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Abstract: A statistical structure is considered as a generalization of a pair of a Riemannian metric
and its Levi-Civita connection. With a pair of conjugate connections ∇ and ∇∗ in the Sasakian
statistical structure, we provide the normalized scalar curvature which is bounded above from
Casorati curvatures on C-totally real (Legendrian and slant) submanifolds of a Sasakian statistical
manifold of constant ϕ-sectional curvature. In addition, we give examples to show that the total
space is a sphere.
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1. Introduction

A statistical model in information geometry has a Fisher metric as a Riemannian metric with an
affine connection, whose connection is constructed from the average of the probability distribution.
In the statistical models, a pair of a Fisher information metric and an affine connection gives
the geometric structure, called the Chentsov-Amari connection [1], whose geometric structure is
a generalization of a pair of a Riemannian metric and a Levi-Civita connection. By generalizing the
geometric structure, a statistical structure has been studied in information geometry. Applying this idea
to Sasakian manifolds, one arrived at the definition of a Sasakian statistical structure as a generalization
of a Sasakian structure. In other words, it is a triple of an affine connection, a Riemannian metric,
and a Sasakian structure on an odd dimensional manifold [2]. The geometry of such a manifold is
closely related to affine geometry and Hessian geometry. In such manifolds, there are the fundamental
equations such as Gauss formula, Weingarten formula and the equations of Gauss, Codazzi and Ricci
in submanifolds of a statistical manifold [3].

On the other hand, it is well-known that the Casorati curvature as a new extrinsic invariant is
defined as the normalized square of the length of the second fundamental form, introduced by Casorati
([4,5]). Geometric meanings of Casorati curavature were found in visual perception of shape and
appearance ([6–8]). Some optimal inequalities involving Casorati curvatures were proved in [9–15]
for several submanifolds in real, complex and quaternionic space forms with various connections.
Moreover, Lee et al. established that the normalized scalar curvature is bounded by Casorati curvatures
of submanifolds in a statistical manifold of constant curvature [16]. In Kenmotsu statistical manifolds,
Decu et al. investigate curvature properties and establish optimizations in terms of a new extrinsic
invariant (the normalized δ-Casorati curvature) and an intrinsic invariant (the scalar curvature) [17].

In our paper, we establish optimizations of the normalized scalar curvature (the intrinsic
invariant) for a new extrinsic invariant (generalized normalized Casorati curvatures) on Legendrian
and slant submanifolds in a Sasakian statistical space form. Moreover, we provide some examples for
special Sasakian statistical sphere S2m+1 of statistical sectional curvature 1.
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2. Preliminaries

Let (Mm, g) be a m-dimensional Riemannian manifold with an affine connection∇. We denote by
Γ(TM) the collection of all vector fields on M.

Definition 1 ([18]). A pair
(
∇, g

)
is called a statistical structure on M if ∇ is a torsion free connection on M

and the covariant derivative ∇g is symmetric.

Definition 2. A statistical manifold (M, g,∇) is a Riemannian manifold, endowed with a pair of torsion-free
affine connections ∇ and ∇∗ satisfying

Zg (X, Y) = g
(
∇ZX, Y

)
+ g

(
X,∇∗ZY

)
(1)

for any vector fields X, Y and Z. The connections ∇ and ∇∗ are called dual connections.

Remark 1.

(a)
(
∇∗
)∗

= ∇.

(b) If
(
∇, g

)
is a statistical structure, then so is

(
∇∗, g

)
.

(c) Any torsion-free affine connection ∇ always has a dual connection satisfying

∇+∇∗ = 2∇0
, (2)

where ∇0 is the Levi-Civita connection for M.

Let R and R∗ be the curvature tensor fields of ∇ and ∇∗, respectively.

Definition 3 ([18,19]). Let
(
∇, g

)
be a statistical structure on M. We define

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗(X, Y)Z}

for X, Y, Z ∈ Γ(TM), called the statistical curvature tensor of
(
∇, g

)
. In particular, a statistical manifold(

M,∇, g
)

is to be of constant statistical curvature c ∈ R if S(X, Y)Z = c{g(Y, Z)X − g(X, Z)Y} for
X, Y, Z ∈ Γ(TM).

By the direct calculation, the curvature tensor fields R and R∗ satisfy

g
(

R∗ (X, Y) Z, W
)
= −g

(
Z, R (X, Y)W

)
, X, Y, Z, W ∈ Γ(TM).

Therefore, if
(
∇, g

)
is a statistical structure of constant curvature c, so is

(
∇∗, g

)
.

For submanifolds in statistical manifolds, we have pairs of induced connections ∇,∇∗, second
fundamental forms h, h∗, shape operators A, A∗, and normal connections D, D∗ satisfying equations
analogous to the Gauss and the Weingarten ones for ∇ and ∇∗, respectively. Moreover, the induced
metric g is unique, and (∇, g) and (∇∗, g) are induced dual statistical structures on the submanifold.
The fundamental equations for statistical submanifolds are given by Vos ([3]).

Let (M, g) be an n-dimensional submanifold of a statistical manifold
(

M, g
)

and g the induced
metric on M. Then for any vector fields X, Y, the Gauss formulas are given respectively by

∇XY = ∇XY + h(X, Y)

∇∗XY = ∇∗XY + h∗(X, Y).
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The corresponding Gauss equations with respect to ∇ and ∇∗ are given by the following result.

Theorem 1 ([3]). Let ∇ and ∇∗ be dual connections on (M, g) and ∇ and ∇∗ the induced dual connections
by ∇ and ∇∗ by a submanifold M of (M, g), respectively. Let R, R, R∗ and R∗ be the Riemannian curvature
tensors of ∇, ∇, ∇∗ and ∇∗, respectively. Then

g
(

R (X, Y) Z, W
)
= g (R (X, Y) Z, W)

+ g (h (X, Z) , h∗ (Y, W))− g (h∗ (X, W) , h (Y, Z))
(3)

g
(

R∗ (X, Y) Z, W
)
= g (R∗ (X, Y) Z, W)

+ g (h∗ (X, Z) , h (Y, W))− g (h (X, W) , h∗ (Y, Z))
(4)

If {e1, ..., en} is an orthonormal basis of the tangent space Tp M and {en+1, ..., em} is an orthonormal
basis of the normal space T⊥p M, then the scalar curvature τ at p is defined as

τ(p) = ∑
1≤i<j≤n

g
(
S
(
ei, ej

)
ej, ei

)
and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n− 1)
.

We denote by H, H∗ the mean curvature vectors, that is,

H(p) =
1
n

n

∑
i=1

h(ei, ei), H∗(p) =
1
n

n

∑
i=1

h∗(ei, ei) (5)

and we also set
hα

ij = g(h(ei, ej), eα), h∗ij
α = g(h∗(ei, ej), eα),

i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., m}.
Then it is well-known that the squared mean curvatures of the submanifold M in M are defined by

‖H‖2 =
1
n2

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1
n2

m

∑
α=n+1

(
n

∑
i=1

h∗ii
α

)2

and the squared norms of h and h∗ over dimension n is denoted by C and C∗ are called the Casorati
curvatures of the submanifold M, respectively. Therefore, we have

C = 1
n

m

∑
α=n+1

n

∑
i,j=1

(
hα

ij

)2
and C∗ = 1

n

m

∑
α=n+1

n

∑
i,j=1

(
h∗ij

α
)2

.

The normalized δ-Casorati curvatures δC(n− 1) and δ̂C(n− 1) of the submanifold M are defined as

[δC(n− 1)]p =
1
2
Cp +

(n + 1)
2n

inf{C(L)|L a hyperplane of Tp M},

and [
δ̂C(n− 1)

]
p
= 2Cp −

(2n− 1)
2n

sup{C(L)|L a hyperplane of Tp M}.
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Similarly, the dual normalized δ∗-Casorati curvatures δ∗C(n− 1) and δ̂∗C(n− 1) of the submanifold
M are defined as

[δ∗C(n− 1)]p =
1
2
C∗p +

(n + 1)
2n

inf{C∗(L)|L a hyperplane of Tp M},

and [
δ̂∗C(n− 1)

]
p
= 2C∗p −

(2n− 1)
2n

sup{C∗(L)|L a hyperplane of Tp M}.

The generalized normalized δ-Casorati curvatures δC(t; n− 1) and δ̂C(t; n− 1) of the submanifold
M are defined for any positive real number t 6= n(n− 1) as

[δC(t; n− 1)]p = tCp +
(n− 1)(n + t)(n2 − n− t)

nt
inf{C(L)|L a hyperplane of Tp M},

if 0 < t < n2 − n, and[
δ̂C(t; n− 1)

]
p
= tCp −

(n− 1)(n + t)(t− n2 + n)
nt

sup{C(L)|L a hyperplane of Tp M},

if t > n2 − n.
Moreover, the dual generalized normalized δ-Casorati curvatures δ∗C(t; n− 1) and δ̂∗C(t; n− 1) of

the submanifold M are defined for any positive real number t 6= n(n− 1) as

[δ∗C(t; n− 1)]p = tC∗p +
(n− 1)(n + t)(n2 − n− t)

nt
inf{C∗(L)|L a hyperplane of Tp M},

if 0 < t < n2 − n, and[
δ̂∗C(t; n− 1)

]
p
= tC∗p −

(n− 1)(n + t)(t− n2 + n)
nt

sup{C∗(L)|L a hyperplane of Tp M},

if t > n2 − n.

The following lemma plays a key role in the proof of our main theorem.

Lemma 1 ([20]). Let

Γ = {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k}

be a hyperplane of Rn, and f : Rn −→ R a quadratic form, given by

f (x1, x2, · · · , xn) = a
n−1

∑
i=1

(xi)
2 + b (xn)

2 − 2 ∑
1≤i<j≤n

xixj, a > 0, b > 0.

Then, the constrained extremum problem min
x∈Γ

f (x) has a global solution as follows:

x1 = x2 = · · · = xn−1 =
k

a + 1
, xn =

k
b + 1

=
k(n− 1)
(a + 1)b

= (a− n + 2)
k

a + 1
,

provided that

b =
n− 1

a− n + 2
.
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Definition 4. A triple (g, ϕ, ξ) is called an almost contact metric structure on M if the following equations hold

ϕξ = 0, g(ξ, ξ) = 1, ϕ2X = −X + g(X, ξ)ξ, g(ϕX, Y) + g(X, ϕY) = 0, X, Y ∈ Γ(TM)

where ϕ is a section of TM⊗ TM∗ and ξ is the structure vector field on M.

Definition 5. A quadraple
(
∇, g, ϕ, ξ

)
is called a Sasakian statistical structure on M if

(
∇, g

)
is a statistical

structure.

Theorem 2 ([2]). Let
(
∇, g, ϕ, ξ

)
be a Sasakian statistical structure on M. Then, so is

(
∇∗, g, ϕ, ξ

)
.

Definition 6. Let
(
∇, g, ϕ, ξ

)
be a Sasakian statistical structure on M, and c ∈ R. The Sasakian statistical

structure is said to be of constant ϕ-sectional curvature if

S(X, Y)Z =
c + 3

4
{g(Y, Z)X− g(X, Z)Y}+ c− 1

4
{g(ϕY, Z)ϕX

− g(ϕX, Z)ϕY− 2g(ϕX, Y)ϕZ− g(Y, ξ)g(Z, ξ)X

+ g(X, ξ)g(Z, ξ)Y + g(Y, ξ)g(Z, X)ξ − g(X, ξ)g(Z, Y)ξ},

(6)

X, Y, Z ∈ Γ(TM).

A submanifold Mn normal to ξ in a Sasakian statistical manifold M2m+1 is said to be a C-totally
real submanifold. In this case, ϕ

(
Tp M

)
⊂ T⊥p M, p ∈ M. In particular, if n = m, then M is called

a Legendrian submanifold.
For submanifolds tangent to ξ, there is a θ-slant submanifold of a Sasakian statistical manifold as

follows [21]:
A submanifold Mn tangent to ξ in a Sasakian statistical manifold is called a θ-slant submanifold

if for any vector X ∈ Tp M, linearly independent on ξp, the angle between ϕX and Tp M is a constant
θ ∈ [0, π

2 ], called the slant angle of M in M. In particular, if θ = 0 and θ = π
2 , M is invariant and

anti-invariant, respectively.

3. Inequalities with Casorati Curvatures

Let M be an n-dimensional C-totally real submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
.

Let p ∈ M and the set {e1, e2, · · · , en} and {en+1, en+2, · · · , e2m, e2m+1 = ξ} be orthonormal bases
of Tp M and T⊥p M, respectively. Then, we have the scalar curvature as follows:

2τ(p) = 2 ∑
1≤i<j≤n

g
(
S
(
ei, ej

)
ej, ei

)
= ∑

1≤i<j≤n
{g
(

R(ei, ej)ej, ei
)
+ g

(
R∗(ei, ej)ej, ei

)
}

= ∑
1≤i<j≤n

{ c + 3
2

+ g
(
h(ei, ei), h∗(ej, ej)

)
+ g

(
h∗(ei, ei), h(ej, ej)

)
− 2g

(
h∗(ei, ej), h(ei, ej)

)
}

=
n(n− 1)(c + 3)

4
+ n2g(H, H∗)−

n

∑
i,j=1

g
(
h∗(ei, ej), h(ei, ej)

)
(7)

Since 2H0 = H + H∗ and the definition of Casorati curvature, 4‖H0‖2 = ‖H‖2 + ‖H∗‖2 +

2g(H, H∗), we obtain that
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2τ(p) =
n(n− 1)(c + 3)

4
+ 2n2‖H0‖2

− n2

2

(
‖H‖2 + ‖H∗‖2

)
− 2nC0 +

n
2
(C + C∗) ,

(8)

where C0 = 1
2 (C + C∗).

Define a quadratic polynomial in the components of the second fundamental form h0 by

P = tC0 +
(n− 1)(n + t)(n2 − n− t)

nt
C0(L) +

1
2

n (C + C∗)

− n2

2

(
‖H‖2 + ‖H∗‖2

)
− 2τ(p) +

n(n− 1)(c + 3)
4

,

where L is a hyperplane of Tp M. Without loss of generality, we can assume that L is spanned by
e1, · · · , en−1. Then we derive

1
2
P =

m

∑
α=n+1

n−1

∑
i=1

[
n2 + n(t− 1)− 2t

r

(
h0α

ii

)2
+

2(n + t)
n

(
h0α

in

)2
]

+
m

∑
α=n+1

[
2(n + t)(n− 1)

t

n−1

∑
1=i<j

(
h0α

ij

)2
− 2

n

∑
1=i<j

h0α
ii h0α

jj +
t
n

(
h0α

nn

)2
]

≥
m

∑
α=n+1

[
n−1

∑
i=1

n2 + n(t− 1)− 2t
t

(
h0α

ii

)2
− 2

n

∑
1=i<j

h0α
ii h0α

jj +
t
n

(
h0α

nn

)2
]

.

(9)

For α = n + 1, · · · , m, let us consider the quadratic form fα : Rn −→ R defined by

fα

(
h0α

11 , · · · , h0α
nn

)
=

n2 + n(t− 1)− 2t
t

n−1

∑
i=1

(
h0α

ii

)2

− 2
n

∑
1=i<j

h0α
ii h0α

jj +
t
n

(
h0α

nn

)2
,

(10)

and the constrained extremum problem
min fα

subject to Fα : h0α
11 + · · ·+ h0α

nn = cα,

where cα is a real constant. Comparing (10) with the quadratic function in Lemma 1, we see that

a =
n2 + n(t− 1)− 2t

t
, b =

t
n

.

Therefore, we have the critical point
(
h0α

11 , · · · , h0α
nn
)
, given by

h0α
11 = h0α

22 = · · · = h0α
n−1 n−1 =

tcα

(n + t)(n− 1)
, h0α

nn =
ncα

n + t
,

is a global minimum point by Lemma 1. Moreover, fα

(
h0α

11 , · · · , h0α
nn
)
= 0. Therefore, we have

P ≥ 0, (11)

which implies

2τ(p) ≤tC0 +
(n− 1)(n + t)(n2 − n− t)

nt
C0(L) +

1
2

n (C + C∗)

− n2

2

(
‖H‖2 + ‖H∗‖2

)
+

n(n− 1)(c + 3)
4

.
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Therefore, we derive

ρ ≤ 1
n(n− 1)

{tC0 +
(n− 1)(n + t)(n2 − n− t)

nt
C0(L)}

+
1

2(n− 1)
(C + C∗)− n

2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

c + 3
4

.

Therefore, we have the following theorem:

Theorem 3. Let M be an n-dimensional C-totally real submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, the generalized normalized δ-Casorati curvature

δ0
C(t, n− 1) on M satisfies

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)

− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

c + 3
4

,

where 2δ0
C(t, n− 1) = δC(t, n− 1) + δ∗C(t, n− 1). The equality case holds identically at any point p ∈ M if

and only if h = −h∗.

For a unit hypersphere S2n+1 in R2n+2, the unit normal vector field N of S2n+1 provides the
structure vector field ξ = −JN with the standard almost complex structure J on R2n+2 = Cn+1.
In addition, ϕ = π ◦ J is the natural projection of the tangent space of R2n+2 onto the tangent space of
S2n+1. Then we obtain the standard Sasakian structure (g, ϕ, ξ) on S2n+1. From [2], we can construct
a Sasakian statistical structures on S2n+1 of constant statistical sectional curvature 1. Therefore, we
have the following optimal inequality:

Example 1. Let M be an n-dimensional C-totally real submanifold of S2m+1. Then, the generalized normalized
δ-Casorati curvature δ0

C(t, n− 1) on Mn satisfies

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)

− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+ 1.

When t = n(n−1)
2 in Theorem 3, we have an optimization for a normalized δ-Casoratic curvature

as follows:

Corollary 1. Let M be an n-dimensional C-totally real submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
. Then, the normalized δ-Casorati curvature δ0

C(n− 1) on M satisfies

ρ ≤ δ0
C(n− 1) +

1
2(n− 1)

(C + C∗)− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

c + 3
4

.

Proof. Taking t = n(n−1)
2 in δ0

C(t, n− 1), we have the following relation:[
δ0

C

(
n(n− 1)

2
; n− 1

)]
p
= n(n− 1)

[
δ0

C(n− 1)
]

p

in any point p ∈ M. Therefore, we have an optimal inequality for the normalized δ-Casorati curvature
δ0

C(n− 1).
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Theorem 4. Let M be an n-dimensional θ-slant submanifold of a (2m + 1)-dimensional Sasakian statistical
manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, the generalized normalized δ-Casorati curvature δ0

C(t, n− 1)
on M satisfies

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n− 1)(c + 3)
4

+
3(n− 1)(c− 1) cos2 θ

4
− (n− 1)(c− 1)

2
.

Proof. Let p ∈ M and the set {e1, e2, · · · , en−1, en = ξ} and {en+1, en+2, · · · , e2m, e2m+1} be
orthonormal bases of Tp M and T⊥p M, respectively. Then, we have the scalar curvature as follows:

2τ(p) = 2 ∑
1≤i<j≤n

g
(
S
(
ei, ej

)
ej, ei

)
= ∑

1≤i<j≤n
{g
(

R(ei, ej)ej, ei
)
+ g

(
R∗(ei, ej)ej, ei

)
}

=
n(n− 1)(c + 3)

4
+

3(n− 1)(c− 1) cos2 θ

4
− (n− 1)(c− 1)

2

+ n2g(H, H∗)−
n

∑
i,j=1

g
(
h∗(ei, ej), h(ei, ej)

)
(12)

By using a similar argument as in the proof of Theorem 3, we get

2τ(p) ≤tC0 +
(n− 1)(n + t)(n2 − n− t)

nt
C0(L)

+
1
2

n (C + C∗)− n2

2

(
‖H‖2 + ‖H∗‖2

)
+

n(n− 1)(c + 3)
4

+
3(n− 1)(c− 1) cos2 θ

4
− (n− 1)(c− 1)

2
.

Therefore, we have an ineqaulity as follows:

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n− 1)(c + 3)
4

+
3(n− 1)(c− 1) cos2 θ

4
− (n− 1)(c− 1)

2
.

If M is an invariant submanifold, then θ = 0. Then we obtain

Corollary 2. Let Mn be an n-dimensional invariant submanifold of a (2m+ 1)-dimensional Sasakian statistical
manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, we derive

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)

− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n− 1)(c + 3)
4

+
(n− 1)(c− 1)

4
.

If M is an anti-invariant submanifold, then θ = π
2 . Then we obtain



Mathematics 2018, 6, 259 9 of 10

Corollary 3. Let Mn be an n-dimensional anti-invariant submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, we derive

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)

− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n− 1)(c + 3)
4

− (n− 1)(c− 1)
2

.

Example 2. Let M be an n-dimensional θ-slant submanifold of S2m+1. Then, the generalized normalized
δ-Casorati curvature δ0

C(t, n− 1) on Mn satisfies

ρ ≤ 1
n(n− 1)

δ0
C(t, n− 1) +

1
2(n− 1)

(C + C∗)

− n
2(n− 1)

(
‖H‖2 + ‖H∗‖2

)
+ n(n− 1).

Remark 2.

(1) Taking t = n(n−1)
2 as Corollary 1, we have optimal inequalities for θ-slant submanifold of a Sasakian

statistical manifold.
(2) In any optimization throughout our paper, the equality cases hold if and only if a submanifold is totally

geodesic from h = −h∗.
(3) In the case for t > n2 − n, the methods of finding the above inequalities are analogous.
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