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Abstract: Let g be an analytic function with the normalization in the open unit disk. Let L(r) be the
length of g({z : |z| = r}). In this paper we present a correspondence between g and L(r) for the case
when g is not necessary univalent. Furthermore, some other results related to the length of analytic
functions are also discussed.
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1. Introduction

Let A be the family of functions of the form

g(z) = z +
∞

∑
n=2

anzn (1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. Let S denote the subfamily of A
consisting of all univalent functions in D.

Let C(r) denote the image curve of the |z| = r < 1 under the function g ∈ A which bound the
area A(r). Furthermore, let L(r) be the length of C(r) and M(r) = max|z|=r<1 |g(z)|.

If g ∈ A satisfies

Re

{
zg′(z)
g(z)

}
> 0, z ∈ D,

then g is said to be starlike with respect to the origin in D and we write g ∈ S∗. It is known (for details,
see [1,2]) that S∗ ⊂ S .

The aim of the present paper is to prove, using a modified methodology, that in the following
implication

g ∈ S∗ ⇒ L(r) = O
(

M(r) log
1

1− r

)
as r → 1, (2)

where O denotes the Landau’s symbol, the assumption that g is starlike univalent can be changed by a
weaker one. Result (2) was proved by Keogh [3]. Moreover, some other length problems for analytic
functions are investigated. Several interesting developments related to length problems for univalent
functions were considered in [4–15].
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2. Main Results

Theorem 1. Let g be of the form (1) and suppose that∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ ∣∣∣∣1 + z
1− z

∣∣∣∣ , z ∈ D. (3)

Then

L(r) = O
(

M(r) log
1

1− r

)
as r → 1,

where
M(r) = max

|z|=r<1
|g(z)|

and O means Landau’s symbol.

Proof. Let z = reiν. We have g 6= 0 in D \ {0}. In fact, if g = 0 in D, it contradicts hypothesis (3).
Applying [3] (Theorem 1) and the hypothesis of Theorem 1, we have

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

≤ M(r)
∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣dν ≤ M(r)
∫ 2π

0

∣∣∣∣1 + reiν

1− reiν

∣∣∣∣dν

≤ M(r)
(

2π + 4 log
1 + r
1− r

)
as r → 1.

Remark 1. If g satisfies the condition of Theorem 1, then g is not necessary univalent in D. It is well known
that if g ∈ S , then it follows that

1− |z|
1 + |z| ≤

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ D

(for details, see [1] (Vol. 1, p. 69)).
If g ∈ A satisfies

Re

{
zg′(z)

g1−γ(z)hγ(z)

}
> 0, z ∈ D

for some h ∈ S∗ and some γ ∈ (0, ∞), then g is said to be a Bazilevic̆ function of type γ [13]. The class of
Bazilevic̆ functions of type γ is denoted by g ∈ B(γ) . We note that Theorem 1 improves the implication (2) by
Keogh [3] and it is also related to Theorem 3 given by Thomas [13].

We will need the following Tsuji’s result.

Lemma 1 ([16] (p. 226)). (Theorem 3) If 0 ≤ r < R and z = eiν, then

R− r
R + r

≤ Re

{
Reiφ + z
Reiφ − z

}
=

R2 − r2

R2 − 2Rr cos(φ− ν) + r2 ≤
R + r
R− r

. (4)

Moreover,
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(φ− ν) + r2 dν = 1. (5)
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Theorem 2. Let g be of the form (1) and suppose that∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ ∣∣∣∣1 + z
1− z

∣∣∣∣ , z ∈ D (6)

and

M(r, β) = max
|z|=r<1

|g(z)| ≤
∣∣∣∣1 + z
1− z

∣∣∣∣β , (7)

where 1 < β. Then

L(r) = O
(

1
(1− r)β

)
as r → 1,

where O means Landau’s symbol.

Proof. From the hypotheses (6) and (7), it follows that

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

≤
∫ 2π

0

∣∣∣∣1 + z
1− z

∣∣∣∣ ∣∣∣∣1 + z
1− z

∣∣∣∣β dν ≤ 21+β
∫ 2π

0

1
|1− z|1+β

dν

=
21+β

(1− r)β−1

∫ 2π

0

1
1− 2r cos ν + r2 dν.

From (5), we have ∫ 2π

0

1
1− 2r cos ν + r2 dν =

2π

1− r2 .

Hence, we obtain

L(r) ≤ 21+β

(1− r)β−1
2π

1− r2

= O
(

1
(1− r)β

)
as r → 1.

Therefore, we complete the proof of Theorem 2.

Let us recall the following Fejér-Riesz’s result.

Lemma 2 ([16]). Let h be analytic in D and continuous on D. Then

∫ 1

−1
|h(z)|p|dz| ≤ 1

2

∫
|z|=1
|h(z)|p|dz|,

where p > 0.

Theorem 3. Let g be of the form (1) and suppose that

1− |z|
1 + |z| ≤

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ D. (8)

Then

O
(

m(r) log
1

1− r

)
≤ L(r) ≤ O

(
M(r)
1− r

)
as r → 1,

where
m(r) = min

|z|=r<1
|g(z)|, M(r) = max

|z|=r<1
|g(z)| (9)
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and O means Landau’s symbol.

Proof. From the assumption, we have

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

≥ m(r)
∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣dν

because g(z) 6= 0 in D \ {0}. In fact, if g(z) = 0 in D, it contradicts hypothesis (8).
Applying Fejér-Riesz’s Lemma 2, we have

L(r) ≥ m(r)
∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣dν ≥ 2m(r)
∫ r

−r

1− ρ

1 + ρ
dρ

≥ 2m(r) log
1 + r
1− r

− 2r

= O
(

m(r) log
1

(1− r)

)
as r → 1.

While, we obtain

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

= M(r)
∫ 2π

0

1 + |z|
1− |z|dν = 2πM(r)

1 + r
1− r

= O
(

M(r)
1− r

)
as r → 1.

Therefore, we complete the proof of Theorem 3.

From Theorem 3, we have the following result.

Corollary 1. Let g be of the form (1) and suppose that g is univalent in D. Then we have

O
(

m(r) log
1

1− r

)
≤ L(r) ≤ O

(
M(r)
1− r

)
as r → 1,

where m(r) and M(r) are given by (9), respectively.

Proof. From the hypothesis, we have

1− |z|
1 + z| ≤

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ D,

which completes the proof.

Lemma 3 ([17] (p. 280) and [18] (p. 491)).

∫ 2π

0

dν

|1− reiν|β
=


O
(
(1− r)1−β

)
f or the case 1 < β,

O
(

log 1
1−r

)
f or the case β = 1,

O (1) f or the case 0 ≤ β < 1,



Mathematics 2018, 6, 266 5 of 8

where 0 < r < 1, 0 ≤ ν ≤ 2π, 0 ≤ β and O means Landau’s symbol.

Theorem 4. Let g be of the form (1) and suppose that∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1
1− |z| , z ∈ D (10)

and
|g(z)| ≤ 1

|1− z|β
, z ∈ D. (11)

Then

L(r) ≤


O
(
(1− r)−3/2

)
f or 1 < β ≤ 3/2,

O
(
(1− r)−3/2 log 1

1−r

)
f or the case β = 3/2,

O
(
(1− r)−β

)
f or the case 3/2 < β,

where 0 < |z| = r < 1 and O means Landau’s symbol.

Proof. From the hypothesis (10), it follows that g(z) 6= 0 in D \ {0}. Then we have

L(r) =
∫ 2π

0

∣∣∣reiνg′(reiν)
∣∣∣dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

<
∫ 2π

0

(
1

1− |z|

)(
1

|1− z|β

)
dν

=
∫ 2π

0

(
1

|1− z|

)(
1

|1− z|β−1

)(
1

1− |z|

)
dν

≤
(∫ 2π

0

1
|1− z|2 dν

)1/2 (∫ 2π

0

(
1

|1− z|2β−2

)
1

(1− |z|)2 dν

)1/2

.

Applying Hayman’s Lemma 3, we have

L(r) ≤
(

1
1− r2

)1/2 ( 1
1− r

)
O(1)

= O
(

1
(1− r)3/2

)
as r → 1

for the case 1 < β < 3/2,

L(r) ≤
(

1
1− r2

)1/2 ( 1
1− r

)
O
(

log
1

1− r

)
= O

(
1

(1− r)3/2 log
1

1− r

)
as r → 1

for the case β = 3/2 and

L(r) =
(

1
1− r2

)1/2 ( 1
1− r

)(
1

1− r

)(2β−3)/2
as r → 1

for the case 3/2 < β.

Lemma 4 ([16] (p. 227)). If g(z) = u(z) + iv(z) is analytic in |z| ≤ R, then

g(z) =
1

2π

∫ 2π

0
u(Reiφ)

Reiφ + z
Reiφ − z

dφ + iv(0). (12)
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Moreover, if |z| < R and v(0) = 0, then

|g(z)| = 1
2π

∫ 2π

0
|u(Reiφ)|

∣∣∣∣Reiφ + z
Reiφ − z

∣∣∣∣dφ.

Theorem 5. Let g be of the form (1). Then

M(r) = O
(

A(r) log
1

1− r

)
as r → 1, (13)

where 0 < |z| = r < 1 and O means Landau’s symbol.

Proof. It follows that

M(r) = max
|z|=r<1

∣∣∣∣∫ z

0
g′(s)ds

∣∣∣∣ = max
|z|=r<1

∣∣∣∣∫ r

0
g′(ρeiν)dρ

∣∣∣∣ .

Applying (12), we have

M(r) = max
|z|=r<1

∣∣∣∣ 1
2π

∫ r

0

∫ 2π

0
Reg′(teiν)

teiφ + ρeiν

teiφ − ρeiν dφdρ

∣∣∣∣
≤ max

|z|=r<1

1
2π

∫ r

0

∫ 2π

0

∣∣∣g′(teiν)
∣∣∣ ∣∣∣∣ teiφ + ρeiν

teiφ − ρeiν

∣∣∣∣dφdρ,

where 0 ≤ ρ ≤ r < t < 1. Then, applying Schwarz’s lemma, we have

M(r) ≤ max
|z|=r<1

(
1

2π

∫ r

0

∫ 2π

0

∣∣∣g′(teiν)
∣∣∣2 dφdρ

)1/2
(∫ r

0

∫ 2π

0

∣∣∣∣ teiφ + ρeiν

teiφ − ρeiν

∣∣∣∣2 dφdρ

)1/2

≤ max
|z|=r<1

(I1)
1/2(I2)

1/2, say.

Putting 0 < r1 < r and t =
√
(1 + ρ2)/2, we have

ρdρ = 2

√
1 + ρ2

2
dt < 2dt.

Then we have

I1 =
1

2π

∫ r1

0

∫ 2π

0

∣∣∣g′(teiφ)
∣∣∣2 dφdρ +

1
2πr2

1

∫ √(1+r2)/2
√

(1+r2
1)/2

∫ 2π

0
t
∣∣∣g′(teiφ)

∣∣∣2 dφdt

≤ C +
1

2πr2
1

A

(√
1 + r2

2

)

= C +
1

2πr2
1

A

(√
1 + r2

2r2 r

)
= O(A(r)) as r → 1,
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where C is a bounded positive constant. On the other hand, putting t→ 1−, we have

I2 =
∫ r

0

∫ 2π

0

∣∣∣∣ teiφ + ρeiν

teiφ − ρeiν

∣∣∣∣2 dφdρ

≤
∫ r

0

∫ 2π

0

4∣∣teiφ − ρeiν
∣∣2 dφdρ

=
∫ r

0

∫ 2π

0

4
t2 − 2ρt cos(φ− ν) + ρ2 dφdρ.

Using (5), we have

I2 ≤ 8π
∫ r

0

1
t2 − ρ2 dρ

=
4π

t

∫ r

0

(
1

t + ρ
+

1
t− ρ

)
dρ

=
4π

t
log

t + r
t− r

→ O
(

log
1

1− r

)
as r → 1.

Therefore we complete the proof of (13).

Remark 2. In Theorem 5, we do not suppose that g is univalent in |z| < 1 and therefore, it improves the result
by Pommerenke [2].
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