
mathematics

Review

A Very Brief Introduction to Nonnegative Tensors
from the Geometric Viewpoint

Yang Qi

Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA;
yangqi@math.uchicago.edu

Received: 27 September 2018; Accepted: 24 October 2018; Published: 30 October 2018

Abstract: This note is a short survey of nonnegative tensors, primarily from the geometric point of
view. In addition to basic definitions, we discuss properties of and questions about nonnegative
tensors, which may be of interest to geometers.

Keywords: nonnegative tensors; low-rank approximations; uniqueness and identifiability; spectral
theory; EM algorithm; semialgebraic geometry

1. Introduction

Tensors are ubiquitous in mathematics and sciences. In the study of complex and real tensors,
algebraic geometry has demonstrated its power [1,2]. On the other hand, tensor computations also
help people understand classical algebraic varieties, such as the secant varieties of Segre varieties
and Veronese varieties, and raise interesting and challenging questions in algebraic geometry [3,4].
Traditionally, geometers tend to study tensors in a coordinate-free way. However, in applications,
practitioners must work with coordinates. Among those tensors widely used in practice, a large number
of them are nonnegative tensors, i.e., tensors with nonnegative entries. In this case, most powerful
geometric tools developed for complex tensors can not be applied directly due to the fact that the
Euclidean closure of tensors with rank no greater than a fixed integer is no longer a variety, but a
semialgebraic set. This forces us to investigate the semialgebraic geometry of nonnegative tensors.
In this note, we will review some important properties of nonnegative tensors obtained by studying
the semialgebraic geometry, and propose several open problems which are pivotal in understanding
nonnegative tensors and also may be interesting to geometers.

2. Definitions

Nonnegative tensors arise naturally in many areas, such as hyperspectral imaging, statistics,
spectroscopy, computer vision, phylogenetics, and so on. See [5–8] and the references therein.
Before further investigations, let us recall basic definitions of tensors.

Definition 1. Let V1, . . . , Vd be vector spaces over a field K. The tensor product V = V1 ⊗ · · · ⊗Vd is the free
linear space spanned by V1 × · · · ×Vd quotient by the equivalence relation:

(v1, . . . , αvi + βv′i, . . . , vd) ∼ α(v1, . . . , vi, . . . , vd) + β(v1, . . . , v′i, . . . , vd) (1)

for every vi, v′i ∈ Vi, αi, βi ∈ K, and i = 1, . . . , d. An element of V1 ⊗ · · · ⊗Vd is called a tensor.

Equivalently, V1 ⊗ · · · ⊗Vd is the vector space of multilinear functions:

V∗1 × · · · ×V∗d → K,
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where V∗i is the dual space of Vi for i = 1, . . . , d. A representative of the equivalence class of (v1, . . . , vd)

is called a decomposable tensor and denoted by v1 ⊗ · · · ⊗ vd.
The rank of a given tensor T ∈ V1 ⊗ · · · ⊗Vd is the minimum integer r such that T is a sum of r

decomposable tensors, i.e.,

T =
r

∑
i=1

v1,i ⊗ · · · ⊗ vd,i, (2)

where vj,i ∈ Vj for j = 1, . . . , d and i = 1, . . . , r. Such a decomposition is called a rank decomposition (or
canonical polyadic decomposition or CP decomposition).

Now we focus on the case K = R, and for each Vi we fix a basis, which enables us to work
with coordinates. Let R+ be the semiring of nonnegative real numbers. A nonnegative tensor in
V1 ⊗ · · · ⊗ Vd is a tensor whose coordinates are nonnegative. Let V+

i denote the set of nonnegative
vectors in Vi for each i = 1, . . . , d, and V+ denote the set of nonnegative tensors in V.

Definition 2. For T ∈ V+, the nonnegative rank of T is the minimum integer r so that there exist nonnegative
vectors vi,j ∈ V+

i for i = 1, . . . , d and j = 1, . . . , r making Equation (2) holds.

It is clear that rank+(T) ≥ rank(T) for every T ∈ V+. Besides, there exists some T ∈ V+ such
that rank+(T) > rank(T). For example, let

T = e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e2 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e2 ∈ R2 ⊗R2 ⊗R2, (3)

where e1 = [1, 0]> and e2 = [0, 1]>, then rank+(T) = 4 > 2 = rankR(T).

3. Applications

One reason that nonnegative tensors are popular is due to the statistical interpretation behind—a
Bayesian network [9–11]. More precisely, assume a joint distribution of several random variables xi is
given by:

p(x1, . . . , xd) =
∫ d

∏
i=1

p(xi | θ) dµθ (4)

where θ is a latent variable. When x1, . . . , xd and θ are discrete, (4) becomes:

ti1,...,id =
r

∑
p=1

λrui1,p · · · uid ,p, (5)

i.e., a nonnegative rank decomposition [5,12]. Such a model, for instance, has been applied in
clustering [13].

As another application, nonnegative tensors have shown their powers in image processing.
Usually hyperspectral images are processed as nonnegative matrices M ∈ Rn×m

+ , where n is the
number of pixels and m denotes the number of spectral bands. By the sensor developments, it is
possible to collect time series of hyperspectral data, which can be understood as nonnegative tensors,
namely A ∈ Rn×m×d

+ , where d is the dimensionality of the time or multiangle ways [14]. A nonnegative
rank decomposition of A gives a blind spectral unmixing of hyperspectral data.

Recently, tensor methods have also used in isogeometric analysis (IGA) [15–17]. A Galerkin-based
approach of IGA studies tensor-product B-splines. To obtain Galerkin matrices effectively, low rank
approximations of integral kernels are employed [16]. In many cases, the constructed mass tensor is a
positive tensor.

4. Algorithms

Due to the broad and important applications, nonnegative tensor decomposition (NTD) and
nonnegative matrix factorization (NMF) have received vast research on their algorithms. Perhaps the
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most popular algorithm for NMF is the multiplicative updating rule [18], and since then, numerous
more efficient algorithms have been proposed, such as the algorithms using the alternating nonnegative
least squares [19–21], the algorithms using the hierarchical alternating least squares [22], the algorithms
using deflation [23], and many more algorithms based on other methods, for example [24,25], etc.
The main ideas of some algorithms have been naturally generalized to decompose nonnegative tensors,
for example [23,26–28]. Since the main purpose of this note is to introduce the geometric properties of
nonnegative tensors, we invite those readers who are interested in algorithms to read comprehensive
surveys on algorithms of NTD, for example [29–31].

5. Nonnegative Rank Decompositions

It is known that when d > 2, rank decompositions (2) are often unique over C and R, which is
very important in applications. For nonnegative tensors, it is also an important issue to investigate
the identifiability property. Before studying the identifiability of nonnegative tensors, let us recall
fundamental definitions and known results of complex and real tensors.

For any tuple of positive integers (n1, . . . , nd), there is a unique integer rg(n1, . . . , nd), which
only depends on n1, . . . , nd such that the set of complex rank-rg(n1, . . . , nd) tensors in Cn1 ⊗ · · · ⊗Cnd

contains a Zariski open subset of Cn1 ⊗ · · · ⊗Cnd . In fact, rg(n1, . . . , nd) is the minimum integer r such
that the rth secant variety of the Segre variety Seg(Pn1−1 × · · · × Pnd−1) is the ambient space Pn1···nd−1.
rg(n1, . . . , nd) is called the generic rank of Cn1 ⊗ · · · ⊗Cnd . It is not always the case that the generic rank
rg(n1, . . . , nd) equals

⌈ n1···nd
n1+···+nd−d+1

⌉
, which leads us to the following definition.

Definition 3. If theK-dimension of the set of rank-r tensors inKn1 ⊗· · ·⊗Knd is strictly less than min{r(n1 +

· · ·+ nd − d + 1), n1 · · · nd}, then Kn1 ⊗ · · · ⊗Knd is called r-defective.

When K is algebraically closed, Kn1 ⊗ · · · ⊗ Knd is not r-defective, which implies a general
rank-r tensor T has finitely many rank decompositions. If we require further that T has a unique
decomposition, we will arrive at the following definition.

Definition 4. If a general rank-r tensor in Kn1 ⊗ · · · ⊗ Knd has a unique rank-r decomposition over K,
then Kn1 ⊗ · · · ⊗Knd is called r-identifiable.

There has been a large amount of research on defectivity [32–34] and identifiability [1,35–41].
Here, we highlight three notable results.

Theorem 1 (Kruskal). Let V1, . . . , Vd be finite dimensional vector spaces over a field K [35], and

T =
r

∑
i=1

v1,i ⊗ · · · ⊗ vd,i ∈ V1 ⊗ · · · ⊗Vd. (6)

If κ1 + · · ·+ κd ≥ 2r + d− 1, then rank(T) = r and T has a unique rank-r decomposition (6), where κi is
the maximum integer such that every subset of {vi,1, . . . , vi,r} with κi elements is linearly independent for
i = 1, . . . , d.

Theorem 2 (Bocci–Chiantini–Ottaviani [1]). Assume n1 ≤ · · · ≤ nd. Then Cn1 ⊗ · · · ⊗ Cnd is
r-identifiable when:

r ≤
∏d

j=1 nj − (n1 + n2 + n3 − 2)∏d
j=3 nj

1 + ∑d
j=1(nj − 1)

.
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Theorem 3 (Chiantini–Ottaviani–Vannieuwenhoven). Cn1 ⊗ · · · ⊗Cnd is r-identifiable when [40]:

r <

⌈
∏d

j=1 nj

1 + ∑d
j=1(nj − 1)

⌉

and ∏d
j=1 nj ≤ 15000, except the following cases:

(n1, . . . , nd) r Type
(4, 4, 3) 5 defective
(4, 4, 4) 6 sporadic
(6, 6, 3) 8 sporadic

(n, n, 2, 2) 2n− 1 defective
(2, 2, 2, 2, 2) 5 sporadic

n1 > ∏d
i=2 ni −∑d

i=2(ni − 1) r ≥ ∏d
i=2 ni −∑d

i=2(ni − 1) unbalanced

Note that Theorems 2 and 3 focus on complex tensors; however, with the help of the following
lemma, we are able to extend these results to real tensors.

Lemma 1. If Cn1 ⊗ · · · ⊗Cnd is r-identifiable, then Rn1 ⊗ · · · ⊗Rnd is r-identifiable when r < rg(n1, . . . , nd) [42].

As an example, we have the following corollary.

Corollary 1. Rn1×···×nd is r-identifiable if:

r <
⌈

∏d
i=1 ni

1 + ∑d
i=1(ni − 1)

⌉
,

∏d
i=1 ni ≤ 15000, and (n1, . . . , nd, r) is not one of the following cases:

(n1, . . . , nd) r
(4, 4, 3) 5
(4, 4, 4) 6
(6, 6, 3) 8

(n, n, 2, 2) 2n− 1
(2, 2, 2, 2, 2) 5

n1 > ∏d
i=2 ni −∑d

i=2(ni − 1) r ≥ ∏d
i=2 ni −∑d

i=2(ni − 1)

In fact, for the above exceptional cases, we can derive more information from Theorem 3.

Corollary 2.

• R4×4×3 is 5-defective.
• For any n ≥ 2, Rn×n×2×2 is (2n− 1)-defective.
• For n1 ≥ · · · ≥ nd ≥ 2, Rn1×···×nd is r-defective if

n1 > ∏d
i=2 ni −∑d

i=2(ni − 1) and r ≥∏d
i=2 ni −∑d

i=2(ni − 1).

Recall that for a symmetric tensor T ∈ Sd(V) over K, the symmetric rank of T is the minimum
integer r such that

T =
r

∑
i=1

λiv⊗d
i ,

where λi ∈ K, vi ∈ V for i = 1, . . . , r. For symmetric tensors, we can also have the definitions of
generic rank, r-defectivity, and r-identifiability. More precisely, the generic symmetric rank, rg(n; d),
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is defined to be the minimum integer r such that the rth secant variety of the Veronese variety νd(Pn−1)

fills in the ambient space over C. If the K-dimension of the set of symmetric rank-r tensors in Sd(Kn)

is strictly less than min{rn, (n+d−1
d )}, then Sd(Kn) is called r-defective. If a general symmetric rank-r

tensor has a unique decomposition over K, Sd(Kn) is called r-identifiable. The defectivity problem has
been completely solved in [43].

Theorem 4 (Alexander–Hirschowitz). The generic rank [43]:

rg(n; d) =
⌈
(n+d−1

d )

n

⌉
except the following case:

• When d = 2, rg(n; d) = n.

• When (d, n) = (3, 5), (4, 3), (4, 4), (4, 5), rg(n; d) =
⌈ (n+d−1

d )
n

⌉
+ 1.

The identifiability problem of Sd(Cn) has been addressed in [2,44–46], and the complete solution
was given in [2].

Theorem 5 (Chiantini–Ottaviani–Vannieuwenhoven). Sd(Cn+1) is r-identifiable when [2]

r <
⌈
(n+d

d )

n + 1

⌉
and d ≥ 3, except that (d, n, r) ∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)} where a general complex symmetric rank-r
tensor has exactly two symmetric rank decompositions.

Similar to Lemma 1, we have the following lemma for real symmetric tensors.

Lemma 2. Let r < rg(n; d). If Sd(Cn) is r-identifiable, then Sd(Rn) is r-identifiable [42].

As an example, we have

Corollary 3. Sd(Rn+1) is r-identifiable when:

r <
⌈
(n+d

d )

n + 1

⌉
and if (d, n, r) /∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)}.

Now, we are in a position to study the relations among complex, real, and nonnegative ranks.
Given real vector spaces V1, . . . , Vd of dimensions n1, . . . , nd, respectively, let V := V1 ⊗ · · · ⊗Vd and
VC be the complexification of V. For any positive integer r, let

D+
r = {X ∈ V+ | rank+(X) ≤ r}

denote the set of nonnegative tensors with nonnegative ranks not greater than r.

Theorem 6. Let r < rg(n1, . . . , nd). For a general T ∈ D+
r , its real rank and complex rank are also r. If VC is

r-identifiable, then T has a unique rank-r decomposition, which is nonnegative [42].

For nonnegative tensors, when r ≥ rg(n1, . . . , nd), the set of nonnegative rank-r tensors may
contain a nonempty open subset of V+ under the Euclidean topology. If so, r is called a nonnegative
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typical rank. A Similar phenomenon happens in the real case which motivates the definition of real
typical rank, i.e., r is a real typical rank if the set of real rank-r tensors contains a nonempty open subset
of V. We will illustrate the difference between nonnegative ranks and real ranks by the following
example, where Rn×n×n

+ denotes the set of nonnegative tensors in Rn×n×n.

Proposition 1. [42]

• The nonnegative typical ranks of R2×2×2
+ are 2, 3, 4.

• The nonnegative typical ranks of R3×3×3
+ are all integers m satisfying:

5 ≤ m ≤ 9.

• When n ≥ 4, the nonnegative typical ranks of Rn×n×n
+ consist of all integers m satisfying:⌈

n3

3n− 2

⌉
≤ m ≤ n2.

Theorem 6 and Proposition 1 reveal that for a general nonnegative rank-r tensor T, the true
difference among its complex, real, and nonnegative ranks appears when r ≥ rg(n1, . . . , nd), namely
when r < rg(n1, . . . , nd), the complex and real ranks of T are also r, but when r > rg(n1, . . . , nd), D+

r
contains a nonempty open subset U of V+ such that for each T ∈ U ,

rg(n1, . . . , nd) = rankC(T) ≤ rankR(T) < rank+(T) = r.

More concretely, let T be the tensor defined in (3). Then there exists a nonempty open neighborhood U
of T in R2×2×2

+ such that for any A ∈ U ,

rankC(A) = 2 < 4 = rank+(A).

6. Low Rank Approximations

Given T ∈ V+ with r ≤ rank+(T), let:

δ(T) = inf
X∈D+

r

‖T − X‖ ,

where ‖ · ‖ is the Hilbert–Schmidt norm.
It is known that the set Dr = {X ∈ V1⊗ · · · ⊗Vd | rank(X) ≤ r} is not closed under the Euclidean

topology over R or C when r > 1 [47]. However, for nonnegative tensors, we can show:

Proposition 2. D+
r is a closed semialgebraic set under the Euclidean topology [48].

Since D+
r is closed, for any T /∈ D+

r , there is always some T0 ∈ D+
r such that ‖T − T0‖ = δ(T),

i.e., the optimization problem:
min

rank+(X)≤r
‖T − X‖ (7)

makes sense. Furthermore, we can have the following result.

Proposition 3. A general T ∈ V+ has a unique best nonnegative low-rank approximation [48].

Before studying nonnegative rank approximations, let us recall the following useful lemma.
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Lemma 3. For T ∈ V over R, assume rank(T) > r and λ ∑r
l=1 Tl is a best rank-r approximation, where

Tl = v1,l ⊗ · · · ⊗ vd,l and
∥∥∑r

l=1 Tl
∥∥ = 1. Then:

〈T, v1,j ⊗ · · · ⊗ v̂i,j ⊗ · · · ⊗ vd,j〉 = λ
〈
∑r

l=1 Tl , v1,j ⊗ · · · ⊗ v̂i,j ⊗ · · · ⊗ vd,j

〉
, (8)

where i = 1, . . . , d, and j = 1, . . . , r, where λ = 〈T, ∑r
l=1 Tl〉, and 〈, 〉 denotes tensor contraction.

The support of a vector u ∈ V is defined to be:

supp(u) := {j = {1, . . . , dimR V} | the jth coordinate of u is nonzero}.

Then for a nonnegative tensor T, Lemma 3 becomes

Lemma 4. Let T ∈ V+ with rank+(T) > r and Y = ∑s
j=1 v1,j ⊗ · · · ⊗ vd,j be a solution of (7). Then:

〈T, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j〉 ≤
〈

Y, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j

〉
(9)

where wi,j ∈ V+
i , i = 1, . . . , d, and j = 1, . . . , s. For every pair (i, j), define:

Ṽi,j := {v ∈ Vi : supp(v) ⊆ supp(vi,j)}.

Then:
〈T, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j〉 =

〈
Y, v1,j ⊗ · · · ⊗ wi,j ⊗ · · · ⊗ vd,j

〉
(10)

for wi,j ∈ Ṽi,j.

Lemma 4 guarantees us the following result.

Proposition 4. Let T ∈ V+ with rank+(T) > r and X be a solution of (7). Then rank+(X) = r [48].

Proposition 4 shows that it is indeed appropriate to call a solution of (7) a best nonnegative rank-r
approximation.

By Proposition 3, we know a general nonnegative tensor has a unique best nonnegative rank-r
approximation. However, it is still unclear if this best approximation has a unique nonnegative rank-r
decomposition. Below is an example where we have the uniqueness. On the other hand, the general
case is not known yet.

Proposition 5. Let r = 2 or 3 and let n1, . . . , nd ≥ 3. Then for a general T ∈ Rn1×···×nd
+ , its unique best

nonnegative rank-r approximation has a unique nonnegative rank-r decomposition [42].

Question 1. Assume V is r-identifiable. Given a general T ∈ V+, is it true that the unique best nonnegative
rank-r approximation of T has a unique nonnegative decomposition?

7. Spectral Theory

In this section, we start with nonnegative rank-one approximations, which lead us to the spectral
theory of nonnegative tensors.

Proposition 6. Given T ∈ V+, let u1 ⊗ · · · ⊗ ud ∈ V be a best real rank-one approximation of T.
Then u1, . . . , ud can be chosen in the form u1 ∈ V+

1 , . . . , ud ∈ V+
d .
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By Proposition 6, for a nonnegative tensor T, we will not distinguish a best real rank-one
approximation and a best nonnegative rank-one approximation. By Lemma 3, a best real rank-one
approximation of a real tensor is a solution of (8), which motivates us the following definition.

Definition 5. Let V1, . . . , Vd be vector spaces over K of dimensions n1, . . . , nd. For T ∈ V1⊗ · · · ⊗Vd, we call
(λ, u1, . . . , ud) ∈ K×V1 × · · · ×Vd a normalized singular pair of T if:{

〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λui,

〈ui, ui〉 = 1,
(11)

where i = 1, . . . , d. Then, λ is called a normalized singular value and (u1, . . . , ud) is called a normalized
singular vector tuple. When K = R, λ ≥ 0, and ui ∈ V+

i , we call (λ, u1, . . . , ud) a nonnegative normalized
singular pair of T.

Similar definitions have been proposed by several authors; for example, the following projective
variant was introduced in [49].

Definition 6. Given vector spaces W1, . . . , Wd over K of dimensions n1, . . . , nd, for T ∈ W1 ⊗ · · · ⊗Wd,
([v1], . . . , [vd]) ∈ PW1 × · · · × PWd is called a projective singular vector tuple if [49]:

〈T, v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vd〉 = λivi (12)

for some λi ∈ K, where 1 ≤ i ≤ d.

The number of projective singular vector tuples of a general complex tensor was calculated in [49],
which is the Euclidean Distance (ED) degree of PW1 × · · · × PWd by [50].

Theorem 7. Let T be a generic tensor in W1 ⊗ · · · ⊗Wd over C. Then T has exactly c(n1, . . . , nd) simple
projective singular vector tuples corresponding to nonzero singular values, where c(n1, . . . , nd) is the coefficient
of the monomial ∏d

i=1 tni−1
i in the polynomial [49]:

d

∏
i=1

t̂ni
i − tni

i

t̂i − ti
, where t̂i = ∑

j 6=i
tj, i = 1, . . . , d.

Over R, there are several nonempty open subsets U1, . . . ,Uk of V1⊗ · · · ⊗Vd such that the number
of projective singular vector tuples is constant on each Ui, denoted by mi, for i = 1, . . . , k, but mi 6= mj
if i 6= j. One way to describe the number of projective singular vector tuples by using a single number
is to impose certain probability distribution on V1 ⊗ · · · ⊗Vd and compute the expected number of
projective singular vector tuples of T when T is randomly drawn under the given distribution.

Theorem 8. Let T ∈ Rn1×···×nd be a random tensor drawn under the Gaussian distribution. Then the expected
number of projective singular vector tuples of T is given by [51]:

(2π)d/2

2n/2
1

∏d
i=1 Γ( ni

2 )

∫
W
|det C| dµW ,
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where n = ∑i ni, Γ is Euler’s gamma function,

C =


λ In1−1 A1,2 · · · A1,d

A>1,2 λ In2−1 · · · A2,d
...

...
. . .

...
A>1,d A>2,d · · · λ Ind−1

 ,

and W is the vector space formed by λ and Ai,j with i < j.

Coming back to nonnegative tensors, we may have more information about their singular pairs
than real tensors. Before studying singular pairs of nonnegative tensors, let us recall the following
well-known Perron–Frobenius Theorem. See for example [52] for more details.

Theorem 9. Given a nonnegative square matrix M,

• its spectral radius r(M) is an eigenvalue.
• there is some nonnegative vector v 6= 0 such that Mv = r(M)v.
• r(M) > 0 if M is irreducible.
• there is some positive vector u > 0 such that Mu = r(M)u if M is irreducible.
• if M is irreducible, then λ is an eigenvalue of M with a nonnegative eigenvector if and only if λ = r(M).
• r(M) is simple if M is irreducible.
• every eigenvalue λ satisfies |λ| ≤ r(M) if M is irreducible.

The next three results, namely Lemmas 5–7, give an analogue of the tensorial Perron–Frobenius
Theorem [53–56] for nonnegative normalized singular pairs, which will help us learn more about best
rank-one approximations.

Lemma 5 (Existence). Any nonnegative tensor has (at least) a nonnegative normalized singular pair.

Definition 7. A tensor is called positive if all its entries are positive.

Lemma 6 (Positivity). A positive tensor has a positive normalized singular pair.

Recall that the spectral norm for a tensor, which is NP-hard to compute or approximate [57],
is defined as follows.

Definition 8. For T ∈ V1 ⊗ · · · ⊗ Vd over R, let ‖T‖σ := max{|〈T, u1 ⊗ · · · ⊗ ud〉| : ‖u1‖ = · · · =
‖ud‖ = 1} be the spectral norm of T.

Lemma 7 (Generic Uniqueness). Let T be a general real tensor. Then T has a unique normalized singular
pair (λ, u1, . . . , ud) such that λ = ‖T‖σ.

Lemma 7 motivates the following open question.

Question 2. Can we give a sufficient condition such that any nonnegative tensor satisfying this condition
has a unique normalized singular pair with λ = ‖T‖σ and this condition can be satisfied by a general
nonnegative tensor?

For matrices over R or C, by the Eckart–Young Theorem, best low-rank approximations can
be obtained from successive best rank-one approximations. However, for tensors, this ‘deflation
procedure’ does not work [48,58,59].
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Besides singular vector tuples, eigenvalues and eigenvectors of a tensor can be also defined.
Unlike matrices, there are several ways to define eigenvalues and eigenvectors of a tensor [60]. In this
note, we will use the following one which was firstly introduced in [55,61].

Definition 9. For T ∈ V⊗d over K, if:
〈T, u⊗(d−1)〉 = λu,

then λ ∈ K is called an eigenvalue of T, and u ∈ V is called an eigenvector. The pair (λ, u) is called an
eigenpair. Two eigenpairs (λ, u) and (µ, v) of T is said to be equivalent if td−2λ = µ and tu = v for some
t ∈ K.

When T is a real or complex symmetric tensor, a best rank-one approximation of T can be always
chosen to be symmetric [62,63], and thus is an eigenvector of T.

Theorem 10. Let T ∈ V⊗(d+1) be a real random tensor under the Gaussian distribution. Then the expected
number of equivalence classes of eigenpairs of T is given by [64]:

2n−1
√

d
n
Γ(n− 1

2 )√
π(d + 1)n− 1

2 Γ(n)

[
2(n− 1) 2F1

(
1, n− 1

2
;

3
2

;
d− 1
d + 1

)
+ 2F1

(
1, n− 1

2
;

n + 1
2

;
1

d + 1
)]

,

where 2F1 is the Gaussian hypergeometric function.

The number of equivalence classes of eigenpairs of a generic complex symmetric tensor has been
calculated in [65]. See [66] for another proof. This number is the ED degree of the Veronese variety [50].

Theorem 11. Let V be an n-dimensional complex vector space. Let T ∈ Sd(V) be a symmetric tensor whose
equivalence classes of eigenpairs are finitely many. Then, T has [65]:

(d− 1)n − 1
d− 2

equivalence classes of eigenpairs, counted with multiplicities.

For the real case, again, we may impose a probability distribution on Sd(V) and compute the
expected number of equivalence classes of eigenvalues of a random symmetric tensor.

Theorem 12. Let V be an n-dimensional real vector space of dimension n and T ∈ Sd(V) be drawn under the
Gaussian distribution. Then, the expected number of equivalence classes of eigenpairs of T is [51]:

1
2(n2+3n−2)/4 ∏n

j=1 Γ(j/2)

∫
µ2≤···≤µn

+∞∫
−∞

(
n

∏
j=2
|
√

dλ−
√

d− 1µj |)

(
∏
i<j

(µi − µj)
)
e−λ2/2−∑n

j=2 µ2
j /4 dλ dµ2 · · · dµd.

A closed formula of the above integral was given in [67]. Other variants of eigenvalues and
eigenvectors can be found in [60,61]. For our purpose, we will focus on the following definition
introduced in [48].

Definition 10. For T ∈ Sd(V) over K, (λ, v) ∈ K×V is called a normalized eigenpair of T if the following
equations hold:
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Cases 1.
〈T, v⊗(d−1)〉 = λv, 〈v, v〉 = 1.

In particular, λ is called a normalized eigenvalue. We say two normalized eigenpairs (α, u) and (β, v) of T
are equivalent if:

(α, u) = (β, v)

or if
(−1)d−2α = β and u = −v.

In the following, we would like to investigate sufficient conditions to ensure a tensor to have a
unique rank-one approximation. First we recall the definition of the multipolynomial resultant [68,69].
For any given n + 1 homogeneous polynomials F0, . . . , Fn ∈ C[x0, . . . , xn] with positive total degrees
d0, . . . , dn, let Fi = ∑|α|=di

ci,αxα0
0 · · · x

αn
n , where α = (α0, . . . , αn) and |α| = α0 + · · ·+ αn. Associate

every pair (i, α) with a variable ui,α. For a polynomial P in the variables ui,α, denote by P(F0, . . . , Fn)

the result obtained by letting ui,α = ci,α. Then we have the following classical result [68,69].

Theorem 13. There is a unique polynomial, denoted by Res, in ui,α’s with integer coefficients, where i =

0, . . . , n, and |α| ∈ {d0, . . . , dn}, that has the following properties:

• F0 = · · · = Fn = 0 has a nonzero solution over C if and only if Res (F0, . . . , Fn) = 0.
• Res (xd0

0 , . . . , xdn
n ) = 1.

• Res is irreducible over C.

Definition 11. Res (F0, . . . , Fn) ∈ C is called the resultant of F0, . . . , Fn.

Definition 12. For a symmetric tensor T, the resultant ψT(λ) of the following polynomials is called the
characteristic polynomial of T [70].

• For T ∈ S2d−1(V),
〈T, v⊗(d−1)〉 − λxd−2v = 0 and x2 − 〈v, v〉 = 0.

• For T ∈ S2d(V),
〈T, v⊗(2d−1)〉 − λ〈v, v〉d−1v = 0.

Note the resultant ψT(λ) is a (univariate) polynomial in λ. We call the resultant of ψT(λ) and its
derivative ψ′T(λ), denoted by Deig(T), the eigen discriminant.

Proposition 7. Let V be a real vector space, and ρ = ‖T‖σ [48]. Define

Hρ := {T ∈ Sd(V) | ρ is not a simple eigenvalue of T}.

Then, Hρ is a real hypersurface in Sd(V).

Let W = V ⊗R C be the complexification of V. Then we have:

Theorem 14. Deig(T) = 0 is a defining equation of the complex hypersurface [48]

Hdisc := {T ∈ Sd(W) | T has a non-simple normalized eigenvalue}.

In fact Hρ consists of some components of the real points of Hdisc. In the sense of [50], Theorem 14
shows the ED discriminant of the Veronese variety is a hypersurface.

Corollary 4. For T ∈ Sd(V), if Deig(T) 6= 0, then T has a unique best rank-one approximation.
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Corollary 5. Let T ∈ Sd(V) be a nonnegative tensor. If Deig(T) 6= 0, then T has a unique best rank-one
approximation, which is nonnegative and symmetric.

Example 1. Let T = [Tijk] ∈ S3(R2). Then ψT(λ) is the resultant of the polynomials:

Cases 2.

F0 = T111x2 + 2T112xy + T122y2 − λxz, F1 = T112x2 + 2T122xy + T222y2 − λyz, F2 = x2 + y2 − z2.

In fact, ψT(λ) =
1

512 det(G), where G is defined by:

G =



T111 T122 0 2T112 −λ 0
T112 T222 0 2T122 0 −λ

1 1 −1 0 0 0
12T122 4T111λ− 8T122λ 4T111λ + 4T122λ 8T222λ− 16T112λ 16T2

112 − 4λ2 − 16T111T122 8T112T122 − 8T111T222

4T222λ− 8T112λ 12T112λ 4T112λ + 4T222λ 8T111λ− 16T122λ 8T112T122 − 8T111T222 16T2
122 − 4λ2 − 16T112T222

8T2
112 − 8T111T122 − 2λ2 8T2

122 − 8T222T112 − 2λ2 −6λ2 8T112T122 − 8T111T222 8T122λ + 8T111λ 8T112λ + 8T222λ


.

Thus, ψT(λ) = p2λ6 + p4λ4 + p6λ2 + p8, where each pm is a homogeneous polynomial of degree m in
Tijk. See also [65,71].

For a general T ∈ S3(R2), ψT(λ) = α(λ2 − γ1)(λ
2 − γ2)(λ

2 − γ3) for some α ∈ C, where γ1, γ2, γ3

are distinct. So Deig(T) 6= 0.
For T ∈ Hdisc, ψT(λ) has multiple roots. For example, let A ∈ S3(R2) be defined by A111 = A222 = 1

and set other Aijk = 0. Then Deig(A) = 0, which implies that A has a nonsimple eigenpair. Here ψA(λ) =

(λ+ 1)2(λ− 1)2(2λ2− 1). So A has two eigenvectors (1, 0) and (0, 1) with eigenvalue 1, and two eigenvectors
(−1, 0) and (0,−1) with eigenvalue −1. This computation coincides with the fact that A = a⊗3 + b⊗3 has two
best rank-one approximations, namely a⊗3 and b⊗3, where a and b are two orthonormal vectors in R2.

Similarly, we can define characteristic polynomials for non-symmetric tensors. Let W1, . . . , Wd be
complex vector spaces. For T ∈ W1 ⊗ · · · ⊗Wd, ui ∈ Wi, and αi ∈ C, we denote the resultant of the
following equations by ϕT(λ).{

αi〈T, u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ud〉 = λ(∏j 6=i αj)ui,

〈ui, ui〉 = α2
i ,

(13)

where i = 1, . . . , d. Then, ϕT(λ) vanishes if and only if (13) has a nontrivial solution.

Definition 13. ϕT(λ) is called the singular characteristic polynomial of T.

The following is an analogue of Definition 10.

Definition 14. Let T ∈W1 ⊗ · · · ⊗Wd. Two normalized singular pairs (λ, u1, . . . , ud) and (µ, v1, . . . , vd) of
T are called equivalent if (λ, u1, . . . , ud) = (µ, v1, . . . , vd), or (−1)d−2λ = µ and ui = −vi for i = 1, . . . , d.

It follows from [72] that the subset X ⊆ V1 ⊗ · · · ⊗ Vd consisting of tensors which do not have
unique best rank-one approximations is contained in some hypersurface. In fact we can strengthen the
result by showing that X is a hypersurface.

Theorem 15. The following subset is an algebraic hypersurface in V1 ⊗ · · · ⊗Vd [48],

X := {T ∈ V1 ⊗ · · · ⊗Vd : T has non-unique best rank-one approximations}.

Besides, we have the following property.
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Proposition 8. Let W1, . . . , Wd be complex vector spaces. Then for a general T ∈ W1 ⊗ · · · ⊗Wd,
the equivalence classes of normalized singular pairs of T are distinct [48].

Definition 15. The resultant of ϕT and its derivative ϕ′T is called the singular discriminant and denoted
by Dsing(T).

Theorem 16. Dsing(T) = 0 is a defining equation of the hypersurface [48]

Xdisc := {T ∈W1 ⊗ · · · ⊗Wd | T has a non-simple normalized singular value},

and X consists of some components of the real points of Xdisc.

Corollary 6. For a real tensor T, if Dsing(T) 6= 0, then T has a unique best rank-one approximation.

Corollary 7. For a nonnegative tensor T, if Dsing(T) 6= 0, then T has a unique best rank-one approximation,
which is nonnegative.

Theorem 16 shows that the ED discriminant Xdisc of Seg(PW1 × · · · × PWd) is a complex
hypersurface when d ≥ 3, and the set of real points of Xdisc is a real hypersurface. It is worth noting
that when d = 2, the set of real points of the ED discriminant of Seg(PW1 × PW2) has codimension
2 ([50], Example 7.6).

8. EM Algorithm

Expectation–Maximization (EM) algorithm, as a classical technique, has been used in nonnegative
matrix factorizations, and its performance and geometry has been carefully studied. See [73] and the
references therein. However, to the best of our knowledge, such an analysis for nonnegative tensors
has not been written down. In this section, we routinely apply the EM algorithm to nonnegative tensor
decompositions and give a description of the EM fixed points.

Given a real function:

f (p1, . . . , pn) =
n

∑
i=1

ui log pi

of p1, . . . , pn with parameters u1, . . . , un, where p1, . . . , pn, u1, . . . , un satisfy

0 ≤ ui, pi ≤ 1 for i = 1, . . . , n, and
n

∑
i=1

ui =
n

∑
i=1

pi = 1.

Then, the maximum of f is obtained when pi = ui for i = 1, . . . , n. In fact (p1 = u1, . . . , pn = un)

is a critical point of the Lagrangian:

n

∑
i=1

ui log pi − λ(1−
n

∑
i=1

pi).

Hence, for a given nonnegative rank-r tensor u = (ui1,...,id) with:

u+ = ∑
i1,...,id

ui1,...,id = 1,

a nonnegative rank decomposition:

u =
r

∑
l=1

λlv
(l)
1 ⊗ · · · ⊗ v(l)d ,
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in coordinates:

ui1,...,id =
r

∑
l=1

λlv
(l)
1,i1
· · · v(l)d,id

where v(l)j,ij
is the ijth entry of the vector v(l)j , gives a maximum of the likelihood function:

L(λ, v(l)i ) = ∑
i1,...,id

ui1,...,id log(
r

∑
l=1

λlv
(l)
1,i1
· · · v(l)d,id

). (14)

This is a hidden model in statistics, and a classical way to optimize (14) is that we first use the EM
algorithm to maximize the following likelihood function

L(λ, v(l)i ) = ∑
i1,...,id

r

∑
l=1

w(l)
i1,...,id

log(λlv
(l)
1,i1
· · · v(l)d,id

), (15)

where:

ui1,...,id =
r

∑
l=1

w(l)
i1,...,id

.

By ([74], Theorem 1.15), the value of the likelihood function (15) weakly increases during every
iteration of the EM algorithm, and the local maxima of L are among the EM fixed points (final outputs)
of L [73,74].

Remark 1. EM algorithm and its analogues have been widely used in nonnegative matrix factorizations,
by maximizing different likelihood functions, i.e., finding critical points of different divergences, for example
Kullback-Leibler divergence, β-divergence and so on. Similarly we can obtain other algorithms for nonnegative
tensor decompositions as well by using different divergences. Usually the fixed points of these algorithms contain
critical points, and the local maxima are among the critical points.

A fixed point of EM algorithm need satisfy the following equations:

λk =
1

u+
∑

i1,...,id

λkv(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id (16)

v(k)j,ij
=

1
λku+

∑
i1,...,ij−1,ij+1,...,id

λkv(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id (17)

Since ∑
ij

v(l)j,ij
= 1, λk > 0. By canceling λk in (16) and (17), we have:

1 =
1

u+
∑

i1,...,id

v(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id , (18)

v(k)j,ij
=

1
u+

∑
i1,...,ij−1,ij+1,...,id

v(k)1,i1
· · · v(k)d,id

r
∑

l=1
λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id , (19)
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and (18) can be obtained from (19). By (19) we have:

v(k)j,ij
( ∑

i1,...,ij−1,ij+1,...,id

(u+ −
ui1,...,id
pi1,...,id

)v(k)1,i1
· · · v̂(k)j,ij

· · · v(k)d,id
) = 0, (20)

where pi1,...,id is the output in Algorithm 1. Let:

Ri1,...,id = u+ −
ui1,...,id
pi1,...,id

,

then (20) is equivalent to:

v(k)j ◦ 〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0, (21)

where ◦ denotes the Hadamard product. Since we require ∑
i1,...,id

pi1,...,id = 1, the likelihood function

L = ∑
i1,...,id

ui1,...,id log pi1,...,id − u+ log( ∑
i1,...,id

pi1,...,id),

then the gradient of L is R. Hence:

〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0

implies that R is orthogonal to the tangent space of σ̂r(Seg(Pn1−1 × · · · × Pnd−1)), i.e.,

∑
k

v(k)1 ⊗ · · · ⊗ v(k)d

is a critical point. Therefore, we arrive at the following description, which is a trivial generalization
of ([73], Theorem 3).

Algorithm 1 EM Algorithm

Step 0: Given ε > 0, select random v(l)i ∈ ∆ni−1, λ ∈ ∆r−1;

E-Step: Define the expected hidden data tensor w = (w(k)
i1,...,id

) by

w(k)
i1,...,id

=
λkv(k)1,i1

· · · v(k)d,id

∑r
l=1 λlv

(l)
1,i1
· · · v(l)d,id

ui1,...,id ;

M-Step: Compute v(l)i , λ to maximize the likelihood function:

λ∗k =

∑
i1,...,id

w(k)
i1,...,id

u+
,

v(k)∗j,ij
=

∑
i1,...,ij−1,ij+1,...,id

w(k)
i1,...,id

λ∗k u+
;

Step 3: If |L(λ∗, v(l)∗i )− L(λ, v(l)i )| > ε then set (λ, v(l)i ) = (λ∗, v(l)∗i ) and go to the E-Step;

Step 4: Output pi1,...,id = ∑
k

λkv(k)1,i1
· · · v(k)d,id

.
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Proposition 9. The variety of EM fixed points is defined by:

v(k)j ◦ 〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0, j = 1, . . . , d.

The subset that are critical is defined by:

〈R, v(k)1 ⊗ · · · ⊗ v̂(k)j ⊗ · · · ⊗ v(k)d 〉 = 0, j = 1, . . . , d.

A semialgebraic characterization of the set of nonnegative matrices with nonnegative ranks no
greater than 3 was given in [73]. A semialgebraic characterization of the set of nonnegative tensors
with nonnegative ranks no greater than 2 was given in [75].

Question 3. Give a semialgebraic characterization of the set of nonnegative tensors with nonnegative ranks no
greater than 3.

9. Conclusions

In this short note, we give a very brief introduction to nonnegative tensors, mainly from the
geometric perspective. More precisely, we review the generic uniqueness of rank decompositions of
subgeneric nonnegative tensors and nonnegative typical ranks, and thus see the difference among the
nonnegative, real, and complex settings. We review the generic uniqueness of nonnegative low-rank
approximations. In particular, the rank-one approximation problem leads us to the spectral theory of
nonnegative tensors. Finally, we describe the semialgebraic geometry of EM algorithm. Most of the
results we present are obtained by studying the corresponding geometric properties of nonnegative
tensors, and we have seen there are many open problems and unknown properties in this direction,
which we hope would be understood better when more geometries are unveiled.
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