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Abstract: Topological indices collect information from the graph of molecule and help to predict
properties of the underlying molecule. Zagreb indices are among the most studied topological
indices due to their applications in chemistry. In this paper, we compute first and second reverse
Zagreb indices, reverse hyper-Zagreb indices and their polynomials of Prophyrin, Propyl ether imine,
Zinc Porphyrin and Poly (ethylene amido amine) dendrimers.

Keywords: reverse Zagreb index; reverse hyper-Zagreb index; reverse Zagreb polynomials;
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1. Introduction

Dendrimers, from a Greek word that translates to “trees” [1,2], are repetitively branched
molecules. Dendrimers are generally symmetrical about the core and generally adopt a spherical
three-dimensional morphology. Word dendrites are also often encountered. Dendrites usually contain
a single chemically addressable group called the focus or core. The first dendrimer was made by Fritz
Vogtle [3] using different synthetic methods, such as by RG Denkewalter at Allied [4,5] and Donald
Tomalia at Dow Chemical [6–8]. George R. Newkome, Craig Hawker and Jean Frechet in 1990 [9]
introduced a fusion synthesis method. The popularity of dendrimers has greatly increased. By 2005,
there were more than 5000 scientific papers and patents.

Uses of dendrimers include conjugating other chemical species to the dendrimer surface that
can work as distinguishing operators, (for example, a dye molecule), targeting components, affinity
ligands, imaging agents, radioligands or pharmaceutical compounds. Dendrimers have exceptionally
solid potential for these applications as their structure can prompt multivalent systems. As such,
one dendrimer particle has several conceivable sites to couple to an active species. Scientists expected
to use the hydrophobic environments of the dendritic media to conduct photochemical reactions
that create the items that are synthetically challenged. Carboxylic acid and phenol-terminated
water–solvent dendrimers have been incorporated to set up their utility in tranquilizer conveyance,
leading to compound responses in their insides. This may enable specialists to connect both focusing
molecules and drug molecules to the same dendrimer, which could lessen negative symptoms of
medications on healthy cells. Due to these applications, dendrimers are extensively studied [10–16].
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Here, we study Prophyrin, Propyl ether imine, Zinc Porphyrin and Poly(ethylene amido amine)
dendrimers (Figures 1–4).

Figure 1. Prophyrin Dendrimer DnPn.

Figure 2. Zinc Prophyrin Dendrimer DPZn.
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Figure 3. Propyl Ether Imine Dendrimer (PETIM).

Figure 4. Poly(EThylene Amide Amine) Dendrimer PETAA.

Aslam et al. [16] studied three New/Old vertex-degree-based topological indices of these
dendrimers. Gao et al., in 2018, ref. [17] computed eccentricity-based topological indices of
Porphyrin-cored dendrimers. In the same year, Kang et al. [18] computed eccentricity-based topological
indices of phosphorus-containing dendrimers. Some other degree-based topological indices of these
dendrimers have been computed [19]. Figures 1–4 are taken from [17–19].

Topological indices correspond to certain physicochemical properties such as boiling point,
stability, strain energy and so forth of a chemical compound. Currently, there are more than
148 topological indices and none of them completely describe all properties of the molecular
compounds under study, so there is always room to define new topological indices. Our aim was to
study Prophyrin, Propyl ether imine, Zinc Porphyrin and Poly(ethylene amido amine) dendrimers.
We computed the first and second reverse Zagreb indices, reverse hyper-Zagreb indices and their
polynomials of these dendrimers. Graphical comparison of our results is also presented.

2. Preliminaries

A graph having no loop or multiple edges is known as a simple graph. A molecular graph
is a simple graph in which atoms and bonds are represented by vertices and edges, respectively.
The degree of a vertex v is the number of edges attached with it and is denoted by dv. The maximum
degree of vertex among the vertices of a graph is denoted by ∆(G). Kulli [20] introduced the concept of
reverse vertex degree cv, as cv = ∆(G)− dv) + 1. Throughout this paper, G denotes the simple graph,
E denotes the edge set of G, V denotes the vertex set of G and |X| denotes the cardinality of any set X.
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In discrete mathematics, graph theory is not only the study of different properties of objects
but also tells us about objects having same properties as investigating object [21]. In particular,
graph polynomials related to graph are rich in information [22–27]. Mathematical tools such as
polynomials and topological based numbers have significant importance to collect information about
properties of chemical compounds [28–30]. We can find out hidden information about compounds
through theses tools. Multifold graph polynomials are present in the literature. Actually, topological
indices are numeric quantities that tell us about the whole structure of graph. There are many
topological indices [31–34] that help us to study physical, chemical reactivities and biological properties.
Wiener [35], in 1947, firstly introduced the concept of topological index while working on boiling point.
Hosoya polynomial [22] plays an important role in the area of distance-based topological indices;
we can find Wiener index, Hyper Wiener index and Tratch–Stankevich–Zefirove index from Hosoya
polynomial. Randić index defined by Milan Randić [36] in 1975 is one of the oldest degree based
topological indices and has been extensively studied by mathematician and chemists [37–41]. Later,
Gutman et al. introduced the first and second Zagreb indices as

M1(G) = ∑
uvεE(G)

(du + dv),

and
M2(G) = ∑

uvεE(G)

(du.dv),

respectively.
Zagreb indices help us in finding Π electronic energy [42]. Many papers [43–48], surveys [42,49]

and many modification of Zagreb indices are presented in the literature [20,50–54]. First and second
Zagreb polynomials were defined in [26] as:

M1(G, x) = ∑
uvεE(G)

x(du+dv),

and
M2(G, x) = ∑

uvεE(G)

x(du .dv),

respectively.
Shirdel et al. [55] proposed the first and second hyper-Zagreb indices as:

H1(G) = ∑
uvεE(G)

(du + dv)
2,

and
H2(G) = ∑

uvεE(G)

(du.dv)
2.

Motivated by these indices, the first and second reverse Zagreb indices was defined in [20] as:

CM1(G) = ∑
uvεE(G)

(cu + cv),

and
CM2(G) = ∑

uvεE(G)

(cu.cv).

The first and second Reverse hyper-Zagreb indices was also defined in the same paper as:

HCM1(G) = ∑
uvεE(G)

(cu + cv)
2,
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and
HCM2(G) = ∑

uvεE(G)

(cu.cv)
2.

With the help of reverse Zagreb and hyper-Zagreb indices, we are now able to define the reverse
Zagreb and reverse hyper-Zagreb polynomials. For a simply connected graph G, the first and second
reverse Zagreb polynomials are defined as:

CM1(G, x) = ∑
uvεE(G)

x(cu+cv),

and
CM2(G, x) = ∑

uvεE(G)

x(cu .cv)

and the first and second hyper-Zagreb polynomials are defined as:

HCM1(G, x) = ∑
uvεE(G)

x(cu+cv)2
,

and
HCM2(G, x) = ∑

uvεE(G)

x(cu .cv)2
.

3. Main Results

In this section, we compute reverse Zagreb and reverse hyper-Zagreb indices of Prophyrin, Propyl
ether imine, Zinc Porphyrin and Poly(ethylene amido amine) dendrimers.

3.1. Prophyrin Dendrimer DnPn

Theorem 1. Let DnPn be a prophyrin Dendrimer. Then, the first and second reverse Zagreb indices are

1. CM1(DnPn) = 508n− 60.
2. CM2(DnPn) = 558n− 81.

Proof. In the Prophyrin dendrimer DnPn, there are 96n− 10 vertices and 105n− 11 edges. Based on
the degree of end vertices, the edge set of DnPn can be divided into following sic classes

E1(DnPn) = {uvεE(DnPn); du = 1, dv = 3},

E2(DnPn) = {uvεE(DnPn); du = 1, dv = 4},

E3(DnPn) = {uvεE(DnPn); du = 2, dv = 2},

E4(DnPn) = {uvεE(DnPn); du = 2, dv = 3},

E5(DnPn) = {uvεE(DnPn); du = 3, dv = 3},

E6(DnPn) = {uvεE(DnPn); du = 3, dv = 4}.

In Figure 1, one can count easily that |E1(DnPn)| = 2n, |E2(DnPn)| = 24n, |E3(DnPn)| = 10n− 5,
|E4(DnPn)| = 48n− 6, |E5(DnPn)| = 13n and |E6(DnPn)| = 8n.

The maximum vertex degree ∆(G) in DnPn is 4, so we have following six types of reverse edges
in DnPn.

CE1(DnPn) = {uvεE(DnPn); du = 4, dv = 2},

CE2(DnPn) = {uvεE(DnPn); du = 4, dv = 1},
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CE3(DnPn) = {uvεE(DnPn); du = 3, dv = 3},

CE4(DnPn) = {uvεE(DnPn); du = 3, dv = 2},

CE5(DnPn) = {uvεE(DnPn); du = 2, dv = 2},

CE6(DnPn) = {uvεE(DnPn); du = 2, dv = 1}.

In addition, |CE1(DnPn)| = 2n, |CE2(DnPn)| = 24n, |CE3(DnPn)| = 10n − 5, |CE4(DnPn)| =
48n− 6, |CE5(DnPn)| = 13n and |CE6(DnPn)| = 8n.

(i) Now, using the definition of reverse first Zagreb index, we have

CM1(DnPn) = ∑
uvεE(G)

(cu + cv)

= (4 + 2)(2n) + (4 + 1)(24n) + (3 + 3)(10n− 5)

(3 + 2)(18n− 6) + (2 + 2)(13n) + (2 + 1)(8n)

= 508n− 60.

(ii) Using the definition of reverse second Zagreb index, we have
CM2(DnPn) = ∑

uvεE(G)

(cu.cv)

= (4.2)(2n) + (4.1)(24n) + (3.3)(10n− 5)

+(3.2)(18n− 6) + (2.2)(13n) + (2.1)(8n)

= 558n− 81.

Theorem 2. The first and second reverse Zagreb polynomials of DnPn are

1. CM1(DnPn, x) = (12n− 5)x6 + (72n− 6)x5 + 13nx4 + 8nx3.
2. CM2(DnPn, x) = (10n− 5)x9 + 2nx8 + (48n− 6)x6 + 37nx4 + 8nx2.

Proof.

(i) Using the information given in Theorem 1 and definition of reverse first Zagreb polynomial,
we have

CM1(DnPn, x) = ∑
uvεE(G)

x(cu+cv)

= (2n)x(4+2) + (24n)x(4+1) + (10n− 5)x(3+3)

+(18n− 6)x(3+2) + (13n)x(2+2) + (8n)x(2+1)

= (12n− 5)x6 + (72n− 6)x5 + 13nx4 + 8nx3.

(ii) Using the information given in Theorem 1 and definition of reverse second Zagreb polynomial,
we have

CM2(DnPn, x) = ∑
uvεE(G)

x(cu .cv)

= (2n)x(4.2) + (24n)x(4.1) + (10n− 5)x(3.3)

+(18n− 6)x(3.2) + (13n)x(2.2) + (8n)x(2.1)

= (10n− 5)x9 + 2nx8 + (48n− 6)x6 + 37nx4 + 8nx2.
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Theorem 3. The first and second reverse hyper-Zagreb indices of prophyrin Dendrimer DnPn are

1. HCM1(DnPn) = 2512n− 330.
2. HCM2(DnPn) = 3290n− 621.

Proof.

(i) Using the information given in Theorem 1 and definition of reverse first hyper-Zagreb index,
we have

HCM1(DnPn) = ∑
uvεE(G)

(cu + cv)
2

= (4 + 2)2(2n) + (4 + 1)2(24n) + (3 + 3)2(10n− 5)

+(3 + 2)2(18n− 6) + (2 + 2)2(13n) + (2 + 1)2(8n)

= 2512n− 330.

(ii) Using the information given in Theorem 1 and definition of reverse second hyper-Zagreb index,
we have

HCM2(DnPn) = ∑
uvεE(G)

(cu.cv)
2

= (4.2)2(2n) + (4.1)2(24n) + (3.3)2(10n− 5)

+(3.2)2(18n− 6) + (2.2)2(13n) + (2.1)2(8n)

= 3290n− 621

Theorem 4. The first and second reverse hyper-Zagreb polynomials of DnPn are

1. HCM1(DnPn, x) = (12n− 5)x36 + (72n− 6)x25 + 13nx16 + 8nx9.
2. HCM1(DnPn, x) = (10n− 5)x81 + 2nx64 + (48n− 6)x36 + 37nx16 + 8nx4.

Proof.

(i) Using the information given in Theorem 1 and definition of reverse first hyper-Zagreb
polynomial, we have

CM1(DnPn, x) = ∑
uvεE(G)

x(cu+cv)2

= (2n)x(4+2)2
+ (24n)x(4+1)2

+ (10n− 5)x(3+3)2

+(18n− 6)x(3+2)2
+ (13n)x(2+2)2

+ (8n)x(2+1)2

= (12n− 5)x36 + (72n− 6)x25 + 13nx16 + 8nx9.

(ii) Using the information given in Theorem 1 and definition of reverse second hyper-Zagreb
polynomial, we have

CM2(DnPn, x) = ∑
uvεE(G)

x(cu .cv)2

= (2n)x(4.2)2
+ (24n)x(4.1)2

+ (10n− 5)x(3.3)2

+(18n− 6)x(3.2)2
+ (13n)x(2.2)2

+ (8n)x(2.1)2

= (10n− 5)x81 + 2nx64 + (48n− 6)x36 + 37nx4 + 8nx4.
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The values of first and second reverse Zagreb indices and first and second reverse hyper-Zagreb
indices of DnPn for specific values of n are given in Table 1.

Table 1. Topological indices of DnPn.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

First Reverse
Zagreb Index 448 956 1464 1972 2480 2988 3496 4004 4512

Second Reverse
Zagreb Index 497 1055 1613 2171 2729 3287 3845 4403 4961

First Reverse
Hyper-Zagreb Index 2182 4694 7206 9718 12,230 14,742 17,254 19,766 22,278

Second Reverse
Hyper-Zagreb Index 2669 5959 9249 12,539 15,829 19,119 22,409 25,699 28,989

3.2. Propyl Ether Imine Dendrimer (PETIM)

In this section, we compute reverse Zagreb indices, reverse Zagreb polynomials, reverse
hyper-Zagreb indices and reverse hyper-Zagreb polynomials of Propyl Ether Imine dendrimer PETIM.

Theorem 5. The first and second reverse Zagreb indices of PETIM are

1. CM1(PETIM) = 4.2n+4 + 3.2n+1 + 3.2n − 102.
2. CM2(PETIM) = 4.2n+4 + 2.2n+1 + 36.2n − 108.

Proof. In Propyl Ether Imine dendrimer PETIM, there are 24.2n − 23 vertices and 24.2n − 24 edges.
Based on the degree of end vertices, the edge set of PETIM can be divided into following three classes.

E1(PETIM) = {uvεE(PETIM); du = 1, dv = 2},

E2(PETIM) = {uvεE(PETIM); du = 2, dv = 2},

E3(PETIM) = {uvεE(PETIM); du = 2, dv = 3}.

In Figure 2, one can count easily that |E1(PETIM)| = 2n+1, |E1(PETIM)| = 2n+4 − 18 and
|E1(PETIM)| = 6.2n − 6.

The maximum vertex degree ∆(G) of PETIM is 3, so we have following types of reverse edges.

CE1(PETIM) = {uvεCE(PETIM); cu = 3, cv = 2}.

CE2(PETIM) = {uvεCE(PETIM); cu = 2, cv = 2}.

CE3(PETIM) = {uvεCE(PETIM); cu = 2, cv = 1}.

Obviously, we have |CE1(PETIM)| = 2n+1, |CE1(PETIM)| = 2n+4 − 18 and |CE1(PETIM)| =
6.2n − 6.

(i) Now, from the definition of reverse first Zagreb index, we have

CM1(PETIM) = ∑
uvεE(G)

(cu + cv)

= (1 + 2)(2n+1) + (2 + 2)(2n+4 − 18) + (2 + 3)(6.2n − 6)

= 4.2n+4 + 3.2n+1 + 3.2n − 102.
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(ii) From the definition of reverse second Zagreb index, we have

CM2(PETIM) = ∑
uvεE(G)

(cu.cv)

= (1.2)(2n+1) + (2.2)(2n+4 − 18) + (2.3)(6.2n − 6)

= 4.2n+4 + 2.2n+1 + 36.2n − 108.

Theorem 6. The first and second reverse Zagreb polynomials of (PETIM) are,

1. CM1(PETIM, x) = (6.2n − 6)x5 + (2(n+4) − 18)x4 + (2n+1)x3.
2. CM2(PETIM, x) = (6.2n − 6)x6 + (2(n+4) − 18)x4 + (2n+1)x2.

Proof.

(i) From the information given in Theorem 5 and by the definition of reverse first Zagreb polynomial,
we have

CM1(PETIM, x) = ∑
uvεE(G)

x(cu+cv)

= (2n+1)x(1+2) + (2(n+4) − 18)x(2+2) + (6.2n − 6)x(2+3)

= (6.2n − 6)x5 + (2(n+4) − 18)x4 + (2n+1)x3.

(ii) From the information given in Theorem 5 and by the definition of reverse second Zagreb
polynomial, we have

CM2(PETIM, x) = ∑
uvεE(G)

x(cu .cv)

= (2n+1)x(1.2) + (2(n+4) − 18)x(2.2) + (6.2n − 6)x(2.3)

= (6.2n − 6)x6 + (2(n+4) − 18)x4 + (2n+1)x2.

Theorem 7. The first and second reverse hyper-Zagreb indices of prophyrin Dendrimer PETIM are

1. HCM1(PETIM) = 16.2n+4 + 9.2n+1 + 150.2n − 438,
2. HCM2(PETIM) = 16.2n+4 + 4.2n+1 + 216.2n − 504.

Proof.

(i) From the information given in Theorem 5 and by the definition of reverse first hyper-Zagreb
index, we have

HCM1(PETIM) = ∑
uvεE(G)

(cu + cv)
2

= (1 + 2)2(2n+1) + (2 + 2)2(2n+4 − 18) + (2 + 3)2(6.2n − 6)

= 16.2n+4 + 9.2n+1 + 150.2n − 438.
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(ii) From the information given in Theorem 5 and by the definition of reverse second hyper-Zagreb
index, we have

HCM2(PETIM) = ∑
uvεE(G)

(cu.cv)
2

= (1.2)2(2n+1) + (2.2)2(2n+4 − 18) + (2.3)2(6.2n − 6)

= 16.2n+4 + 4.2n+1 + 216.2n − 504.

Theorem 8. The first and second reverse hyper-Zagreb polynomials of PETIM are

1. HCM1(PETIM, x) = (6.2n − 6)x25 + (2(n+4) − 18)x16 + (2n+1)x9.
2. HCM2(PETIM, x) = (6.2n − 6)x36 + (2(n+4) − 18)x16 + (2n+1)x4.

Proof.

(i) From the information given in Theorem 5 and by the definition of reverse first hyper-Zagreb
polynomial, we have

HCM1(PETIM, x) = ∑
uvεE(G)

x(cu+cv)2

= (2n+1)x(1+2)2
+ (2n+4 − 18)x(2+2)2

+ (6.2n − 6)x(2+3)2

= (6.2n − 6)x25 + (2(n+4) − 18)x16 + (2n+1)x9.

(ii) From the information given in Theorem 5 and by the definition of reverse second hyper-Zagreb
polynomial, we have

HCM2(PETIM, x) = ∑
uvεE(G)

x(cu .cv)2

= (2n+1)x(1.2)2
+ (2n+4 − 18)x(2.2)2

+ (6.2n − 6)x(2.3)2

= (6.2n − 6)x36 + (2(n+4) − 18)x16 + (2n+1)x4.

The values of first and second reverse Zagreb indices and first and second reverse hyper-Zagreb
indices of PETIM for specific values of n are given in Table 2.

Table 2. Topological indices of PETIM.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

First Reverse
Zagreb Index 44 190 482 1066 2234 4570 9242 18,586 37,274

Second Reverse
Zagreb Index 100 308 724 1556 3220 6548 13,204 26,516 53,140

First Reverse
Hyper-Zagreb Index 410 1258 2954 6346 13,130 26,698 53,834 108,106 216,650

Second Reverse
Hyper-Zagreb Index 456 1416 3336 7176 14,856 30,216 60,936 122,376 245,256

3.3. Zinc Prophyrin Dendrimer DPZn

In this section, we compute reverse Zagreb indices, reverse Zagreb polynomials, reverse
hyper-Zagreb indices and reverse hyper-Zagreb polynomials of Zinc Prophyrin Dendrimer DPZn.

Theorem 9. Let DPZn be a Zinc Prophyrin Dendrimer. Then, the first and second reverse Zagreb indices are
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1. CM1(DPZn) = 328.2n − 156,
2. CM2(DPZn) = 416.2n − 188.

Proof. In Zinc Prophyrin dendrimer DPZn, there are 96n− 10 vertices and 105n− 11 edges. The edge
set of DPZn can be divided into following four classes by mean of the degree of end vertices.

E1(DPZn) = {uvεE(DPZn); du = 2, dv = 2},

E2(DPZn) = {uvεE(DPZn); du = 2, dv = 3},

E3(DPZn) = {uvεE(DPZn); du = 3, dv = 3},

E4(DPZn) = {uvεE(DPZn); du = 3, dv = 4}.

In Figure 3, one can count easily that |E1(DPZn)| = 16.2n − 4, |E2(DPZn)| = 40.2n − 16,
|E3(DPZn)| = 8.2n − 16 and |E4(DPZn)| = 4.

The maximum vertex degree ∆(G) of DPZn is 4, so

CE1(DPZn) = {uvεE(DPZn); du = 3, dv = 3},

CE2(DPZn) = {uvεE(DPZn); du = 3, dv = 2},

CE3(DPZn) = {uvεE(DPZn); du = 2, dv = 2},

CE4(DPZn) = {uvεE(DPZn); du = 2, dv = 1}.

In addition, |E1(DPZn)| = 16.2n − 4, |E2(DPZn)| = 40.2n − 16, |E3(DPZn)| = 8.2n − 16 and
|E4(DPZn)| = 4.

(i) Now, from the definition of reverse first Zagreb index, we have

CM1(DPZn) = ∑
uvεE(G)

(cu + cv)

= (3 + 3)(16.2n − 4) + (3 + 2)(40.2n − 16)

+(2 + 2)(8.2n − 16) + (2 + 1)(4)

= 328.2n − 156.

(ii) From the definition of reverse second Zagreb index, we have

CM2(DPZn) = ∑
uvεE(G)

(cu.cv)

= (3.3)(16.2n − 4) + (3.2)(40.2n − 16)

+(2.2)(8.2n − 16) + (2.1)(4)

= 416.2n − 188.

Theorem 10. The first and second reverse Zagreb polynomials of (DPZn) are

1. CM1(DPZn, x) = (16.2n − 4)x6 + (40.2n − 16)x5 + (8.2n − 16)x4 + (4)x3,
2. CM2(DPZn, x) = (16.2n − 4)x9 + (40.2n − 16)x6 + (8.2n − 16)x4 + (4)x2.

Proof.
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(i) From the information given in Theorem 9 and by the definition of reverse first Zagreb polynomial,
we have

CM1(DPZn, x) = ∑
uvεE(G)

x(cu+cv)

= (16.2n − 4)x(3+3) + (40.2n − 16)x(3+2)

+(8.2n − 16)x(2+2) + (4)x(2+1)

= (16.2n − 4)x6 + (40.2n − 16)x5 + (8.2n − 16)x4 + (4)x3.

(ii) From the information given in Theorem 9 and by the definition of reverse second Zagreb
polynomial, we have

CM2(DPZn, x) = ∑
uvεE(G)

x(cu .cv)

= (16.2n − 4)x(3.3) + (40.2n − 16)x(3.2)

+(8.2n − 16)x(2.2) + (4)x(2.1)

= (16.2n − 4)x9 + (40.2n − 16)x6 + (8.2n − 16)x4 + (4)x2.

Theorem 11. Let DPZn be a Zinc Prophyrin Dendrimer, the first and second reverse hyper-Zagreb indices are

1. HCM1(DPZn) = 1704.2n − 764,
2. HCM2(DPZn) = 2964.2n − 1140.

Proof.

(i) From the information given in Theorem 9 and by the definition of reverse first hyper-Zagreb
index, we have

HCM1(DPZn) = ∑
uvεE(G)

(cu + cv)
2

= (3 + 3)2(16.2n − 4) + (3 + 2)2(40.2n − 16)

+(2 + 2)2(8.2n − 16) + (2 + 1)2(4)

= 1704.2n − 764.

(ii) From the information given in Theorem 9 and by the definition of reverse first hyper-Zagreb
index, we have

HCM2(DPZn) = ∑
uvεE(G)

(cu.cv)
2

= (3.3)2(16.2n − 4) + (3.2)2(40.2n − 16)

+(2.2)2(8.2n − 16) + (2.1)2(4)

= 2964.2n − 1140.

Theorem 12. The first and second reverse hyper-Zagreb polynomials of (DPZn) are

1. HCM1(DPZn, x) = (16.2n − 4)x36 + (40.2n − 16)x25 + (8.2n − 16)x16 + (4)x9,
2. HCM2(DPZn, x) = (16.2n − 4)x81 + (40.2n − 16)x36 + (8.2n − 16)x16 + (4)x4.

Proof.
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(i) From the information given in Theorem 9 and by the definition of reverse first hyper-Zagreb
polynomial, we have

HCM1(DPZn, x) = ∑
uvεE(G)

x(cu+cv)2

= (16.2n − 4)x(3+3)2
+ (40.2n − 16)x(3+2)2

+(8.2n − 16)x(2+2)2
+ (4)x(2+1)2

= (16.2n − 4)x36 + (40.2n − 16)x25 + (8.2n − 16)x16 + (4)x9.

(ii) From the information given in Theorem 9 and by the definition of reverse second hyper-Zagreb
polynomial, we have

HCM2(DPZn, x) = ∑
uvεE(G)

x(cu .cv)2

= (16.2n − 4)x(3.3)2
+ (40.2n − 16)x(3.2)2

+(8.2n − 16)x(2.2)2
+ (4)x(2.1)2

= (16.2n − 4)x81 + (40.2n − 16)x36 + (8.2n − 16)x16 + (4)x4.

The values of first and second reverse Zagreb indices and first and second reverse hyper-Zagreb
indices of (DPZn) for specific values of n are given in Table 3.

Table 3. Topological indices of (DPZn).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

First Reverse
Zagreb Index 500 1156 2468 5092 10,340 20,836 41,828 83,812 167,780

Second Reverse
Zagreb Index 644 1476 3140 6468 13,124 26,436 53,060 106,308 212,804

First Reverse
Hyper-Zagreb Index 2644 6052 12,868 26,500 53,764 108,292 217,348 435,460 871,684

Second Reverse
Hyper-Zagreb Index 4788 10,716 22,572 46,284 93,708 188,556 378,252 757,644 1,516,428

3.4. Poly(EThylene Amide Amine) Dendrimer PETAA

In this section, we compute reverse Zagreb indices, reverse Zagreb polynomials, reverse
hyper-Zagreb indices and reverse hyper-Zagreb polynomials of Poly(EThylene Amide Amine)
Dendrimer PETAA.

Theorem 13. Let PETAA be a Poly(EThylene Amide Amine) Dendrimer, then the first and second reverse
Zagreb indices are

1. CM1(PETAA) = 100.2n − 67.
2. CM2(PETAA) = 100.2n − 56.

Proof. In Poly(EThylene Amide Amine) dendrimer PETAA, there are 44.2n− 18 vertices and 44.2n− 19
edges. Based on the degree of end vertices, the edge set of PETAA can be divided into following
four classes.

E1(PETAA) = {uvεE(PETAA); du = 1, dv = 2},

E2(PETAA) = {uvεE(PETAA); du = 1, dv = 3},
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E3(PETAA) = {uvεE(PETAA); du = 2, dv = 2},

E4(PETAA) = {uvεE(PETAA); du = 2, dv = 3}.

In Figure 4, one can count easily that |E1(PETAA)| = 4.2n, |E2(PETAA)| = 4.2n − 2,
|E3(PETAA)| = 16.2n − 8 and |E4(PETAA)| = 20.2n − 9.

The maximum vertex degree ∆(G) of PETAA is 3. Thus,

CE1(PETAA) = {uvεE(PETAA); du = 3, dv = 2},

CE2(PETAA) = {uvεE(PETAA); du = 3, dv = 1},

CE3(PETAA) = {uvεE(PETAA); du = 2, dv = 2},

CE4(PETAA) = {uvεE(PETAA); du = 2, dv = 1}.

In addition, |CE1(PETAA)| = 4.2n, |CE2(PETAA)| = 4.2n − 2, |CE3(PETAA)| = 16.2n − 8 and
|CE4(PETAA)| = 20.2n − 9.

(i) Now, from the definition of reverse first Zagreb index, we have
CM1(PETAA) = ∑

uvεE(G)

(cu + cv)

= (3 + 2)(4.2n) + (3 + 1)(4.2n − 2) +

(2 + 2)(16.2n − 8) + (2 + 1)(20.2n − 9)

= 100.2n − 67.

(ii) From the definition of reverse Zagreb index, we have

CM2(PETAA) = ∑
uvεE(G)

(cu.cv)

= (3.2)(4.2n) + (3.1)(4.2n − 2) +

(2.2)(16.2n − 8) + (2.1)(20.2n − 9)

= 100.2n − 56.

Theorem 14. The first and second reverse Zagreb polynomal of Poly(EThylene Amide Amine) dendrimer
PETAAA are

1. CM1(PETAA, x) = (4.2n)x5 + (20.2n − 10)x4 + (20.2n − 9)x3,
2. CM2(PETAA, x) = (4.2n)x6 + (16.2n − 8)x4 + (24.2n − 11)x3.

Proof.

(i) From the information given in Theorem 13 and by the definition of reverse first Zagreb polynomial,
we have

CM1(PETAA, x) = ∑
uvεE(G)

x(cu+cv)

= (4.2n)x(3+2) + (4.2n − 2)x(3+1) +

(16.2n − 8)x(2+2) + (20.2n − 9)x(2+1)

= (4.2n)x5 + (20.2n − 10)x4 + (20.2n − 9)x3.
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(ii) From the information given in Theorem 13 and by the definition of reverse second Zagreb
polynomial, we have

CM2(PETAA, x) = ∑
uvεE(G)

x(cu .cv)

= (4.2n)x(3.2) + (4.2n − 2)x(3.1) +

(16.2n − 8)x(2.2) + (20.2n − 9)x(2.1)

= (4.2n)x6 + (16.2n − 8)x4 + (24.2n − 11)x3.

Theorem 15. Let PETAA be a Poly (EThylene Amide Amine) Dendrimer. Then, the first and second reverse
hyper-Zagreb indices are

1. HCM1(PETAA) = 420.2n − 241,
2. HCM2(PETAA) = 436.2n − 182.

Proof.

(i) From the information given in Theorem 13 and by the definition of reverse first hyper-Zagreb
index, we have

HCM1(PETAA) = ∑
uvεE(G)

(cu + cv)
2

= (3 + 2)2(4.2n) + (3 + 1)2(4.2n − 2) +

(2 + 2)2(16.2n − 8) + (2 + 1)2(20.2n − 9)

= 420.2n − 241.

(ii) From the information given in Theorem 13 and by the definition of reverse second hyper-Zagreb
index, we have

HCM2(PETAA) = ∑
uvεE(G)

(cu.cv)
2

= (3.2)2(4.2n) + (3.1)2(4.2n − 2) +

(2.2)2(16.2n − 8) + (2.1)2(20.2n − 9)

= 436.2n − 182.

Theorem 16. The first and second reverse hyper-Zagreb polynomal of Poly(EThylene Amide Amine) dendrimer
PETAAA are

1. HCM1(PETAA, x) = (4.2n)x25 + (20.2n − 10)x16 + (20.2n − 9)x9,
2. HCM2(PETAA, x) = (4.2n)x36 + (16.2n − 8)x16 + (24.2n − 11)x9.

Proof.

(i) From the information given in Theorem 13 and by the definition of reverse first hyper-Zagreb
polynomial, we have

HCM1(PETAA, x) = ∑
uvεE(G)

x(cu+cv)2

= (4.2n)x(3+2)2
+ (4.2n − 2)x(3+1)2

+

(16.2n − 8)x(2+2)2
+ (20.2n − 9)x(2+1)2

= (4.2n)x25 + (20.2n − 10)x16 + (20.2n − 9)x9.
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(ii) From the information given in Theorem 13 and by the definition of reverse second hyper-Zagreb
polynomial, we have

HCM2(PETAA, x) = ∑
uvεE(G)

x(cu .cv)2

= (4.2n)x(3.2)2
+ (4.2n − 2)x(3.1)2

+

(16.2n − 8)x(2.2)2
+ (20.2n − 9)x(2.1)2

= (4.2n)x36 + (16.2n − 8)x16 + (24.2n − 11)x9.

The values of first and second reverse Zagreb indices and first and second reverse hyper-Zagreb
indices of Poly(EThylene Amide Amine) dendrimer for specific values of n are given in Table 4.

Table 4. Topological indices of Poly (EThylene Amide Amine) dendrimer.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

First Reverse
Zagreb Index 133 333 733 1533 3133 6333 12,733 25,533 51,133

Second Reverse
Zagreb Index 144 344 744 1544 3144 6344 12,744 25,544 51,144

First Reverse
Hyper-Zagreb Index 599 1439 3119 6479 13,199 26,639 53,519 107,279 214,799

Second Reverse
Hyper-Zagreb Index 690 1562 3306 6794 13,770 27,722 55,626 111,434 223,050

4. Graphical Comparison and Concluding Remarks

There are many application of dendrimers, typically involve conjugating other chemical species
to the dendrimer surface that can function as detecting agents (such as a dye molecule), affinity
ligands, targeting components, radioligands, imaging agents, or pharmaceutically active compounds.
Topological indices of dendrimers are useful in theoretical chemistry, pharmacology, toxicology,
and environmental chemistry [56,57]. In this paper, we compute reverse first Zagreb index, reverse
second Zagreb index, reverse first hyper-Zagreb index, reverse second hyper-Zagreb index, reverse
first Zagreb polynomial, reverse second Zargeb polynomial, reverse first hyper-Zagreb polynomial
and reverse second hyper-Zagreb polynomial of Prophyrin, Propyl ether imine, Zinc Porphyrin
and Poly(ethylene amido amine) dendrimers. Figure 5 shows that Zinc Porphyrin dendrimers get
highest value of first reverse Zagreb index and Prophyrin get least value of first reverse Zagreb index.
In Figures 6–8, we can choose the dendrimers having largest and least values of second reverse Zagreb,
first reverse hyper-Zagreb and second reverse hyper-Zagreb index, respectively.
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Figure 5. First reverse Zagreb indices.

Figure 6. Second reverse Zagreb indices.

Figure 7. First reverse hyper-Zagreb indices.
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Figure 8. Second reverse hyper-Zagreb indices.
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