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Keywords: C-Bochner tensor; generalized normalized δ-Casorati curvature; Sasakian manifold; slant;
invariant; anti-invariant

1. Introduction

Bochner [1] introduced the Bochner tensor in Kähler manifolds by analogy to the Weyl conformal
curvature tensor. The Bochner tensor is equal to the 4-th order Chern–Moser curvature tensor in
CR-manifolds by Webster [2]. In contact manifolds, the Bochner tensor was reinterpreted by Matsumoto
and Chuman [3] as a C-Bochner curvature tensor in Sasakian manifolds. They showed that a Sasakian
space form is a space with a vanishing C-Bochner curvature tensor. A Sasakian manifold with a
non-constant ϕ-sectional curvature and a vanishing C-Bochner curvature tensor was constructed by
Kim [4]. Tano showed that the C-Bochner curvature tensor is invariant in terms of D-homothetic
deformations [5].

On the other hand, F. Casorati introduced a new extrinsic invariant of submanifolds in a
Riemannian manifold, called the Casorati curvature. This curvature is defined as the normalized square
of the length of the second fundamental form ([6,7]). Moreover, there are very interesting optimizations
involving Casorati curvatures, proved in [8–19] for various basic submanifolds in different spaces (real,
complex, and quaternionic space forms) with several connections.

In our paper, we investigate new optimal inequalities involving Casorati curvatures for some
submanifolds of a Sasakian manifold with a zero C-Bochner curvature tensor and characterize those
submanifolds for which the equalities hold.

2. Preliminaries

In this section, we recall some results on almost contact manifolds and give a brief review of basic
facts of C-Bochner curvature tensor.

A manifold M = (M, ϕ, ξ, η, g) is called an almost contact metric manifold if there exist structure
tensors (ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form, and g is the
Riemannian metric on M satisfying [20]

ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1

ϕ2 = −I + η ⊗ ξ, and g(ϕX, ϕY) = g(X, Y)− η(X)η(Y)
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where I : TM −→ TM is the identity endomorphism, and X, Y are vector fields on M. In particular,
if M is Sasakian [21], then we have

(∇X ϕ)Y = −g(X, Y)ξ + η(Y)X and ∇Xξ = ϕX

where ∇ is the Levi–Civita connection on M.
Let Mn be an n-dimensional submanifold of a Riemannian manifold (M, g). If ∇ is the induced

covariant differentiation on M of the Levi–Civita connection ∇ on M, then we have the Gauss and
Weingarten formulas:

∇XY = ∇XY + h(X, Y)∀X, Y ∈ Γ(TM)

and
∇X N = −AN X +∇⊥X N, ∀X ∈ Γ(TM), ∀N ∈ Γ(T⊥M)

where h is the second fundamental form of M, ∇⊥ is the connection on T⊥M, and AN is the shape
operator of M with respect to a normal section N. If we denote by R and R the curvature tensor fields
of ∇ and ∇, respectively, then we have the Gauss equation:

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z))

− g(h(X, Z), h(Y, W))
(1)

for all X, Y, Z, W ∈ Γ(TM).
Let Mn be an n-dimensional Riemannian submanifold of a Sasakian manifold (M, g, ϕ, ξ, η).

A plane section π ⊂ Tp M, p ∈ M of a Sasakian manifold M is called a ϕ-section if π = span{X, ϕX}
for X ∈ Γ(TM) orthogonal to ξ at each point p ∈ M. The sectional curvature K(π) with respect to
a ϕ-section π is called a ϕ-sectional curvature. If {e1, ..., en, ξ} is an orthonormal basis of Tp M and
{en+1, ..., em} is an orthonormal basis of T⊥p M, then the scalar curvature τ and the normalized scalar
curvature ρ at p are defined, respectively, as

τ(p) = ∑
1≤i<j≤n

K(ei ∧ ej) ρ =
2τ

n(n− 1)
.

We denote by H the mean curvature vector, that is

H(p) =
1
n

n

∑
i=1

h(ei, ei),

and we also set
hα

ij = g(h(ei, ej), eα), i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., m}.

It is well-known that an intrinsic invariant of the submanifold M in M is defined by

‖H‖2 =
1
n2

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)2

,

and the squared norm of h over the dimension n is denoted by C, called the Casorati curvature of the
submanifold M. That is,

C = 1
n

m

∑
α=n+1

n

∑
i,j=1

(
hα

ij

)2
.

The submanifold M is said to be invariantly quasi-umbilical if there exist m− n mutually orthogonal
unit normal vectors ξn+1, ..., ξm such that the shape operator with respect to each direction ξα has an
eigenvalue of multiplicity n− 1 and the distinguished eigendirection is the same for each ξα.
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Suppose now that L is a s-dimensional subspace of Tp M, and s ≥ 2. Let {e1, ..., es} be an
orthonormal basis of L. Then the scalar curvature τ(L) of the s-plane section L is given by

τ(L) = ∑
1≤α<β≤s

K(eα ∧ eβ),

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =
1
s

m

∑
α=n+1

s

∑
i,j=1

(
hα

ij

)2
.

The normalized δ-Casorati curvatures δc(n− 1) and δ̂c(n− 1) of the submanifold Mn are given by

[δc(n− 1)]p =
1
2
Cp +

n + 1
2n

inf{C(L)|L a hyperplane of Tp M}

and [
δ̂c(n− 1)

]
p
= 2Cp −

2n− 1
2n

sup{C(L)|L a hyperplane of Tp M}.

The generalized normalized δ-Casorati curvatures δC(t; n− 1) and δ̂C(t; n− 1) of the submanifold
Mn are defined for any positive real number t 6= n(n− 1) as

[δC(t; n− 1)]p = tCp +
(n− 1)(n + t)(n2 − n− t)

nt
inf{C(L)|L a hyperplane of Tp M},

if 0 < t < n2 − n, and[
δ̂C(t; n− 1)

]
p
= tCp −

(n− 1)(n + t)(t− n2 + n)
nt

sup{C(L)|L a hyperplane of Tp M}

if t > n2 − n.
The C-Bochner curvature tensor [22] on a Sasakian manifold is defined by

B(X, Y)Z = R(X, Y)Z +
1

2n + 4
{g(X, Z)QY− Ric(Y, Z)X

− g(Y, Z)QX + Ric(X, Z)Y + g(ϕX, Z)QϕY

− Ric(ϕY, Z)ϕX− gϕY, Z)QϕX + Ric(ϕX, Z)ϕY

+ 2Ric(ϕX, Y)ϕZ + 2g(ϕX, Y)QϕZ + η(Y)η(Z)QX

− η(Y)Ric(X, Z)ξ + η(X)Ric(Y, Z)ξ − η(X)η(Z)QY}

− D + 2n
2n + 4

{g(ϕX, Z)ϕY− g(ϕY, Z)ϕX + 2g(ϕX, Y)ϕZ}

+
D + 2n
2n + 4

{η(Y)g(X, Z)ξ − η(Y)η(Z)X + η(X)η(Z)Y

− η(X)g(Y, Z)ξ} − D− 4
2n + 4

{g(X, Z)Y− g(Y, Z)X}

(2)
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for all X, Y, Z, W ∈ Γ(TM), where D = τ+2n
2n+2 , and R, Ric, and Q are the Riemannian curvature tensor,

the Ricci tensor, and the Ricci operator, respectively. If the C-Bochner curvature tensor vanishes,
from Equation (5), we have

R(X, Y, Z, W) = − 1
2n + 4

{g(X, Z)Ric(Y, W)− Ric(Y, Z)g(X, W)

− g(Y, Z)Ric(X, W) + Ric(X, Z)g(Y, W)

+ g(ϕX, Z)Ric(ϕY, W)− Ric(ϕY, Z)g(ϕX, W)

− g(ϕY, Z)Ric(ϕX, W) + Ric(ϕX, Z)g(ϕY, W)

+ 2Ric(ϕX, Y)g(ϕZ, W) + 2g(ϕX, Y)Ric(ϕZ, W)

+ η(Y)η(Z)Ric(X, W)− η(Y)η(W)Ric(X, Z)

+ η(X)η(W)Ric(Y, Z)− η(X)η(Z)Ric(Y, W)}

+
D + 2n
2n + 4

{g(ϕX, Z)g(ϕY, W)− g(ϕY, Z)g(ϕX, W)

+ 2g(ϕX, Y)g(ϕZ, W)} − D + 2n
2n + 4

{η(Y)η(W)g(X, Z)

− η(Y)η(Z)g(X, W) + η(X)η(Z)g(Y, W)

− η(X)η(W)g(Y, Z)}+ D− 4
2n + 4

{g(X, Z)g(Y, W)

− g(Y, Z)g(X, W)}

. (3)

Now, we recall some definitions from literature on submanifolds.

Definition 1. Let (M, ϕ, ξ, η) be an almost contact metric manifolds and M be a submanifold isometrically
immersed in M tangent to the structure vector field ξ. Then M is said to be invariant (anti-invariant) if
ϕ(Tp M) ⊆ Tp M

(
ϕ(Tp M) ⊂ T⊥p M

)
for every p ∈ M, where Tp Ms denote the tangent space of M at the

point p. Moreover, M is called a slant submanifold if for all non-zero vector U ∈ Tp M at a point p, and
the angle of θ(U) between ϕU and Tp M is constant (i.e., it does not depend on the choice of p ∈ M and
U ∈ Γ

(
Tp M

)
− < ξ(p) >).

Let Mn be an n-dimensional submanifold of a Sasakian manifold (M, g, ϕ, ξ, η). For X ∈ Γ(TM),
we can write ϕX = PX + QX, where PX and QX are the tangential and the normal components
of ϕX, respectively. The submanifold is said to be an anti-invariant (invariant) submanifold if
P = 0(Q = 0, respectively). The squared norm of P at p ∈ M is defined as

||P||2 =
n

∑
i,j=1

g2(ϕei, ej)

where {e1, · · · , en} is an orthonormal basis of Tp M. The structure vector field ξ can be decomposed as

ξ = ξ> + ξ⊥

where ξ> and ξ⊥ are the tangential and the normal components of ξ, respectively.
The following constrained extremum problem plays a key role in the proof of our theorems.

Lemma 1. [23] Let
Γ = {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k}
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be a hyperplane of Rn, and f : Rn −→ R a quadratic form given by

f (x1, x2, · · · , xn) = a
n−1

∑
i=1

(xi)
2 + b (xn)

2 − 2 ∑
1≤i<j≤n

xixj, a > 0, b > 0.

Then, f has the global extreme at the following point:

x1 = x2 = · · · = xn−1 =
k

a + 1
, xn =

k
b + 1

=
k(n− 1)
(a + 1)b

= (a− n + 2)
k

a + 1

provided that

b =
n− 1

a− n + 2

by the constrained extremum problem.

3. Inequalities Involving a Vanishing C-Bochner Curvature Tensor

Let M be a submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. Let p ∈ M and the set {e1, ..., en} and {en+1, ..., em} be orthonormal bases of Tp M and
T⊥p M, respectively. From Equation (3), we have

n

∑
i,j=1

R(ei, ej, ej, ei) =
7n2 + n− 8 + 2(n− 1)||ξ⊥||2

4(n + 1)(n + 2)
τ

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
n(n− 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)

. (4)

Combining Equation (1) and Equation (4), we obtain

2τ = n2||H||2 − nC + 7n2 + n− 8 + 2(n− 1)||ξ⊥||2
4(n + 1)(n + 2)

τ

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
n(n− 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)

. (5)

We now consider a quadratic polynomial in the components of the second fundamental form:

P = tC + (n− 1)(n + t)(n2 − n− t)
nt

C(L)− n2 + 23n + 24− 2(n− 1)||ξ⊥||2
4(n + 1)(n + 2)

τ

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej) +
n(n− 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)
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where L is a hyperplane of Tp M. Without loss of generality, we may assume that L = span{e1, ..., en−1}.
Then we derive

P =
m

∑
α=n+1

n−1

∑
i=1

[
n2 + n(t− 1)− 2t

r
(hα

ii)
2 +

2(n + t)
n

(hα
in)

2
]

+
m

∑
α=n+1

[
2(n + t)(n− 1)

t

n−1

∑
1=i<j

(
hα

ij

)2
− 2

n

∑
1=i<j

hα
iih

α
jj +

t
n
(hα

nn)
2

]

≥
m

∑
α=n+1

[
n−1

∑
i=1

n2 + n(t− 1)− 2t
t

(hα
ii)

2 − 2
n

∑
1=i<j

hα
iih

α
jj +

t
n
(hα

nn)
2

]. (6)

For α = n + 1, · · · , m, we consider the quadratic form fα : Rn −→ R defined by

fα (hα
11, · · · , hα

nn) =
n2 + n(t− 1)− 2t

t

n−1

∑
i=1

(hα
ii)

2 − 2
n

∑
i<j=1

hα
iih

α
jj +

t
n
(hα

nn)
2 . (7)

We then have the constrained extremum problem

min fα

subject to Fα : hα
11 + · · ·+ hα

nn = cα

where cα is a real constant. Comparing Equation (7) with the quadratic function in Lemma 1, we get

a =
n2 + n(t− 1)− 2t

t
, b =

t
n

.

Therefore, we have the critical point
(
hα

11, · · · , hα
nn
)
, given by

hα
11 = hα

22 = · · · = hα
n−1 n−1 =

tcα

(n + t)(n− 1)
, hα

nn =
ncα

n + t
,

which is a global minimum point by Lemma 1. Moreover, fα

(
hα

11, · · · , hα
nn
)
= 0. Therefore, we have

P ≥ 0,

which implies

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
4(n + 1)(n + 2)

τ ≤ tC + (n− 1)(n + t)(n2 − n− t)
nt

C(L)

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
n(n− 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)

.

Therefore, we derive
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ρ ≤ 8(n + 1)(n + 2)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) (tC + (n− 1)(n + t)(n2 − n− t)
nt

C(L)
)

− 24(n + 1)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
− 4(3n + 4)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
.

Summing up, we obtain the following theorem:

Theorem 1. Let M be a submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. When 0 < t < n2 − n, the generalized normalized δ-Casorati curvature δC(t, n− 1) on
Mn satisfies

ρ ≤ 8(n + 1)(n + 2)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(t, n− 1)

− 24(n + 1)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
− 4(3n + 4)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
.

Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical submanifold with the
trivial normal connection in a Sasakian manifold (M, g, ϕ, ξ, η), such that the shape operators Ar ≡ Aξr and
r ∈ {n + 1, · · · , m} take the following forms:

An+1 =



a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
...

. . .
...

...
0 0 0 ... a 0
0 0 0 ... 0 n(n−1)

t a


, An+2 = · · · = Am = 0 (8)

with respect to a suitable orthonormal tangent frame {ξ1, · · · , ξn} and a normal orthonormal frame
{ξn+1, · · · , ξm}.

When a submanifold M is Einstein of a Sasakian manifold (M, g, ϕ, ξ, η), the Ricci curvature
tensor ρ(X, Y) = λg(X, Y) for X, Y ∈ Γ(TM), where λ is some constant. Therefore, we have the
following corollary:

Corollary 1. Let M be an Einstein submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. Then, for a Ricci curvature λ, we obtain

ρ ≤ 8(n + 1)(n + 2)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(t, n− 1)

+
24(n + 1)||P||2λ

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
+

4(2n + 3)||ξ⊥||2
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

− 4(3n + 4)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
.
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Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical submanifold with the
trivial normal connection in a Sasakian manifold (M, g, ϕ, ξ, η), such that with respect to a suitable orthonormal
tangent frame {ξ1, · · · , ξn} and a normal orthonormal frame {ξn+1, · · · , ξm}, the shape operators Ar ≡ Aξr

and r ∈ {n + 1, · · · , m} take the form of Equation (8).

For a slant submanifolds (g(ϕei, ej) = cos θ with the slant angle θ) of a Sasakian manifold
(M, g, ϕ, ξ, η) with a vanishing C-Bochner curvature tensor, we have following corollaries.

Corollary 2. Let M be a slant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(t, n− 1)

+
24(n + 1) cos θ

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) n

∑
i,j=1

Ric(ei, ϕej) +
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2

− 4(3n + 4)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
where θ is a slant function. Moreover, the equality case holds if and only if, with respect to a suitable frames
{e1, ..., en} on M and {en+1, ..., em} on T⊥p M, p ∈ M, the components of h satisfy

hα
11 = hα

22 = · · · = hα
n−1 n−1 = t

n(n−1)hα
nn, α ∈ {n + 1, · · · , m},

hα
ij = 0, i, j ∈ {1, 2, · · · , n}(i 6= j), α ∈ {n + 1, · · · , m}.

When the slant angle is zero in Corollary 2, we have the following corollary:

Corollary 3. Let M be an invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(t, n− 1)

+
4(6n2 − 3n− 10)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) + 4(2n + 3)||ξ⊥||2
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

.

Moreover, the equality case holds if and only if, with respect to a suitable frames {e1, ..., en} on M and
{en+1, ..., em} on T⊥p M, p ∈ M, the components of h satisfy

hα
11 = hα

22 = · · · = hα
n−1 n−1 = t

n(n−1)hα
nn, α ∈ {n + 1, · · · , m},

hα
ij = 0, i, j ∈ {1, 2, · · · , n}(i 6= j), α ∈ {n + 1, · · · , m}.

When the slant angle is π
2 in Corollary 1, we have the following corollary:

Corollary 4. Let M be an anti-invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(t, n− 1)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
− 4(3n + 4)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) .
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Moreover, the equality case holds if and only if, with respect to a suitable frames {e1, ..., en} on M and
{en+1, ..., em} on T⊥p M, p ∈ M, the components of h satisfy

hα
11 = hα

22 = · · · = hα
n−1 n−1 = t

n(n−1)hα
nn, α ∈ {n + 1, · · · , m},

hα
ij = 0, i, j ∈ {1, 2, · · · , n}(i 6= j), α ∈ {n + 1, · · · , m}.

Remark 1. In the case for t > n2 − n, the methods of finding the above inequailities is analogous. Thus, we
leave these problems for readers.

Taking t = n(n−1)
2 in δC(t, n− 1), we have the following relation:[

δC

(
n(n− 1)

2
; n− 1

)]
p
= n(n− 1) [δC(n− 1)]p

in any point p ∈ M. Therefore, we have following optimal inequalities for the normalized δ-Casorati
curvature δC(n− 1).

Corollary 5. Let M be a submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. The normalized δ-Casorati curvature δC(n− 1) on Mn satisfies

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(n− 1)

− 24(n + 1)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
− 4(3n + 4)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
.

Corollary 6. Let M be an Einstein submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. Then, for a Ricci curvature λ, we obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(n− 1)

+
24(n + 1)||P||2λ

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) + 4(2n + 3)||ξ⊥||2
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

− 4(3n + 4)
n(n− 1)

(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
.

Corollary 7. Let M be a slant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(n− 1)

+
24(n + 1) cos θ

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) n

∑
i,j=1

Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
− 4(3n + 4)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

)
where θ is a slant function.
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Corollary 8. Let M be an invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(n− 1)

+
4(6n2 − 3n− 10)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) + 4(2n + 3)||ξ⊥||2
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

.

Corollary 9. Let M be an anti-invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) δC(n− 1)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24− 2(n− 1)||ξ⊥||2
− 4(3n + 4)

n(n− 1)
(
n2 + 23n + 24− 2(n− 1)||ξ⊥||2

) .
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Braşov Ser. B 2007, 14, 85–93.
9. Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal.

Pure Appl. Math. 2008, 9, 1–7.
10. Ghişoiu, V. Inequalities for the Casorati curvatures of slant submanifolds in complex space forms. In Proceedings

of the RIGA Riemannian Geometry and Applications, Bucharest, Romania, 10–14 May 2011; pp. 145–150.
11. He, G.; Liu, H.; Zhang, L. Optimal inequalities for the Casorati curvatures of submanifolds in generalized

space forms endowed with semi-symmetric non-metric connections. Symmetry 2016, 8, 10. [CrossRef]
12. Lee, C.W.; Yoon, D.W.; Lee, J.W. Optimal inequalities for the Casorati curvatures of submanifolds of real

space forms endowed with semi-symmetric metric connections. J. Inequal. Appl. 2014, 2014, 327. [CrossRef]
13. Lee, C.W.; Lee, J.W.; Vîlcu, G.-E.; Yoon, D.W. Optimal inequalities for the Casorati curvatures of submanifolds

of generalized space forms endowed with semi-symmetric metric connections. Bull. Korean Math. Soc. 2015,
52, 1631–1647. [CrossRef]

14. Lee, C.W.; Lee, J.W.; Vîlcu, G.-E. A new proof for some optimal inequalities involving generalized normalized
δ-Casorati curvatures. J. Inequal. Appl. 2015, 2015, 30. [CrossRef]

http://dx.doi.org/10.2307/1969353
http://dx.doi.org/10.1007/BF01214356
http://dx.doi.org/10.1007/BF02413317
http://dx.doi.org/10.3390/sym8110113
http://dx.doi.org/10.1186/1029-242X-2014-327
http://dx.doi.org/10.4134/BKMS.2015.52.5.1631
http://dx.doi.org/10.1186/s13660-015-0831-0


Mathematics 2018, 6, 231 11 of 11

15. Lee, J.W.; Lee, C.W.; Yoon, D.W. Inequalities for generalized δ-Casorati curvatures of submanifolds in real
space forms endowed with a semi-symmetric metric connection. Rev. Union Mat. Argent. 2016, 57, 53–62.

16. Lee, J.W.; Vîlcu, G.-E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in
quaternionic space forms. Taiwan J. Math. 2015, 19, 691–702. [CrossRef]
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