 and 3, we have defined our semi-discrete schemes and presented some conservation
properties, error estimates and superconvergence properties. Here, we complete the definition of our
fully-discrete schemes by providing two methods of time discretizations. That is, we consider explicit
and implicit time discretizations for (4) and (5) as follows:

• Scheme 1:
For n = 1, 2, . . ., we look for un+1

h , qn+1
h ∈ Vk

h , such that

∫
Ij

un+1
h − 2un

h + un−1
h

(δt)2 v dx = −
∫

Ij

qn
h vx dx + (qn

h)
−
j+ 1

2
v−

j+ 1
2
− (qn

h)
−
j− 1

2
v+

j− 1
2
−
∫

Ij

un
h v dx,∫

Ij

qn+1
h w dx = −

∫
Ij

un+1
h wx dx + (un+1

h )+
j+ 1

2
w−

j+ 1
2
− (un+1

h )+
j− 1

2
w+

j− 1
2
,

for any v, w ∈ Vk
h .

• Scheme 2:
For n = 1, 2, . . ., we look for un+1

h , qn+1
h ∈ Vk

h , such that

∫
Ij

un+1
h − 2un

h + un−1
h

(δt)2 v dx = −
∫

Ij

qn+1
h + qn−1

h
2

vx dx +
1
2

(
(qn+1

h )−
j+ 1

2
+ (qn−1

h )−
j+ 1

2

)
v−

j+ 1
2

−1
2

(
(qn+1

h )−
j− 1

2
+ (qn−1

h )−
j− 1

2

)
v+

j− 1
2
−
∫

Ij

un+1
h + un−1

h
2

v dx,∫
Ij

qn+1
h w dx = −

∫
Ij

un+1
h wx dx + (un+1

h )+
j+ 1

2
w−

j+ 1
2
− (un+1

h )+
j− 1

2
w+

j− 1
2
,

for any v, w ∈ Vk
h .

Here, un+1
h and qn+1

h represent the numerical solutions at time tn+1 := (n + 1)δt, where δt is the
time step. The initialization for both schemes is given as follows:

u0
h = Π+u(x, 0), (66)

u1
h = u0

h + (δt)Πut(x, 0) +
1
2
(δt)2

(
(u0

h)xx − u0
h

)
. (67)

Note that Scheme 1 and Scheme 2 are explicit and implicit schemes, respectively. The property of
both schemes are given in the following theorem.
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Theorem 5. Let un
h and qn

h be the numerical solutions to Scheme 1 with numerical flux (6) and initialization (66)
and (67); then, the following equality holds

∫
I

un+1
h un

h dx +
∫

I
qn+1

h qn
h dx +

∥∥∥∥∥un+1
h − un

h
δt

∥∥∥∥∥
2

=
∫

I
un

h un−1
h dx +

∫
I

qn
h qn−1

h dx +

∥∥∥∥∥un
h − un−1

h
δt

∥∥∥∥∥
2

. (68)

Alternatively, if un
h and qn

h are the numerical solutions to Scheme 2 with numerical flux (6) and
initialization (66) and (67), then the following equality holds

‖un+1
h ‖2 + ‖qn+1

h ‖2 +
2

(δt)2 ‖u
n+1
h − un

h‖
2 = ‖un−1

h ‖2 + ‖qn−1
h ‖2 +

2
(δt)2 ‖u

n
h − un−1

h ‖2. (69)

Proof. We first prove the result for Scheme 1. We rewrite Scheme 1 as

∫
I

un+1
h − 2un

h + un−1
h

(δt)2 v dx = −
∫

I
qn

h vx dx−
N

∑
j=1

(qn
h)
−
j+ 1

2
[v]j+ 1

2
−
∫

I
un

h v dx,

∫
I

qn+1
h − qn−1

h
2(δt)

w dx = −
∫

I

un+1
h − un−1

h
2(δt)

wx dx−
N

∑
j=1

(
un+1

h − un−1
h

2(δt)

)+

j+ 1
2

[w]j+ 1
2
.

Let v =
un+1

h −un−1
h

2(δt) and w = qn
h in the equations above, and we take the sum of the resulting

equations to get

∫
I

un+1
h − 2un

h + un−1
h

(δt)2 ·
un+1

h − un−1
h

2(δt)
dx +

∫
I

qn+1
h − qn−1

h
2(δt)

qn
h dx +

∫
I

un
h

un+1
h − un−1

h
2(δt)

dx = 0. (70)

Here, we have used the equality

∫
I

qn
h

(
un+1

h − un−1
h

2(δt)

)
x

dx +
∫

I

un+1
h − un−1

h
2(δt)

(qh)x dx +
N

∑
j=1

(qn
h)
−
j+ 1

2

[
un+1

h − un−1
h

2(δt)

]
j+ 1

2

+
N

∑
j=1

(
un+1

h − un−1
h

2(δt)

)+

j+ 1
2

[qh]j+ 1
2
= 0

in (70). Since (un+1
h − 2un

h + un−1
h )(un+1

h − un−1
h ) = (un+1

h − un
h)

2− (un
h − un−1

h )2, Equation (70) leads to

∫
I

un+1
h un

h dx +
∫

I
qn+1

h qn
h dx +

∥∥∥∥∥un+1
h − un

h
δt

∥∥∥∥∥
2

=
∫

I
un

h un−1
h dx +

∫
I

qn
h qn−1

h dx +

∥∥∥∥∥un
h − un−1

h
δt

∥∥∥∥∥
2

.

Next, we consider the result for Scheme 2. We rewrite Scheme 2 as

∫
I

un+1
h − 2un

h + un−1
h

(δt)2 v dx = −
∫

I

qn+1
h + qn−1

h
2

vx dx−
N

∑
j=1

(
qn+1

h + qn−1
h

2

)−
j+ 1

2

[v]j+ 1
2

−
∫

I

un+1
h + un−1

h
2

v dx,

∫
I

qn+1
h − qn−1

h
2(δt)

w dx = −
∫

I

un+1
h − un−1

h
2(δt)

wx dx−
N

∑
j=1

(
un+1

h − un−1
h

2(δt)

)+

j+ 1
2

[w]j+ 1
2
.
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Let v =
un+1

h −un−1
h

2(δt) and w =
qn+1

h +qn−1
h

2 in the equations above, we can further derive

∫
I

un+1
h − 2un

h + un−1
h

(δt)2 ·
un+1

h − un−1
h

2(δt)
dx +

∫
I

qn+1
h − qn−1

h
2(δt)

·
qn+1

h + qn−1
h

2
dx

+
∫

I

un+1
h + un−1

h
2

·
un+1

h − un−1
h

2(δt)
dx = 0, (71)

since

∫
I

qn+1
h + qn−1

h
2

(
un+1

h − un−1
h

2(δt)

)
x

dx +
∫

I

un+1
h − un−1

h
2(δt)

(
qn+1

h + qn1
h

2

)
x

dx

+
N

∑
j=1

(
qn+1

h + qn−1
h

2

)−
j+ 1

2

[
un+1

h − un−1
h

2(δt)

]
j+ 1

2

+
N

∑
j=1

(
un+1

h − un−1
h

2(δt)

)+

j+ 1
2

[
qn+1

h + qn−1
h

2

]
j+ 1

2

= 0.

It is easy to show that Equation (71) leads to

2
(δt)2

(
‖un+1

h − un
h‖

2 − ‖un
h − un−1

h ‖2
)
+ ‖qn+1

h ‖2 − ‖qn−1
h ‖2 + ‖un+1

h ‖2 − ‖un−1
h ‖2 = 0, (72)

which is equivalent to (69).

Remark 2. Equation (68) implies the conservation of total energy in the fully-discrete sense. Here,
∫

I un+1
h un

h dx

is an approximation of
∫

I u2 dx,
∫

I qn+1
h qn

h dx is an approximation of
∫

I q2 dx, and
∥∥∥∥ un+1

h −un
h

δt

∥∥∥∥2

approximates
∫

I u2
t dx.

5. Numerical Experiments

In this section, we demonstrate the theoretical findings in Sections 2 and 3, including the
optimal convergence rates of ‖uh − u‖ and ‖qh − q‖, the superconvergence property of ‖Π+u− uh‖,
and conservation properties of our scheme, by some numerical tests. We consider the following
initial-boundary value problem:

utt − uxx + u = 0, (x, t) ∈ [0, 1]× (0, T], (73)

u(x, 0) = sin(2πx), ut(x, 0) = 0, (74)

u(0, t) = u(1, t). (75)

The exact solution to the initial-boundary value problem is u(x, t) = sin(2πx) cos(
√

4π2 + 1t).
We apply scheme 1 defined in Section 4 to solve the problem. The numerical results by scheme 2 in
Section 4 are similar, and thus we skip the discussion.

We first estimate the convergence rates of ‖uh − u‖, ‖qh − q‖ and ‖Π+u − uh‖. In these
numerical experiments, we use a uniform grid with h = 1/N for various N. In order to
observe the convergence order in space, we choose the time step size δt = 0.01h2 so that the
error in space dominates. We compute the numerical solutions at T = 0.5 using Pk basis with
k = 1, 2, 3. To estimate the convergence rate of ‖uh − u‖, we take different values of h and compute
‖uh − u‖. Suppose ‖uh − u‖ has a convergence rate of r, i.e., ‖uh − u‖ = Chr where C is a positive
constant; then, log10 ‖uh − u‖ = r log10 h + log10 C. We use several points of (log10 h, log10 ‖uh − u‖)
with different h to fit a straight line whose slope is an approximation of the convergence rate r.
The convergence rates of ‖qh − q‖ and ‖Π+u− uh‖ can be obtained in the same manner. In Figure 1,
we present the error of uh and qh in L2 norm when we use P1 basis. The empty circles represent the
discrete numerical results and each red straight line represents the linear least square fitting of the
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empty circles. Figure 1a shows that the convergence rate of ‖uh − u‖ is approximately 2.0041, which is
consistent with the optimal convergence rate, i.e., k + 1 with k = 1, as proved in Section 2. In addition,
the results from Figure 1b verifies the convergence rate of 2 for ‖qh − q‖. As for the convergence rate
of ‖Π+u− uh‖, it is actually greater than 2.5. Similarly, from Figures 2 and 3, we can observe the
convergence rates of (k + 1) for ‖uh − u‖ and ‖qh − q‖when P2 and P3 basis are used. Figure 2c shows
that ‖Π+u− uh‖ has the convergence rate of approximately 4 when we use P2 basis, which indicates
the (k + 2)th order of convergence with k = 2. Figure 3c gives the convergence rate for the case of P3

basis. We can see that ‖Π+u− uh‖ is convergent at the rate of 4.5949, which is a little over (k + 3/2)
with k = 3. Based on the numerical results in Figures 1–3, as well as the discussion above, we can draw
the conclusion that our numerical results coincide with our rigorous proof about error estimates and
the superconvergence property.
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(a) log10 ‖uh − u‖ versus log10 h.
Slope = 2.0041.
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(b) log10 ‖qh − q‖ versus log10 h.
Slope = 2.1789.
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(c) log10 ‖Π+u − uh‖ versus log10 h.
Slope = 3.8265.

Figure 1. log10 E versus log10 h, where E is the L2 error at T = 0.5 with P1 basis.
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Slope = 3.0036.
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(b) log10 ‖qh − q‖ versus log10 h.
Slope = 3.0816.
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(c) log10 ‖Π+u − uh‖ versus log10 h.
Slope = 4.3726.

Figure 2. log10 E versus log10 h, where E is the L2 error at T = 0.5 with P2 basis.
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Slope = 3.9967.
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Slope = 3.9465.
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(c) log10 ‖Π+u − uh‖ versus log10 h.
Slope = 4.5949.

Figure 3. log10 E versus log10 h, where E is the L2 error at T = 0.5 with P3 basis.

Next, we check the conservation properties of our schemes using a simulation over a long time.
As indicated by Theorems 1 and 2 in Section 2.2, and Theorem 5 in Section 4, the conservation
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properties of energy and linear momentum are independent of the degree of polynomials. Here, we
only present the long time simulation when P2 basis is used. We still consider the initial-boundary
value problem (73)–(75). We choose h = 0.1, δt = 10−4 and run the simulation up to T = 100.
Using the exact solution u(x, t) = sin(2πx) cos(

√
4π2 + 1t), we can show that the linear momentum

P(t) =
∫

I utuxdx = 0 for all t. Numerically, we approximate the linear momentum using the discrete

form of P(t). That is, we compute
∫

I

(
un+1

h − un
h

)
/δt · qn+1

h dx for n = 0, 1, . . . , 106 − 1, and present
the time history of the error in linear momentum in Figure 4b. We can observe that the error
oscillates from T = 0 to T = 100, and the magnitude of oscillations increase up to T = 76 and
then decrease from T = 76 all the way to T = 100. Overall, the linear momentum is conserved
up to the magnitude of 10−10. Theorem 2 implies that the rate of change for linear momentum
depends on some jumps at interior interfaces, and the semi-discrete form of linear momentum is
not conserved up to machine epsilon. However, our numerical results indicate that the quantity
∑N

j=1 |[qh]j+ 1
2
|2 + ∑N

j=1 |[uh]j+ 1
2
|2 − ∑N

j=1 |[uh,t]j+ 1
2
|2, although not equal to zero analytically, is not

far away from machine epsilon numerically. Therefore, we can observe the conservation of linear
momentum numerically. As for the conservation of total energy, we compute the discrete form of

energy using
∫

I un+1
h un

h dx +
∫

I qn+1
h qn

h dx +
∥∥∥un+1

h − un
h

∥∥∥2
/(δt)2 for n = 0, 1, . . . , 106 − 1. Figure 4a

shows the error in the total energy. We can observe that the total energy is conserved up to the
magnitude of 10−9. Therefore, we have verified the energy conservation and linear momentum
conservation through the numerical experiments.
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(a) Error in the total energy
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Figure 4. Time history of the error in the total energy and linear momentum with P2 basis and h = 0.1.
(left) error in the total energy; (right) error in the linear momentum.

6. Conclusions

In this paper, high-order energy and linear momentum conserving methods are proposed for
the Klein-Gordon equation. Our numerical methods are based on the local discontinuous Galerkin
methods. By choosing alternating numerical fluxes (6), we can prove that the total energy of the
equation is exactly conserved and the linear momentum is conserved up to some terms at element
interface. Results from long time numerical simulations (up to T = 100) indicate that the linear
momentum is conserved up to the magnitude of 10−10. Moreover, such a choice of numerical
fluxes leads to optimal convergence order of uh, qh and uh,t, and the superconvergence property.
It is important to mention that the schemes proposed in this paper can be directly generalized to
the Klein-Gordon equation with external potential. Moreover, the results from this paper shed
light on the design of high-order structure-preserving methods for nonlinear coupling systems
involving the Klein-Gordon equation, for example, the Klein-Gordon-Schrödinger equations and
the Klein-Gordon-Zakharov equations, which is currently under investigation.
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