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Abstract: This paper is concerned with representing sums of the finite products of Chebyshev
polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal
polynomials. Indeed, by explicit computations, each of them is expressed as linear combinations of
Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials, which involve the
hypergeometric functions 1F1 and 2F1.
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1. Introduction and Preliminaries

In this section, we will fix some notations and recall some basic facts about relevant orthogonal
polynomials that will be used throughout this paper.

For any nonnegative integer n, the falling factorial polynomials (x)n and the rising factorial
polynomials < x >n are respectively defined by (see [1])

(x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1), (x)0 = 1, (1)

< x >n= x(x + 1) · · · (x + n− 1), (n ≥ 1), < x >0= 1. (2)

The two factorial polynomials are related by:

(−1)n(x)n =< −x >n, (−1)n < x >n= (−x)n. (3)

(2n− 2s)!
(n− s)!

=
22n−2s(−1)s < 1

2 >n

< 1
2 − n >s

, (n ≥ s ≥ 0). (4)

Γ(n +
1
2
) =

(2n)!
√

π

22nn!
, (n ≥ 0). (5)

Γ(x + 1)
Γ(x + 1− n)

= (x)n,
Γ(x + n)

Γ(x)
=< x >n, (n ≥ 0). (6)
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B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

, (Re x, Re y > 0), (7)

where Γ(x) and B(x, y) are the gamma and beta functions, respectively.
The hypergeometric function is defined by:

pFq(a1, · · · , ap; b1, · · · , bq; x)

=
∞

∑
n=0

< a1 >n · · · < ap >n

< b1 >n · · · < bq >n

xn

n!
, (p ≤ q + 1, |x| < 1).

(8)

We are now going to recall some basic facts about Chebyshev polynomials of the second
kind Un(x), Fibonacci polynomials Fn(x), Hermite polynomials Hn(x), generalized (extended)
Laguerre polynomials Lα

n(x), Legendre polynomials Pn(x), Gegenbauer polynomials C(λ)
n (x) and

Jacobi polynomials P(α,β)
n (x). All the necessary results on those special polynomials, except Fibonacci

polynomials, can be found in [2–7]. Furthermore, the interested reader may refer to [8–11] for full
accounts of the fascinating area of orthogonal polynomials.

In terms of generating functions, the above special polynomials are given by:

F(t, x) =
1

1− 2xt + t2 =
∞

∑
n=0

Un(x)tn, (9)

G(t, x) =
1

1− xt− t2 =
∞

∑
n=0

Fn+1(x)tn, (10)

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!
, (11)

(1− t)−α−1 exp(− xt
1−t ) =

∞

∑
n=0

Lα
n(x)tn, (α > −1), (12)

(1− 2xt + t2)−
1
2 =

∞

∑
n=0

Pn(x)tn, (13)

1
(1− 2xt + t2)λ

=
∞

∑
n=0

C(λ)
n (x)tn, (λ > −1

2
, λ 6= 0, |t| < 1, |x| ≤ 1), (14)

2α+β

R(1− t + R)α(1 + t + R)β
=

∞

∑
n=0

P(α,β)
n (x)tn, (15)

(R =
√

1− 2xt + t2, α, β > −1).

Explicit expressions of special polynomials can be given as in the following.

Un(x) = (n + 1)2F1(−n, n + 2; 3
2 ; 1−x

2 )

=

[ n
2 ]

∑
l=0

(−1)l
(

n− l
l

)
(2x)n−2l , (16)

Fn+1(x) =
[ n
2 ]

∑
l=0

(
n− l

l

)
xn−2l , (17)

Hn(x) = n!
[ n
2 ]

∑
l=0

(−1)l

l!(n− 2l)!
(2x)n−2l , (18)
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Lα
n(x) =

< α + 1 >n

n! 1F1(−n, α + 1; x)

=
n

∑
l=0

(−1)l(n+α
n−l )

l!
xl , (19)

Pn(x) = 2F1(−n, n + 1; 1; 1−x
2 )

=
1
2n

[ n
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n− 2l

n

)
xn−2l , (20)

C(λ)
n (x) =

(
n + 2λ− 1

n

)
2F1(−n, n + 2λ; λ + 1

2 ; 1−x
2 )

=

[ n
2 ]

∑
k=0

(−1)k Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k, (21)

P(α,β)
n (x) =

< α + 1 >n

n! 2F1(−n, 1 + α + β + n; α + 1; 1−x
2 )

=
n

∑
k=0

(
n + α

n− k

)(
n + β

k

)
( x−1

2 )k( x+1
2 )n−k. (22)

Next, we recall Rodrigues-type formulas for Hermite and generalized Laguerre polynomials and
Rodrigues’ formulas for Legendre, Gegenbauer and Jacobi polynomials.

Hn(x) = (−1)nex2 dn

dxn e−x2
, (23)

Lα
n(x) =

1
n!

x−αex dn

dxn (e
−xxn+α), (24)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, (25)

(1− x2)λ− 1
2 C(λ)

n (x) =
(−2)n

n!
< λ >n

< n + 2λ >n

dn

dxn (1− x2)n+λ− 1
2 , (26)

(1− x)α(1 + x)βP(α,β)
n (x) =

(−1)n

2nn!
dn

dxn (1− x)n+α(1 + x)n+β. (27)

The following orthogonalities with respect to various weight functions are enjoyed by Hermite,
generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials. Here, δn,m is Kronecker’s delta,
so that δn,m = 1, for n = m, and δn,m = 0, for n 6= m.∫ ∞

−∞
e−x2

Hn(x)Hm(x) dx = 2nn!
√

πδn,m, (28)∫ ∞

0
xαe−xLα

n(x)Lα
m(x) dx =

1
n!

Γ(α + n + 1)δn,m, (29)

∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δn,m, (30)∫ 1

−1
(1− x2)λ− 1

2 C(λ)
n (x)C(λ)

m (x) dx =
π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δn,m, (31)∫ 1

−1
(1− x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x) dx

=
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

(2n + α + β + 1)Γ(n + α + β + 1)Γ(n + 1)
δn,m. (32)
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For convenience, we put:

γn,r(x) = ∑
i1+i2+···+ir+1=n

Ui1(x)Ui2(x) · · ·Uir+1(x), (n, r ≥ 0), (33)

En,r(x) = ∑
i1+i2+···+ir=n

Fi1+1(x)Fi2+1(x) · · · Fir+1(x), (n ≥ 0, r ≥ 1). (34)

We note here that both γn,r(x) and En,r(x) have degree n.
The classical linearization problem in general consists of determining the coefficients cnm(k) in

the expansion of the product of two polynomials qn(x) and rm(x) in terms of an arbitrary polynomial
sequence {pk(x)}k≥0:

qn(x)rm(x) =
n+m

∑
k=0

cnm(k)pk(x).

Here, we will study the sums of finite products of Chebyshev polynomials of the second kind
in (33) and those of Fibonacci polynomials in (34). Then, we would like to express each of γn,r(x)
and En,r(x) as linear combinations of Hn(x), Lα

n(x), Pn(x), C(λ)
n (x) and P(α,β)

n (x). These will be done by
performing explicit computations and exploiting the formulas in Proposition 1. They can be derived
from their orthogonalities, Rodrigues’ and Rodrigues-like formulas and integration by parts. This may
be viewed as a generalization of the above-mentioned linearization problem.

Our main results are as follows:

Theorem 1. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the following.

∑
i1+i2+···+ir+1=n

Ui1(x)Ui2(x) · · ·Uir+1(x)

=
(n + r)!

r!

[ n
2 ]

∑
j=0

1
j!(n− 2j)! 1F1(−j;−n− r;−1)Hn−2j(x) (35)

=
2nΓ(α + n + 1)

r!

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(− 1
4 )

l(n + r− l)!
l!(n− k− 2l)!(α + n)2l

Lα
k (x) (36)

=
(n + r)!

r!

[ n
2 ]

∑
j=0

(2n− 4j + 1)
(n− j + 1

2 )n−j j!
2F1(−j; j− n− 1

2
;−n− r; 1)Pn−2j(x) (37)

=
Γ(λ)(n + r)!

Γ(n + λ + 1)r!

×
[ n

2 ]

∑
j=0

(n + λ− 2j)(n + λ)j

j! 2F1(−j; j− n− λ;−n− r; 1)C(λ)
n−2j(x) (38)

=
(−2)n

r!

n

∑
k=0

(−2)kΓ(k + α + β + 1)
Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(− 1
4 )

l(n + r− l)!
l!(n− k− 2l)! 2F1(k + 2l − n, k + β + 1; 2k + α + β + 2; 2)

× P(α,β)
k (x). (39)
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Theorem 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the following.

∑
i1+i2+···+ir=n

Fi1+1(x)Fi2+1(x) · · · Fir+1(x)

=
(n + r− 1)!
2n(r− 1)!

[ n
2 ]

∑
j=0

1
(n− 2j)!j! 1F1(−j; 1− n− r; 4)Hn−2j(x) (40)

=
Γ(α + n + 1)

(r− 1)!

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− l − 1)!
l!(n− k− 2l)!(α + n)2l

Lα
k (x) (41)

=
(n + r− 1)!
(r− 1)!4n

[ n
2 ]

∑
j=0

(2n− 4j + 1)4j

(n− j + 1
2 )n−j j!

2F1(−j; j− n− 1
2

; 1− n− r;−4)Pn−2j(x) (42)

=
Γ(λ)(n + r− 1)!

2n(r− 1)!Γ(n + λ + 1)

×
[ n

2 ]

∑
j=0

(n + λ)j(n + λ− 2j)
j! 2F1(−j; j− n− λ; 1− n− r;−4)C(λ)

n−2j(x) (43)

=
(−1)n

(r− 1)!

n

∑
k=0

Γ(k + α + β + 1)(−2)k

Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− 1− l)!
l!(n− k− 2l)! 2F1(k + 2l − n, k + β + 1; 2k + α + β + 2; 2)

× P(α,β)
k (x). (44)

The sums of finite products of Bernoulli, Euler and Genocchi polynomials have been expressed as
linear combinations of Bernoulli polynomials in [12–14]. These were done by deriving Fourier series
expansions for the functions closely related to those sums of finite products. Further, the same were
done for the sums of finite products γn,r(x) and En,r(x) in (33) and (34) in [15]. Along the same line as
the present paper, sums of finite products of Chebyshev polynomials of the second, third and fourth
kinds and of Fibonacci, Legendre and Laguerre polynomials were expressed in terms of all kinds of
Chebyshev polynomials in [16–18]. Finally, we let the reader refer to [19,20] for some applications of
Chebyshev polynomials and to [21–25] for some similar iteration methods.

2. Proof of Theorem 1

Here, we are going to prove Theorem 1. First, we will state two results that will be needed in
showing Theorems 1 and 2.

The results (a), (b), (c), (d) and (e) in Proposition 1 follow respectively from (3.7) of [3], (2.3)
of [7] (see also (2.4) of [6]), (2.3) of [4], (2.3) of [2] and (2.7) of [5]. They can be derived from their
orthogonalities in (26)–(30), Rodrigues-like and Rodrigues’ formulas in (21)–(25) and integration
by parts.

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then, we have the following.
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(a) q(x) =
n

∑
k=0

Ck,1Hk(x), where

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
q(x)

dk

dxk e−x2
dx,

(b) q(x) =
n

∑
k=0

Ck,2Lα
k (x), where

Ck,2 =
1

Γ(α + k + 1)

∫ ∞

0
q(x)

dk

dxk (e
−xxk+α)dx,

(c) q(x) =
n

∑
k=0

Ck,3Pk(x), where

Ck,3 =
2k + 1
2k+1k!

∫ 1

−1
q(x)

dk

dxk (x2 − 1)kdx,

(d) q(x) =
n

∑
k=0

Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

∫ 1

−1
q(x)

dk

dxk (1− x2)k+λ− 1
2 dx,

(e) q(x) =
n

∑
k=0

Ck,5P(α,β)
k (x), where

Ck,5 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
q(x)

dk

dxk (1− x)k+α(1 + x)k+βdx.

Proposition 2. Let m, k be nonnegative integers. Then, we have the following.

(a)
∫ ∞

−∞
xme−x2

dx

=

0, if m ≡ 1 (mod 2),
m!
√

π

(m
2 )!2m , if m ≡ 0 (mod 2),

(b)
∫ 1

−1
xm(1− x2)kdx

=

0, if m ≡ 1 (mod 2),
22k+2k!m!(k+ m

2 +1)!
(m

2 )!(2k+m+2)!
, if m ≡ 0 (mod 2),

= 22k+1k!
m

∑
s=0

(
m
s

)
2s(−1)m−s (k + s)!

(2k + s + 1)!
,

(c)
∫ 1

−1
xm(1− x2)k+λ− 1

2 dx

=

0, if m ≡ 1 (mod 2),
Γ(k+λ+ 1

2 )Γ(
m
2 +

1
2 )

Γ(k+λ+ m
2 +1) , if m ≡ 0 (mod 2),
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(d)
∫ 1

−1
xm(1− x)k+α(1 + x)k+βdx

= 22k+α+β+1
m

∑
s=0

(
m
s

)
(−1)m−s2s

× Γ(k + α + 1)Γ(k + β + s + 1)
Γ(2k + α + β + s + 2)

.

Proof. (a) This is trivial.
(b) The first equality follows from (c) with λ = 1

2 and the second from (d) with α = β = 0.

(c)
∫ 1

−1
xm(1− x2)k+λ− 1

2 dx

=(1 + (−1)m)
∫ 1

0
xm(1− x2)k+λ− 1

2 dx

=
1
2
(1 + (−1)m)

∫ 1

0
(1− y)k+λ+ 1

2−1y
m+1

2 −1dy

=
1
2
(1 + (−1)m)B(k + λ +

1
2

,
m + 1

2
).

The result now follows from (7).

(d)
∫ 1

−1
xm(1− x)k+α(1 + x)k+βdx

=22k+α+β+1
∫ 1

0
(2y− 1)m(1− y)k+αyk+βdy

=22k+α+β+1
m

∑
s=0

(
m
s

)
2s(−1)m−s

×
∫ 1

0
(1− y)k+α+1−1yk+β+s+1−1dy

=22k+α+β+1
m

∑
s=0

(
m
s

)
2s(−1)m−sB(k + α + 1, k + β + s + 1).

The result again follows from (7). Even though the following lemma was shown in [26], we will
show it for the sake of completeness.

Lemma 1. Let n, r be nonnegative integers. Then, we have the following identity.

∑
i1+i2+···+ir+1=n

Ui1(x)Ui2(x) · · ·Uir+1(x) =
1

2rr!
U(r)

n+r(x), (45)

where the sum runs over all nonnegative integers i1, i2, · · · ir+1, with i1 + i2 + · · ·+ ir+1 = n.

Proof. Noting that the degree of Un(x) has degree n and taking the partial derivative ( ∂
∂x )

r on both
sides of (9), we have:

r!(2t)r
(

1− 2xt + t2
)−(r+1)

= r!(2t)r
( ∞

∑
i=0

Ui(x)
)r+1

=
∞

∑
n=r

U(r)
n (x)tn,

from which our result follows.
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It is immediate to see from (16) that the r-th derivative of Un(x) is equal to:

U(r)
n (x) =

[ n−r
2 ]

∑
l=0

(−1)l
(

n− l
l

)
(n− 2l)r2n−2l xn−2l−r. (46)

Thus, in particular, we have:

U(r+k)
n+r (x) =

[ n−k
2 ]

∑
l=0

(−1)l
(

n + r− l
l

)
(n + r− 2l)r+k2n+r−2l xn−k−2l . (47)

Here, we will show only (35), (37) and (38) in Theorem 1, leaving the proofs for (36) and (39) as
an exercise, as they can be proved analogously to those for (41) and (44) in the next section.

With γn,r(x) as in (33), we let:

γn,r(x) =
n

∑
k=0

Ck,1Hk(x). (48)

Then, from (a) of Proposition 1, (45), (47) and integration by parts k times, we have:

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
γn,r(x)

dk

dxk e−x2
dx,

=
(−1)k

2k+rk!r!
√

π

∫ ∞

−∞
U(r)

n+r(x)
dk

dxk e−x2
dx,

=
1

2k+rk!r!
√

π

∫ ∞

−∞
U(r+k)

n+r (x)e−x2
dx,

=
2n−k

k!r!
√

π

[ n−k
2 ]

∑
l=0

(−1
4
)l
(

n + r− l
l

)
(n + r− 2l)r+k

×
∫ ∞

−∞
xn−k−2le−x2

dx.

(49)

From (49) and invoking (a) of Proposition 2, we get:

Ck,1 =
2n−k

k!r!
√

π

[ n−k
2 ]

∑
l=0

(−1
4
)l
(

n + r− l
l

)
(n + r− 2l)r+k

×

0, if k 6≡ n (mod 2),
(n−k−2l)!

√
π

2n−k−2l( n−k
2 −l)!

, if k ≡ n (mod 2).

(50)

Now, from (48) and (50), and after some simplification, we obtain:

γn,r(x) =
1
r! ∑

0≤k≤n
k≡n (mod 2)

1
k!

[ n−k
2 ]

∑
l=0

(−1)l(n + r− l)!
l!( n−k

2 − l)!
Hk(x)

=
1
r!

[ n
2 ]

∑
j=0

1
(n− 2j)!

Hn−2j(x)
j

∑
l=0

(−1)l(n + r− l)!
l!(j− l)!

=
(n + r)!

r!

[ n
2 ]

∑
j=0

1
j!(n− 2j)!

Hn−2j(x)
j

∑
l=0

(−1)l < −j >l
l! < −n− r >l

=
(n + r)!

r!

[ n
2 ]

∑
j=0

1
j!(n− 2j)! 1F1(−j,−n− r;−1)Hn−2j(x).

(51)
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This shows (35) of Theorem 1.
Next, we let:

γn,r(x) =
n

∑
k=0

Ck,3Pk(x). (52)

Then, from (c) of Proposition 1, (45), (47) and integration by parts k times, we get:

Ck,3 =
2k + 1

2k+r+1k!r!

∫ 1

−1
U(r)

n+r(x)
dk

dxk (x2 − 1)kdx

=
(−1)k(2k + 1)

2k+r+1k!r!

∫ 1

−1
U(r+k)

n+r (x)(x2 − 1)kdx

=
(2k + 1)2n−k−1

k!r!

[ n−k
2 ]

∑
l=0

(−1
4
)l
(

n + r− l
l

)
(n + r− 2l)r+k

×
∫ 1

−1
xn−k−2l(1− x2)kdx.

(53)

From (52) and making use of the first equality of (b) in Proposition 2, we have:

Ck,3 =
(2k + 1)2n−k−1

k!r!

[ n−k
2 ]

∑
l=0

(−1
4
)l
(

n + r− l
l

)
(n + r− 2l)r+k

×

0, if k 6≡ n (mod 2),
22k+2k!(n−k−2l)!( n+k

2 −l+1)!
( n−k

2 −l)!(n+k−2l+2)!
, if k ≡ n (mod 2).

(54)

From (52), (54), and using (4), we finally obtain:

γn,r(x) =
22n+1

r!

[ n
2 ]

∑
j=0

2n− 4j + 1
22j Pn−2j(x)

×
j

∑
l=0

(− 1
4 )

l(n + r− l)!(n− j + 1− l)!
l!(j− l)!(2n− 2j + 2− 2l)!

=
(n + r)!

2r!

[ n
2 ]

∑
j=0

(2n− 4j + 1)Pn−2j(x)

(n− j + 1
2 )n−j+1 j!

×
j

∑
l=0

< −j >l< j− n− 1
2 >l

< −n− r >l l!

=
(n + r)!

r!

[ n
2 ]

∑
j=0

(2n− 4j + 1)2F1(−j, j− n− 1
2 ;−n− r; 1)

(n− j + 1
2 )n−j j!

Pn−2j(x).

(55)

This shows (37) of Theorem 1.

Remark 1. In the step of (54), if we use the second equality of (b) in Proposition 2 instead of the first, we would
have the expression:

γn,r(x) =
(−2)n

r!

n

∑
k=0

(−2)kk!
(2k)!

×
[ n−k

2 ]

∑
j=0

(− 1
4 )

l(n + r− l)!
l!(n− k− 2l)! 2F1(2l + k− n, k + 1; 2k + 2; 2)Pk(x).

(56)
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We note here that (56) is (39), with α = β = 0. This is what we expect, as Pn(x) = P(0,0)
n (x).

Finally, we let:

γn,r(x) =
n

∑
k=0

Ck,4C(λ)
k (x). (57)

Then, from (d) of Proposition 1, (45), (47) and integration by parts k times, we obtain:

Ck,4 =
(k + λ)Γ(λ)

2k+r
√

πΓ(k + λ + 1
2 )r!
×
∫ 1

−1
U(r+k)

n+r (x)(1− x2)k+λ− 1
2 dx

=
2n−k(k + λ)Γ(λ)
√

πΓ(k + λ + 1
2 )r!

[ n−k
2 ]

∑
l=0

(−1
4
)l
(

n + r− l
l

)
(n + r− 2l)r+k

×
∫ 1

−1
xn−k−2l(1− x2)k+λ− 1

2 dx.

(58)

From (58), and exploiting (c) in Proposition 2 and (5), we have:

Ck,4 =
2n−k(k + λ)Γ(λ)
√

πΓ(k + λ + 1
2 )r!

[ n−k
2 ]

∑
l=0

(−1
4
)l
(

n + r− l
l

)
(n + r− 2l)r+k

×

0, if k 6≡ n (mod 2),
Γ(k+λ+ 1

2 )(n−k−2l)!
√

π

Γ( n+k
2 +λ−l+1)2n−k−2l( n−k

2 −l)!
, if k ≡ n (mod 2).

(59)

Making use of (6), and from (57) and (59), we finally derive:

γn,r(x) =
Γ(λ)

r! ∑
0≤k≤n

k≡n (mod 2)

[ n−k
2 ]

∑
l=0

(−1)l(k + λ)(n + r− l)!
l!Γ( n+k

2 + λ− l + 1)( n−k
2 − l)!

C(λ)
k (x)

=
Γ(λ)(n + r)!

r! ∑
0≤k≤n

k≡n (mod 2)

[ n−k
2 ]

∑
l=0

(k + λ)

( n−k
2 )!Γ( n+k

2 + λ + 1)

×
(−1)l( n−k

2 )l(
n+k

2 + λ)l

l!(n + r)l
C(λ)

k (x)

=
Γ(λ)(n + r)!

r!

[ n
2 ]

∑
j=0

j

∑
l=0

(n− 2j + λ)

j!Γ(n− j + λ + 1)

× (−1)l(j)l(n + λ− j)l
l!(n + r)l

C(λ)
n−2j(x)

=
Γ(λ)(n + r)!

r!

[ n
2 ]

∑
j=0

j

∑
l=0

(n− 2j + λ)

j!Γ(n− j + λ + 1)

× < −j >l< j− n− λ >l
l! < −n− r >l

C(λ)
n−2j(x)

=
Γ(λ)(n + r)!

Γ(n + λ + 1)r!

[ n
2 ]

∑
j=0

(n− 2j + λ)(n + λ)j

j!

× 2F1(−j, j− n− λ;−n− r; 1)C(λ)
n−2j(x)

(60)

This completes the proof for (38) in Theorem 1.
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3. Proof of Theorem 2

Here, we will show only (41) and (44) in Theorem 2, leaving the proofs for (40), (42) and (43) as
an exercise, as they can be shown similarly to those for (35), (37) and (38).

The following lemma is stated in Equation (9) of [27] and can be derived by differentiating (10).

Lemma 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the following identity.

∑
i1+i2+···+ir=n

Fi1+1(x)Fi2+1(x) · · · Fir+1(x) =
1

(r− 1)!
F(r−1)

n+r (x), (61)

where the sum runs over all nonnegative integers i1, i2, · · · , ir, with i1 + i2 + · · ·+ ir = n.

From (17), it is easy to show that the r-th derivative of Fn+1(x) is given by:

F(r)
n+1(x) =

[ n−r
2 ]

∑
l=0

(
n− l

l

)
(n− 2l)rxn−r−2l . (62)

Thus, especially, we have:

F(r+k−1)
n+r (x) =

[ n−k
2 ]

∑
l=0

(
n + r− l − 1

l

)
(n + r− 2l − 1)r+k−1xn−k−2l . (63)

With En,r(x) as in (34), we let:

γn,r(x) =
n

∑
k=0

Ck,2L(α)
k (x). (64)

Then, from (b) of Proposition 1, (61), (63), (6) and integration by parts k times, we have:

Ck,2 =
1

Γ(α + k + 1)(r− 1)!

∫ ∞

0
F(r−1)

n+r (x)
dk

dxk (e
−xxk+α)dx

=
(−1)k

Γ(α + k + 1)(r− 1)!

∫ ∞

0
F(r+k−1)

n+r (x)e−xxk+αdx

=
(−1)k

Γ(α + k + 1)(r− 1)!

[ n−k
2 ]

∑
l=0

(
n + r− l − 1

l

)
(n + r− 2l − 1)r+k−1

×
∫ ∞

0
e−xxn+α−2ldx

=
Γ(α + n + 1)

(r− 1)!

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− l − 1)!
l!(n− k− 2l)!(α + n)2l

L(α)
k (x).

(65)

Next, we let:

γn,r(x) =
n

∑
k=0

Ck,5P(α,β)
n (x). (66)
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Then, from (e) of Proposition 1, and (61), (63) and integration by parts k times, we obtain:

Ck,5 =
(2k + α + β + 1)Γ(k + α + β + 1)

2k+α+β+1Γ(k + α + 1)Γ(k + β + 1)(r− 1)!

×
∫ 1

−1
F(r+k−1)

n+r (x)(1− x)k+α(1 + x)k+βdx

=
(2k + α + β + 1)Γ(k + α + β + 1)

2k+α+β+1Γ(k + α + 1)Γ(k + β + 1)(r− 1)!

×
[ n−k

2 ]

∑
l=0

(
n + r− l − 1

l

)
(n + r− 2l − 1)r+k−1

×
∫ 1

−1
xn−k−2l(1− x)k+α(1 + x)k+βdx.

(67)

Now, from (67), and using (d) in Proposition 2 and (6), we have:

Ck,5 =
(−1)n(2k + α + β + 1)Γ(k + α + β + 1)(−2)k

(r− 1)!Γ(k + β + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− l − 1)!
l!

×
n−k−2l

∑
s=0

(−2)sΓ(k + β + s + 1)
s!(n− k− 2l − s)!Γ(2k + α + β + s + 2)

=
(−1)nΓ(k + α + β + 1)(−2)k

(r− 1)!Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− 1− l)!
l!(n− k− 2l)!

×
n−k−2l

∑
s=0

< 2l + k− n >s< k + β + 1 >s 2s

< 2k + α + β + 2 >s s!

=
(−1)nΓ(k + α + β + 1)(−2)k

(r− 1)!Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− 1− l)!
l!(n− k− 2l)!

× 2F1(2l + k− n, k + β + 1; 2k + α + β + 2; 2).

(68)

As we desired, we finally obtain:

γn,r(x) =
(−1)n

(r− 1)!

n

∑
k=0

Γ(k + α + β + 1)(−2)k

Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(n + r− 1− l)!
l!(n− k− 2l)! 2F1(k + 2l − n, k + β + 1; 2k + α + β + 2; 2)P(α,β)

n (x).
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