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Abstract: The aim of the present paper is twofold. First, to give the main ideas behind quantum
computing and quantum information, a field based on quantum-mechanical phenomena. Therefore,
a short review is devoted to (i) quantum bits or qubits (and more generally qudits), the analogues of
the usual bits 0 and 1 of the classical information theory, and to (ii) two characteristics of quantum
mechanics, namely, linearity, which manifests itself through the superposition of qubits and the action
of unitary operators on qubits, and entanglement of certain multi-qubit states, a resource that is specific
to quantum mechanics. A, second, focus is on some mathematical problems related to the so-called
mutually unbiased bases used in quantum computing and quantum information processing. In this
direction, the construction of mutually unbiased bases is presented via two distinct approaches:
one based on the group SU(2) and the other on Galois fields and Galois rings.

Keywords: linearity; superposition; entanglement; mutually unbiased bases; SU(2); Galois fields;
Galois rings

1. Introduction

In the present days, there is a growing interest for the field of quantum information and quantum
computing. Such a field emerged at the beginning of the 1980s when Feynman and other scientists asked
the question: is it possible to simulate the behaviour of a quantum system by using a classical computer?
Then, the question evolved towards how to use quantum systems to do computations. This led to the
idea of a quantum computer based on quantum physics with the hope to solve problems that would be
intractable or difficult to solve with a classical computer. A fact in favour of a quantum computer is the
law by Moore according to which the size of electronic and spintronic devices for a classical computer
should approach 10 nm in 2020, the scale where quantum effects become important. The field of
quantum information and quantum computing is at the crossroads of experimental and theoretical
quantum physical sciences (physics and chemistry), discrete mathematics and informatics with the
aim of building a quantum computer. We note in passing that physics, mathematics, informatics and
engineering have already greatly benefited from the enormous amount of works achieved along the
line of quantum information and quantum computing.

The unit of classical information is the bit (possible values 0 and 1). In a quantum computer,
classical bits (0 and 1) are replaced by quantum bits or qubits (that interpolate in some sense between 0
and 1). The most general qubit is a normalized vector |ψ〉 in the two-dimensional Hilbert space C2

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1, a ∈ C, b ∈ C (1)

where |0〉 and |1〉 are the elements of an orthonormal basis in C2. The result of a measurement of |ψ〉 is
not deterministic since it gives |0〉 or |1〉with the probability |a|2 or |b|2, respectively. The consideration
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of N qubits leads to work in the 2N-dimensional Hilbert space C2N
. Note that the notion of qubit,

corresponding to C2, is a particular case of the one of qudit, corresponding to Cd (d not necessarily
in the form 2N). A system of N qudits is associated with the Hilbert space CdN

. In this connection,
the techniques developed for finite-dimensional Hilbert spaces are of paramount importance in
quantum computation and quantum computing.

From a formal point of view, a quantum computer is a system producing qubits, the state of which
can be controlled and manipulated via unitary transformations. These transformations correspond
to the product of elementary unitary operators called quantum gates (the analogues of the logic gates
of a classical computer) acting on one, two or more qubits. Measurement of the qubits out-coming
from a quantum circuit of quantum gates yields the result of a (quantum) computation. In other words,
a realization of quantum information processing can be performed by preparing a quantum system in
a quantum state, then submitting this state to unitary transformations and, finally, reading the outcome
from a measurement.

The two basic characteristics of quantum mechanics used in a quantum computer are linearity
(principle of superposition of quantum states) and entanglement. The superposition principle gives
resources: the quantum computer can be in several states at the same time. This leads to a massive
quantum parallelism with a speed up of computations (for N qubits, 2N computations can be achieved
in parallel through the use of quantum algorithms). Entanglement, i.e., the fact that certain quantum
systems made of two or more sub-systems behave as an indissociable entity, is at the root of quantum
computing and quantum teleportation. In quantum mechanics, each measurement on a quantum system
perturbs the system and the superposition principle makes impossible to duplicate a quantum state
(no-cloning theorem). The two latter points and the use of the so-called mutually unbiased bases (MUBs),
to be defined in Section 3, are the basic ingredients of quantum cryptography (illustrated by the BB84
protocol, the first protocol of quantum cryptography).

The aim of this paper is to present to a community of computer engineers and mathematicians
the basic grounds of quantum information and quantum computing as well as some mathematical
aspects and related open problems.

This paper is organized as follows. Section 2 deals with the general framework of quantum
information and quantum computing (i.e., information and computing based on quantum physics):
some of the concepts and ideas evoked above are further described. In Section 3, we address some
mathematical aspects of quantum information; in particular, we review some of the methods for
constructing mutually unbiased bases (more precisely, methods based on the group SU(2) and on
Galois rings and Galois fields). Sections 2 and 3 are mainly based on References [1,2], respectively.
References [3–77] constitute an incomplete list (in chronological order) of original works of relevance
for an in-depth study of Sections 2 and 3. Finally, the reader will find in Reference [78] some calculations
with the help of the Python language illustrating the derivation of mutually unbiased bases according
to the methods described in Section 3.

2. The General Framework of Quantum Information and Quantum Computing

2.1. Quantum Mechanics in a Few Words

Classical physics does not apply in the microscopic world. It is not appropriate for describing,
explaining and predicting physical and chemical phenomena at the atomic and sub-atomic level.
The convenient theory for quantum systems (i.e., molecules, atoms, nuclei and elementary particles) is
quantum mechanics, an extension of the old quantum theory mainly due to Planck, Einstein, Bohr and
Sommerfeld (the word quantum comes from the fact that the energy exchanges between light and
matter occur in a quantized form). Quantum mechanics, which is often used in conjunction with
some other theories like relativity and quantum field theory, can be presented in two equivalent ways:
wave mechanics initiated by de Broglie and Schrödinger and matrix mechanics pioneered by Heisenberg,
Born and Jordan. It is not our purpose to list in detail the postulates of quantum mechanics. We shall
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restrict ourselves with four aspects of the Copenhagen interpretation which are indispensable in
quantum information and quantum computing.

• In both presentations of quantum mechanics, the state of a closed quantum system is described by
a vector (in matrix mechanics) or a wave function (in wave mechanics), noted |ψ〉 in both cases,
belonging to a finite or infinite Hilbert spaceH.

• In quantum information and quantum computing, the spaceH is finite-dimensional (isomorphic
to C2 for qubits or Cd for qudits) and the (normalized) vector |ψ〉, defined up to a phase factor,
can be the result (arising from an evolution or transformation of a vector |ψ′〉)

|ψ〉 = U|ψ′〉

of the action of a unitary operator U (or quantum gate) on |ψ′〉. (We are not concerned here
with dynamical systems for which the time evolution of ψ in the wave picture is given by the
Schrödinger equation, in the non-relativistic case, or the Dirac equation, in the relativistic case,
two linear equations.)

• In quantum information and quantum computing, |ψ〉 is given by a linear combination of the
eigenvectors of an observable in the matrix formulation. An observable A is associated with
a measurable physical quantity (energy, position, impulsion, spin, etc.). It is represented by a
self-adjoint operator A acting on the space H. The possible outcomes of a measurement of an
observable A are the real eigenvalues of the operator A. Measurement in quantum mechanics
exhibits a probabilistic nature. More precisely, if (in the case of the finite-dimensional Hilbert
spaceH = Cd)

|ψ〉 =
d−1

∑
n=0

cn|ϕn〉, cn ∈ C (2)

where the ϕn given by

A|ϕi〉 = λi|ϕi〉, i = 0, 1, · · · , d− 1

are the orthormalized eigenvectors of A, then a measurement ofAwill give λk with the probability

|ck|2 = |〈ϕk|ψ〉|2

where 〈ϕk|ψ〉 stands for the inner product of |ψ〉 by |ϕk〉 (we suppose that the spectrum of A
is non-degenerate). Hence, before measurement, the quantum system is in several states being
a linear combination of the states |ϕn〉 and, after measurement, the quantum system is in a
well-defined state |ϕk〉. Measurement leads to a reduction of the wave packet or wave function
collapse. In terms of measurement of qudits, what precedes can be formulated as follows. Let
|ψ〉 as given by Equation (2) be a qudit describing a quantum system before measurement. A
measurement of |ψ〉 in a basis {ϕi〉 : i = 0, 1, · · · , d− 1} of Cd yields the state

〈ϕi|ψ〉√
〈ψ|ϕi〉〈ϕi|ψ〉

|ϕi〉 =
〈ϕi|ψ〉
|〈ϕi|ψ〉|

|ϕi〉

with the probability
p(i) = |〈ψ|ϕi〉|2

Observe that the factor 〈ϕi|ψ〉|〈ϕi|ψ〉|−1 is a simple phase factor without importance. By way of
example, in the case of C2, measurement of the qubit |ψ〉 = a|0〉+ b|1〉 in the basis {|0〉, |1〉} of C2

yields |0〉 or |1〉 (up to unimportant phase factors) with the probabilities |a|2 or |b|2, respectively.
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• A postulate of quantum mechanics of considerable interest in quantum information and quantum
computing concerns the description of a system composed of several sub-systems. The state
vector for the system is build from tensors products of the state vectors of the various sub-systems.
This may lead to entangled vector states for the composite system. Entanglement constitutes
another important resource for quantum information and quantum computing besides the
linearity and the non deterministic nature of quantum mechanics. As an example, suppose
we have a system of qubits made of two two-level sub-systems. The Hilbert space for the
system isH = C4 ∼ C2 ⊗C2, where the first and second C2 corresponds to the first and second
sub-systems, respectively. By the tensor product, we can take

{|0〉1 ⊗ |0〉2, |0〉1 ⊗ |1〉2, |1〉1 ⊗ |0〉2, |1〉1 ⊗ |1〉2}

as a basis for C4, where the indices 1 and 2 refer to the first and the second qubits, respectively.
Two kinds of states can be considered in C4, namely separable or non entangled states as

|ψs〉 = |0〉1 ⊗
1
2
(|0〉2 +

√
3|1〉2)

and non separable or entangled states as

|ψns〉 =
1√
2
(|0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2)

For the non entangled state |ψs〉, measurement of the qubit 1 yields |0〉1 with the probability
1 while measurement of the qubit 2 leads either to |0〉2 with the probability 1

4 or to |1〉2 with the
probability 3

4 ; therefore, the result of a measurement for one qubit does not depend on the result of a
measurement for the other qubit. The situation turns out to be entirely different for the entangled state
|ψns〉: a measurement of the first qubit leads either to |0〉1 with the probability 1

2 or to |1〉1 with the
probability 1

2 ; once one of the two results has been obtained, we immediately know what would be the
result if we perform a measurement on the second qubit; it is thus unnecessary to make a measurement
on the second qubit and this may be sum up as follows:

result of a measurement of qubit 1 ⇒ state of qubit 2 (without measurement)

|0〉1 ⇒ |1〉2
|1〉1 ⇒ |0〉2

and conversely

result of a measurement of qubit 2 ⇒ state of qubit 1 (without measurement)

|1〉2 ⇒ |0〉1
|0〉2 ⇒ |1〉1

Entanglement may also occur for more than two qubits. For entangled states, there are strong
correlations between the results of measurements of the qubits. This effect is essential for quantum
information and quantum computing.

Unfortunately, “something is rotten in the state of Denmark” (where the Copenhagen
interpretation developed). In fact, entanglement is also an inconvenience: entanglement of qubits with
their environment leads to errors. This is known as the effect of decoherence an important drawback
for the building of a quantum computer. One way to fight against errors due to decoherence and other
effects of noise is to develop quantum error-correcting codes.
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2.2. Qubits and Qudits

2.2.1. Qubits

Let
B2 = {|0〉, |1〉}

be an orthonormal basis called the computational basis of the Hilbert space C2. Any normalized
(to unity) vector |ψ〉, see Equation (1), in C2 is called a quantum bit or qubit. From the quantum
mechanical point of view, a qubit describes a state of a two-level quantum system. In the absence of
measurement (and decoherence), the state |ψ〉 is a superposition of |0〉 and |1〉. A measurement of
the state |ψ〉 yields either |0〉 (with the probability |a|2) or |1〉 (with the probability |b|2). Therefore,
the superposition of the states |0〉 and |1〉 is lost after the measurement. In matrix form, we take

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, |ψ〉 =

(
a
b

)

From a group-theoretical point of view, |0〉 and |1〉 can be considered as the basis vectors for the
fundamental irreducible representation

(
1
2

)
of SU(2), in the chain SU(2) ⊃ U(1), with

|0〉 = |1
2

,
1
2
〉, |1〉 = |1

2
,−1

2
〉 (3)

in the notations of quantum angular momentum theory.
The state |ψ〉 can be associated with a point (x, y, z, t) of the sphere S3 in R4 according to

C2 → S3 : a|0〉+ b|1〉 7→ (x, y, z, t)

with a = x + iy and b = z + it. In fact, the point (x, y, z, t) can be visualized as a point (1, θ, ϕ) of the
sphere S2 in R3, referred to as the Bloch sphere, since ψ can be re-written as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π (4)

up to a global multiplicative phase factor. The application

S3 → S2 : (x, y, z, t) 7→ (1, θ, ϕ)

corresponds to the first Hopf fibration S3 S1
−→ S2 of compact fibre S1. Any qubit as given by Equation (4)

can be represented by a point on the Bloch sphere. Table 1 gives the correspondence between some
remarkable qubits |ψ〉 and points on the Bloch sphere. Any unitary transformation acting on a qubit
|ψ〉 corresponds to a rotation around an axis passing through the centre of the Bloch sphere.

Table 1. Correspondence between qubits |ψ〉 = cos θ
2 |0〉 + eiϕ sin θ

2 |1〉 and points (ξ = sin θ cos ϕ,
η = sin θ sin ϕ, ζ = cos θ) of the Bloch sphere S2 in R3.

|ψ〉 |0〉 |1〉 1√
2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉) 1√

2
(|0〉+ i|1〉) 1√

2
(|0〉 − i|1〉)

(ξ, η, ζ) (0, 0, 1) (0, 0,−1) (1, 0, 0) (−1, 0, 0) (0, 1, 0) (0,−1, 0)

Note that the sets

B0 =

{
|0〉+ |1〉√

2
,
|0〉 − |1〉√

2

}
, B1 =

{
|0〉+ i|1〉√

2
,
|0〉 − i|1〉√

2

}
, B2 = {|0〉, |1〉} (5)
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appearing in Table 1 are three orthonormal bases of the space C2. In addition, the vectors in B0, B1 and
B2 are eigenvectors of the Pauli matrices σ1, σ2 and σ3 (defined in Equation (9) below), respectively.
The bases B0, B1 and B2 constitute the simplest example of the so-called MUBs to be studied in
Section 3.

2.2.2. Qudits

The generalisation from the two-dimensional Hilbert space C2 to the d-dimensional Hilbert space
Cd (d > 2) is immediate. Given an orthonormal basis (called the computational basis)

Bd = {|n〉 : n = 0, 1, · · · , d− 1} (6)

of Cd, any normalized vector

|ψ〉 =
d−1

∑
n=0

cn|n〉,
d−1

∑
n=0
|cn|2 = 1, ci ∈ C, i = 0, 1, · · · , d− 1

is called a qudit. From the point of view of quantum mechanics, the states |n〉 can be realized as
generalized angular momentum states with

|n〉 = |j, m〉, n = j−m, d = 2j + 1 (7)

where for fixed j, the index m takes the values −j,−j + 1, · · · , j. This yields the correspondence

|0〉 = |j, j〉, |1〉 = |j, j− 1〉, · · · , |d− 1〉 = |j,−j〉

between qudits and angular momentum states. (Let us recall that the angular momentum state |j, m〉 is a
common eigenstate of the square J2 of a generalized angular momentum and of the z-component Jz of
the angular momentum.) Therefore, |ψ〉 can be re-written

|ψ〉 =
j

∑
m=−j

dj−m|j, m〉

in the angular momentum basis {|j, m〉 : m = −j,−j + 1, · · · , j}. For instance, a qutrit |ψ〉 can
be written

|ψ〉 = c0|0〉+ c1|1〉+ c2|2〉

in the ternary basis {|0〉, |1〉, |2〉} or

|ψ〉 = d2|1,−1〉+ d1|1, 0〉+ d0|1, 1〉

in the balanced basis {|1,−1〉, |1, 0〉, |1, 1〉} associated with the angular momentum j = 1.
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2.2.3. Qudits with d = 2N

In the case where d = 2N , the corresponding qudits can be obtained from tensor products.
For example, for d = 4 a basis of C4 ∼ C2 ⊗C2 is

|0〉 ⊗ |0〉 =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , |0〉 ⊗ |1〉 =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0



|1〉 ⊗ |0〉 =
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

 , |1〉 ⊗ |1〉 =
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1


Then, the most general quartit |ψ〉 is made of the superposition of tensor products of two qubits.

In detail, we have

|ψ〉 = a|0〉 ⊗ |0〉+ b|0〉 ⊗ |1〉+ c|1〉 ⊗ |0〉+ d|1〉 ⊗ |1〉

where a, b, c, d ∈ C (usually, in |i〉 ⊗ |j〉 the state |i〉 refers to the first qubit and |j〉 to the second).
It is interesting to remark that the vectors |ψ〉 for d = 2, 22 and 23 are associated with the Hopf

fibrations S3 S1
−→ S2 (connected to complex numbers), S7 S3

−→ S4 (connected to quaternions) and

S15 S7
−→ S8 (connected to octonions). Entanglement for d = 22 and 23 can be discussed in terms of

fibrations on spheres [21]. In the same vein, we may ask the question of the interest for entanglement
of Cayley-Dickson algebras for d = 2N with N > 3 and of fibrations on hyperboloids [13].

2.3. Physical Realizations of Qubits

According to R. Landauer, information is physical so that qubits are realised by quantum systems,
more specifically by two-level quantum systems, the qubits |0〉 and |1〉 corresponding to two different
(energy) levels. We shall not be concerned here with the physical realization of qubits (and qudits). It is
enough to say that any two-level quantum system may be considered as a qubit. Therefore, qubits can
be carried out by nuclear spins, ultra-cold trapped ions, neutral atoms and Bose-Einstein condensates,
two different polarizations of a photon, and Josephson tunnel nanojunctions. For instance, in nuclear
magnetic resonance, the nuclear spins of an atom in an organic molecule can be aligned (giving the
state |0〉) or anti-aligned (giving the state |1〉) with an applied constant magnetic field; in generalized
angular momentum terminology, we have the quantum states given by Equation (3) and corresponding
to the spin j = 1

2 . Similarly, for an ion cooled and trapped by electric fields in a cavity, qubits can be
implemented as electronic states (ground state for |0〉, excited state for |1〉). Vibrational states can also
be used for realizing qubits (zero-phonon state for |0〉, one-phonon state for |1〉).

2.4. Entanglement

2.4.1. Generalities

Entanglement occurs only in quantum physics. It has no analogue in classical physics. The notion
of entanglement goes back to the famous paper by Einstein, Poldosky and Rosen. In quantum physics,
two (or more than two) particles are said to be entangled if the quantum state of each particle depends
of the quantum state(s) of the other(s) or cannot be described independently of the quantum state(s)
of the other(s). In other words, there exist correlations between the physical properties of a system
of entangled particles. More generally, two entangled sub-systems S1 and S2 are not independent so
that the global system {S1, S2}must be considered as a whole even after separation by an arbitrary
distance. Then, a measurement made on one sub-system gives an information on the other (without
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measurement on the other sub-system). On the contrary, for a non entangled system consisting of
two sub-systems, a measurement on one sub-system does not give in general an information on the
other sub-system.

As an example, let us consider a system consisting of two particles, system having a total spin
equal to 0. If the spin of one particle is measured to be 1

2 on a certain axis, then we know (without any
measurement) that the spin on the other particle on the same axis is − 1

2 because

0 =
1
2
− 1

2

The two particles are not independent, even after separation. They still behave like an indivisible
system of spin 0.

Entanglement contradicts the principle of locality. There is non locality in the sense that what
happens in some place depends of what happens in another place. Indeed, quantum mechanics is a
non local, non deterministic and linear physical theory.

2.4.2. Entanglement of Qubits

In quantum information, the notion of entanglement occurs for multi-qubit systems. Let us
consider a two-qubit system. There are two possibilities.

• The system is non entangled (or separable); it is then described by a state |ψs〉 ∈ C2⊗C2 such that

|ψs〉 = (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉)

which can be re-written as

|ψs〉 = ac|0〉 ⊗ |0〉+ ad|0〉 ⊗ |1〉+ bc|1〉 ⊗ |0〉+ bd|1〉 ⊗ |1〉

where a|0〉+ b|1〉 and c|0〉+ d|1〉 refer to the first and second qubit, respectively.
• The system is entangled (or non separable); it is then described by a state |ψns〉 ∈ C4 such that

|ψs〉 = A|0〉 ⊗ |0〉+ B|0〉 ⊗ |1〉+ C|1〉 ⊗ |0〉+ D|1〉 ⊗ |1〉

cannot be written as the tensor product of two qubits in C2.

It is clear that a necessary and sufficient condition for an arbitrary two-qubit state

|ψ〉 = α|0〉 ⊗ |0〉+ β|0〉 ⊗ |1〉+ γ|1〉 ⊗ |0〉+ δ|1〉 ⊗ |1〉

of C4 to be non entangled is
αδ− βγ = 0

Therefore, if αδ− βγ 6= 0, then the state is entangled. The degree of entanglement of an arbitrary
normalized two-qubit state |ψ〉 is characterized by the concurrence defined by

C = |αδ− βγ|, 0 ≤ C ≤ 1
2

(8)

Non entangled states correspond to C = 0, maximally entangled states to C = 1
2 . (A maximally

entangled state is such that the density operator for each qubit is half the identity operator;
it corresponds to a maximum value of the entropy.) Equation (8) can be straightforwardly generalized
to the case

|ψ〉 =
d−1

∑
i=0

d−1

∑
j=0

aij|i〉 ⊗ |j〉
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of two qudits for which the concurrence C is defined as

C = det(aij), 0 ≤ C ≤ 1√
dd

in agreement with Equation (8) for d = 2.

Example 1. Let us consider the four states (⊕ stands for the addition modulo 2)

|βxy〉 =
1√
2
[|0〉 ⊗ |y〉+ (−1)x|1〉 ⊗ |y⊕ 1〉], x, y = 0, 1

called Bell states (in reference to the work on the so-called Bell inequalities) or EPR pairs (in reference to the
paper by Einstein, Poldosky and Rosen). As a particular case

|β01〉 =
1√
2
(|0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2)

where the first qubit (qubit 1) and the second one (qubit 2) are clearly emphasized in order to avoid confusion.
The result of a measurement of the qubit 1 gives

• either |0〉1 (with the probability 1
2 ) so that the qubit 2 is a priori (without measurement) in the state |1〉2

• or |1〉1 (with the probability 1
2 ) so that the qubit 2 is a priori (without measurement) in the state |0〉2

but no measurement can lead to both qubits 1 and 2 in the same state (|0〉 or |1〉). The result of a measurement of
the qubit 1 provides information on the qubit 2 and reciprocally. It is then unnecessary to make a measurement
of one qubit once the result of the measurement of the other is known. Similar conclusions can be obtained
for the three other Bell states β00, β10 and β11. The four Bell states are maximally entangled (they correspond
to C = 1

2 ).
In passing note that

|βxy〉 = (−1)xy[(σ1)
y(σ3)

x]⊗ σ0|β00〉

where σ0, σ1 and σ3 are three of the four Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, σ2 = iσ1σ3 =

(
0 −i
i 0

)
(9)

Thus, any Bell state |βxy〉 can be obtained from |β00〉.

Example 2. Let us consider the separable state

|ψ〉 = (a|0〉+ b|1〉)⊗ 1√
5
(|0〉+ 2|1〉) = 1√

5
(a|0〉 ⊗ |0〉+ 2a|0〉 ⊗ |1〉+ b|1〉 ⊗ |0〉+ 2b|1〉 ⊗ |1〉)

tensor product of two normalized qubits. A measurement of the first qubit gives either |0〉 with the probability
|a|2 = | a√

5
|2 + | 2a√

5
|2 or |1〉 with the probability |b|2 = | b√

5
|2 + | 2b√

5
|2 while a measurement of the second

qubit gives either |0〉 with the probability 1
5 = | a√

5
|2 + | b√

5
|2 or |1〉 with the probability 4

5 = | 2a√
5
|2 + | 2b√

5
|2.

Therefore, a measurement on one qubit does not provide information on the other qubit (the state |ψ〉 corresponds
to C = 0).

It is important to realize that entanglement of qubits (as in Example 1) and more generally of
qudits has no analogue for classical bits. To be clear, the bits in 00 or 01 or 10 or 11 are not correlated.
This is not the case for the quantum bits in any of the Bell states βxy.
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2.5. Quantum Gates

2.5.1. One-Qubit Gates

In a classical computer, bits are handled with the help of logic gates (there exist seven basic
logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR). A quantum computer processes qubits
arranged in registers. It is equipped with quantum gates which perform unitary transformations
on qubits. Quantum gates can be represented by unitary matrices. Table 2 gives some examples of
quantum gates [G] for one-qubit systems together with their matrix representations G. The actions of
the one-qubit gates of Table 2 on the qubit |x〉 (with x = 0 or 1) are given by

|x〉 → [I]→ |x〉, |x〉 → [NOT]→ |x⊕ 1〉
|x〉 → [Sθ ]→ eixθ |x〉, |x〉 → [H]→ 1√

2
(|0〉+ (−1)x|1〉) ≡ 1√

2
(|x⊕ 1〉+ (−1)x|x〉)

(as an example, the quantum circuit |x〉 → [Sθ ] → eixθ |x〉 is described by the action Sθ |x〉 = eixθ |x〉).
Therefore, by linearity

a|0〉+ b|1〉 → [NOT]→ b|0〉+ a|1〉
a|0〉+ b|1〉 → [Sθ ]→ a|0〉+ eiθb|1〉

a|0〉+ b|1〉 → [H]→ 1√
2
(a + b)|0〉+ 1√

2
(a− b)|1〉

a|0〉+ b|1〉 → [H]→ [H]→ a|0〉+ b|1〉

(the last circuit reflects that H2 = I). Note that the most general qubit can be obtained from the
sequence [H]→ [S2θ ]→ [H]→ [S π

2 +ϕ] of one-qubit gates since

|0〉 → [H]→ [S2θ ]→ [H]→ [S π
2 +ϕ]→ cos θ|0〉+ eiϕ sin θ|1〉

or
S π

2 +ϕHS2θ H|0〉 = cos θ|0〉+ eiϕ sin θ|1〉

up to the phase factor eiθ .

Table 2. Four basic quantum gates for one-qubit systems; the gates [I] and [NOT] also denoted [X] are
associated with the Pauli matrices σ0 or I and σ1 or σx, respectively; the two other Pauli matrices σ2 or
σy and σ3 or σz define two further one-qubit gates denoted as [Y] and [Z], respectively.

Gate [G] Identity Gate [I] Not Gate [NOT] Phase Gate [Sθ] Hadamard Gate [H]

matrix form G I =
(

1 0
0 1

)
NOT =

(
0 1
1 0

)
Sθ =

(
1 0
0 eiθ

)
H = 1√

2

(
1 1
1 −1

)

2.5.2. Multi-Qubit Gates

Quantum gates for two-qubit systems are important. For example, let us mention the
controlled-NOT gate [CNOT] defined via

|x〉 ⊗ |y〉 → [CNOT]→ |x〉 ⊗ |y⊕ x〉

or in operator form
CNOT |x〉 ⊗ |y〉 = |x〉 ⊗ |y⊕ x〉
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where the first input qubit |x〉 and the second input qubit |y〉 are called control qubit and target qubit,
respectively. Here, the corresponding quantum circuit has two inputs (|x〉 and |y〉) and two outputs
(|x〉 and |y⊕ x〉). In matrix form, we have the permutation matrix

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Clearly, (CNOT)

2 = I. Note that

CNOT |x〉 ⊗ |0〉 = |x〉 ⊗ |x〉 (10)

where x = 0 or 1; however, this result does not mean that an arbitrary state |ψ〉 = a|0〉+ b|1〉 can be
cloned by using the gate [CNOT] since we generally have (see Section 2.6)

CNOT |ψ〉 ⊗ |0〉 6= |ψ〉 ⊗ |ψ〉

to be compared with Equation (10). Note also that

|x〉 ⊗ |y〉 → [H⊗ I]→ [CNOT]→ |βxy〉

or
|βxy〉 = CNOT(H ⊗ I)|x〉 ⊗ |y〉

that shows the interest of the gate [CNOT] for producing Bell states (i.e., entangled states) from non
entangled states. (By [H⊗ I], we mean that the quantum gates [H] and [I] act on |x〉 and |y〉, respectively.
Hence, H ⊗ I stands for the direct product of the matrices H and I.)

More generally, the quantum gate [Uf] is defined through

|x〉 ⊗ |y〉 → [Uf]→ |x〉 ⊗ |y⊕ f (x)〉

or in an equivalent way
U f |x〉 ⊗ |y〉 = |x〉 ⊗ |y⊕ f (x)〉

where f stands for the function f : {0, 1} → {0, 1}. Clearly, (U f )
2 = I.

Another important two-qubit gate is the controlled phase gate [CPθ ] such that

|x〉 ⊗ |y〉 → [CPθ ]→ |x〉 ⊗ eixyθ |y〉

or
CPθ |x〉 ⊗ |y〉 = |x〉 ⊗ eixyθ |y〉

with

CPθ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


Note that

[CNOT] = [I⊗H]→ [CP π
2
]→ [CP π

2
]→ [I⊗H]

so that the gate [CNOT] can be obtained from the gates [I ⊗ H] and [CP π
2

].
There exist other two-qubit gates. Moreover, use is also made of n-qubit gates (n > 2).

The advantage of the quantum gates over the classical logic gates is that all the quantum gates
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are reversible or invertible due to the unitary property of the matrices representing quantum gates;
this is not always the case for classical logic gates.

The preceding examples are sufficient for illustrating how works the algorithm set up by Deutsch
and Jozsa [1].

2.5.3. Quantum Computing Algorithms

The Deutsch-Jozsa algorithm addresses the following problem: to find with only one measurement
if the function

f : {0, 1}⊗n → {0, 1}

is constant or balanced ( f is balanced means either f (0) = 0 and f (1) = 1 or f (0) = 1 and f (1) = 0;
f is constant means f (0) = f (1) = 0 or 1). The classical algorithm requires 2n−1 + 1 evaluations of f
whereas only one measurement is necessary in order to get the answer. For n = 1, the proof based on
the quantum circuit [H⊗H]→ [Uf]→ [H⊗ I] of two-qubit gates is as follows. It is easy to show that

|0〉 ⊗ |1〉 → [H⊗H]→ [Uf]→ [H⊗ I]→ |x〉 ⊗ |y〉

alternatively
|x〉 ⊗ |y〉 = (H ⊗ I)U f (H ⊗ H)|0〉 ⊗ |1〉

where

|x〉 ⊗ |y〉 = ±|0〉 ⊗ 1√
2
(|0〉 − |1〉) if f is constant

|x〉 ⊗ |y〉 = ±|1〉 ⊗ 1√
2
(|0〉 − |1〉) if f is balanced

Then, the result of a single measurement of the first output qubit can be
|0〉 ⇒ f is constant

or

|1〉 ⇒ f is balanced

Therefore, a single measurement (instead of two in the classical case) is sufficient for getting the
answer. The Deutsch-Jozsa algorithm is of little interest. However, it shows the superiority of the
quantum approach on the classical one (namely, only one measurement instead of 2n−1 + 1 evaluations
in the general case where f : {0, 1}⊗n → {0, 1}).

Let us briefly mention two other historical algorithms, viz, the Shor algorithm and the Grover
algorithm [1]. The Shor algorithm concerns the search of the period of a periodic function and is
used for the factorization of a composite integer into prime factors. It constitutes an alternative to the
classical RSA code. The Grover algorithm makes it possible to find an item in an unstructured data
basis consisting of n entries; the quantum speed up for this algorithm is n→

√
n (O(n) researches for

the classical case and O(
√

n) for the quantum case). The two preceding algorithms are based on the
massive quantum parallelism. They formally show the superiority of a (still hypothetical) quantum
computer on a classical one. The present evolution is towards quantum cryptography.

2.6. No-Cloning Theorem

We may ask the question: does there exist a unitary operator (or quantum gate) U such that

U|ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉 (11)
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where |ψ〉 = a|0〉+ b|1〉 is an arbitrary qubit. As a consequence of the linearity of quantum mechanics,
the answer is no: it is not possible to clone an arbitrary qubit |ψ〉 [8]. This result can be proved in the
following way. Suppose that there exists U such that Equation (11) is true. Then, by linearity

U|ψ〉 ⊗ |0〉 = U(a|0〉+ b|1〉)⊗ |0〉
= U(a|0〉 ⊗ |0〉+ b|1〉 ⊗ |0〉)

(12)
= aU|0〉 ⊗ |0〉+ bU|1〉 ⊗ |0〉
= a|0〉 ⊗ |0〉+ b|1〉 ⊗ |1〉

On another side, we have

U|ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉
= (a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉) (13)

= a2|0〉 ⊗ |0〉+ ab(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) + b2|1〉 ⊗ |1〉

Compatibility between Equations (12) and (13) yields

a2 = a (⇒ a = 0, 1), b2 = b (⇒ b = 0, 1), ab = 0 (⇒ a = 0 or b = 0)

The sole solutions are (a = 1, b = 0) and (a = 0, b = 1) in agreement with Equation (10). There are
no solution in the general case. This proves the no-cloning theorem (a theorem that does not have an
analogue in classical information).

Another way to understand this result is to realize that in order to clone an arbitrary state
|ψ〉 = a|0〉 + b|1〉 one must measure it so that one gets |0〉 or |1〉, two states that differ from |ψ〉
in general.

2.7. Quantum Teleportation

It is not possible to clone an arbitrary quantum state. However, it is feasible to teleporte it,
i.e., to transfer it from one place to another without an effective transportation. In other words,
without a material transportation of a qubit, it is possible to transmit at distance the information
contained in the qubit. We shall not deal here with some physical device making teleportation possible.
We shall rather limit ourselves to the corresponding quantum algorithm [15].

Suppose someone, Alice, wants to send a qubit |ψ〉 = a|0〉+ b|1〉 (for which she does not know a
and b) to somebody, Bob, by a quantum circuit and the possibility of using a classical communication
channel. The only requirement for Bob and Alice is to dispose of and EPR pair |β00〉, the first qubit of
which belongs to Alice and the second one to Bob. Thus, the entry |ϕ0〉 of the quantum circuit is

|ϕ0〉 = |ψ〉 ⊗ |β00〉

= (a|0〉1 + b|1〉1)⊗
1√
2
(|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3)

=
1√
2

[
a|0〉1 ⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3) + b|1〉1 ⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3)

]
=

1√
2

[
a(|0〉1 ⊗ |0〉2 ⊗ |0〉3 + |0〉1 ⊗ |1〉2 ⊗ |1〉3) + b(|1〉1 ⊗ |0〉2 ⊗ |0〉3 + |1〉1 ⊗ |1〉2 ⊗ |1〉3)

]
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where qubits 1 and 2 refer to the Alice qubit and qubit 3 to the Bob qubit. Then, Alice sends her qubits
to a controlled-NOT gate producing the state

|ϕ1〉 =
1√
2

[
a(|0〉1 ⊗ |0〉2 ⊗ |0〉3 + |0〉1 ⊗ |1〉2 ⊗ |1〉3) + b(|1〉1 ⊗ |1〉2 ⊗ |0〉3 + |1〉1 ⊗ |0〉2 ⊗ |1〉3)

]
=

1√
2

[
a|0〉1 ⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3) + b|1〉1 ⊗ (|1〉2 ⊗ |0〉3 + |0〉2 ⊗ |1〉3)

]
Next, qubit 1 goes to an Hadamard gate giving

|ϕ2〉 =
1
2
[
a(|0〉1 + |1〉1)⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3) + b(|0〉1 − |1〉1)⊗ (|1〉2 ⊗ |0〉3 + |0〉2 ⊗ |1〉3)

]
which can be re-arranged as

|ϕ2〉 =
1
2
[
(|0〉1 ⊗ |0〉2)⊗ (a|0〉3 + b|1〉3) + (|0〉1 ⊗ |1〉2)⊗ (a|1〉3 + b|0〉3)

+ (|1〉1 ⊗ |0〉2)⊗ (a|0〉3 − b|1〉3) + (|1〉1 ⊗ |1〉2)⊗ (a|1〉3 − b|0〉3)
]

Measurement of qubits 1 and 2 by Alice can give

|0〉1 ⊗ |0〉2 with the probability 1
4 , |0〉1 ⊗ |1〉2 with the probability 1

4

|1〉1 ⊗ |0〉2 with the probability 1
4 , |1〉1 ⊗ |1〉2 with the probability 1

4

Suppose Alice gets |0〉1 ⊗ |0〉2. Then, she communicates this result to Bob by a classical channel
(telephone or mail). Thus, Bob knows that |ψ〉 is a|0〉3 + b|1〉3. Should Alice have got |0〉1 ⊗ |1〉2 or
|1〉1 ⊗ |0〉2 or |1〉1 ⊗ |1〉2, then Bob would obtain a|0〉3 + b|1〉3 after the use of the gates [X] or [Z] or
[T] with T = ZX on the states a|1〉3 + b|0〉3 or a|0〉3 − b|1〉3 or a|1〉3 − b|0〉3, respectively. In all cases,
the qubit |ψ〉 = a|0〉+ b|1〉 has been teleported. This proof shows that entanglement (via the EPR pair)
plays a crucial role in teleportation.

3. Some Mathematical Aspects: Mutually Unbiased Bases

3.1. Introducing MUBs

3.1.1. Generalities about MUBs

Unitary operator bases in the Hilbert space Cd are of pivotal importance for quantum information
and quantum computing as well as for quantum mechanics in general. The interest for unitary operator
bases started with the seminal work by Schwinger [5]. In this connection, MUBs play a key role in
quantum information and quantum computing. Two distinct orthonormal bases of Cd are said to be
unbiased if and only if the modulus of the inner product of any vector of one basis with any vector of
the other one is equal to 1√

d
(see the detailed definition in Section 3.1.2).

MUBs proved to be useful in classical information theory (network communication
protocols) [17,47]. They play an important role in quantum mechanics as for the discrete Wigner
function [11,29,34,42,43,55,62], for the solution of the Mean King problem [20,26,33,34,43], for the
understanding of the Feynman path integral formalism [57,63] and potentially for studies of the
Weyl-Heisenberg group in connection with quantum optics. MUBs are of central importance in
quantum information theory as for instance in quantum state tomography (deciphering an unknown
quantum state) [38,56,77], quantum cryptography (secure quantum key exchange) [9,25] and quantum
teleportation [15]. Along this line, measurements corresponding to MUBs are appropriate for an
optimal determination of the density matrix of a quantum system and the use of MUBs ensure the
maximum of security for quantum communication (especially in the BB84 quantum cryptography
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protocol). Let us also mention that MUBs are connected with the notion of maximal entanglement of
quantum states a result of great importance for quantum computing.

Here, it is not our purpose to give some details about all the applications listed above.
The interested reader may consult the quoted original references for a full description of each
application. It is enough to say that a central common point to all the applications is given by
Equation (15) that reflects the uniform probability nature of the results of measurements using MUBs.
This is especially obvious in the BB84 protocol where the probability of detection of Eve (a spy) on a
quantum communication channel between Alice and Bob is maximum when Alice and Bob use MUBs.

There exist numerous ways of constructing sets of MUBs (e.g., see [58,64,65]). Most of them
are based on discrete Fourier transform over Galois fields and Galois rings [2,14,17,28–30,36,41,72],
discrete Wigner distribution [11,29,34,42,55], generalized Pauli spin matrices [22,23,27,30], mutually
orthogonal Latin squares [33,35], graph theory [74], finite and projective geometries [49,61], convex
polytopes [40], complex projective 2-designs [19,39,67], quantum angular momentum theory [44],
group theoretical methods [24,45,50,53], discrete phase states [68] and Hadamard matrices [73]. In this
section, from quantum theory of angular momentum theory (or, in mathematical terms, from the Lie
algebra A1 of the group SU(2) or SU(2,C) or SL(2,C)) we shall derive a formula for a complete set of
MUBs in dimension p with p prime. Moreover, we shall construct complete sets of MUBs in dimension
pm with p prime and m positive integer from the additive characters of the Galois field GF(pm) for p
odd and of the Galois ring GR(22, m) for p = 2.

3.1.2. Definition of MUBs

Definition 1. Let Ba and Bb two distinct orthonormal bases

Ba = {|aα〉 : α = 0, 1, · · · , d− 1}, Bb = {|bβ〉 : β = 0, 1, · · · , d− 1}

of the Hilbert space Cd. The bases Ba and Bb (a 6= b) are said to be unbiased if and only if

∀α ∈ Zd, ∀β ∈ Zd : |〈aα|bβ〉| = 1√
d

(14)

where 〈 | 〉 denotes the inner product of Cd [5,6,10,11]. In other words, the inner product 〈aα|bβ〉 has a modulus
independent of α and β. The relation

|〈aα|bβ〉| = δa,bδα,β +
1√
d
(1− δa,b)

makes it possible to describe both the cases Ba = Bb and Ba 6= Bb.

As a typical example, the bases B0, B1 and B2 of C2, see Equation (5), constitute a set of three
MUBS whose basis vectors are specific qubits.

3.1.3. Well-Known Results about MUBs

The main results concerning MUBs are [6,14,19,35,37]:

1. MUBs are stable under unitary or anti-unitary transformations. More precisely, if two unbiased
bases undergo the same unitary or anti-unitary transformation, they remain mutually unbiased.

2. The number N(d) of MUBs in Cd cannot exceed d + 1. Thus

N(d) ≤ d + 1

3. The maximum number d + 1 of MUBs is attained when d is a power pm (m ≥ 1) of a prime
number p. Thus

N(pm) = pm + 1
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4. When d is a composite number, N(d) is not known but it can be shown that

3 ≤ N(d) ≤ d + 1

As a more accurate result, for d = ∏i pmi
i with pi prime and mi positive integer, we have

min(pmi
i ) + 1 ≤ N(d) ≤ d + 1

By way of illustration, let us mention the following cases.

• In the particular composite case d = 6 = 2× 3, we have

3 ≤ N(6) ≤ 7

and it was conjectured that N(6) = 3. Indeed, in spite of an enormous amount of computational
works, no more than three MUBs were found for d = 6.

• For d = 15 = 3× 5 and d = 21 = 3× 7, there are at least four MUBs.
• For d = 676 = 22 × 132, we have

22 + 1 = 5 ≤ N(676) ≤ 677

but it is known how to construct at least six MUBs.

A set of d + 1 MUBs in Cd is referred to as a complete set. Such sets exist for d = pm (p prime,
m positive integer) and this result opens the way to establish a link between MUBs and Galois fields
and/or Galois rings.

For d composite (different from a power of a prime), the question to know if there exist complete
sets in dimension d, i.e., to know if N(d) can be equal to d+ 1, is still an open problem (in 2018). Indeed,
for d different from a power of a prime, it was conjectured (SPR conjecture [32]) that the problem
of the existence of a set of d + 1 MUBs in Cd is equivalent to the problem of whether there exist a
projective plane of order d. As another conjecture for d composite (different from a power of a prime),
the problem of the existence of a set of d + 1 MUBs in Cd is equivalent to the one of the existence of a
decomposition of the Lie algebra of SU(d) into d + 1 Cartan subalgebras of dimension d− 1.

3.1.4. Interests of MUBs

MUBs are or relevance in advanced quantum mechanics. From a very general point of view,
MUBs are closely connected to the principle of complementarity introduced by Bohr in the early days of
quantum mechanics. This principle, quite familiar in terms of observables like position and momentum,
tells that for two non-commuting observables, if we have a complete knowledge of one observable,
then we have a total uncertainty of the other. Equation (14) indicates that the development in the basis
Ba of any vector of the basis Bb is such that each vector of Ba appears in the development with the
probability 1

d . This is especially interesting when translated in terms of measurements, the bases Ba

and Bb corresponding to the (non-degenerate) eigenvectors of two non-commuting observables.
A significance of MUBs in terms of quantum measurements can be seen as follows. Let A and B

be two non-degenerate (i.e., with multiplicity-free eigenvalues) self-adjoint (or hermitian) operators
associated with two observables A and B of a quantum system with the Hilbert space Cd of dimension
d. Suppose that the eigenvectors of A and B yield two unbiased bases Ba and Bb, respectively. When the
quantum system is prepared in an eigenvector |bβ〉 of the observable B, no information can be obtained
from a measurement of the observable A. This result follows from the development in the basis Ba of
any vector of the basis Bb

|bβ〉 =
d−1

∑
α=0
|aα〉〈aα|bβ〉
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which shows that the d probabilities

|〈aα|bβ〉|2 =
1
d

, α, β = 0, 1, · · · , d− 1 (15)

of obtaining any state vector |aα〉 in a measurement of A are equal.
Indeed, the two operators A and B do not commute. The two corresponding observables A

and B are said to be complementary (Bohr’s principle of complementarity introduced in the early
days of quantum mechanics): a precise knowledge of one of them implies a total uncertainty of
the other (or, all possible results of measurements of the other one are equally probable). This can
be made more explicit through the generalized Heisenberg uncertainty principle. Let A and B be
two hermitian operators associated with two observables and |ψ〉 a vector of Cd. The generalized
Heisenberg uncertainty principle can be expressed as

∆A∆B ≥ 1
2
|〈ψ|[A, B]−|ψ〉|

where [A, B]− = AB− BA and ∆O stands for the standard deviation

∆O =
√
〈ψ|O2|ψ〉 − 〈ψ|O|ψ〉2

of the operator O = A or B. (The most familiar example is for d infinite. The position A = x and
the momentum B = px, along the x direction, of a particle are complementary observables. They
satisfy the commutation relations [x, px]− = ih̄, where h̄ is the Planck constant. Hence, ∆x∆px ≥ 1

2 h̄
so that more precise is ∆x more imprecise is ∆px and vice versa.) Therefore, if A and B correspond to
observables generating MUBs, then a precise knowledge of A yields a complete indeterminacy of B
and vice versa.

Note that

d + 1 =
d2 − 1
d− 1

is the number of different measurements to fully determine a quantum state for a quantum system
in dimension d. (This follows from the fact that a d× d density matrix, that is to say an Hermitian
matrix with a trace equal to 1, contains d2 − 1 real parameters and each measurement gives d− 1 real
parameters.) Note also that d2 − 1 and d− 1 are the number of generators and the rank of the special
unitary group SU(d) in d dimensions, respectively, and that for d = p (prime number) their ratio p + 1
is the number of disjoint sets of p− 1 commuting generators of SU(p).

The rest of the paper is structured in the following way. In Section 3.2, we give a complete
solution, based on a nonstandard approach to the Lie algebra of the group SU(2) (equivalently, to the
quantum theory of angular momentum), for the construction of MUBs in the case where d = p
is a prime number. Further developments are discussed in Section 3.3 in relation with Weyl pairs.
Sections 3.4 and 3.5 are concerned with the construction of MUBs from Galois fields (for d = pm,
a power of an odd prime number) and Galois rings (for d = 2m, a power of the even prime number),
respectively. (See Refs. [31,46,48] for the formalism of Galois quantum systems.)

3.2. Group-Theoretical Construction of MUBs

3.2.1. Standard Basis for SU(2)

Equation (7) shows that the vectors |n〉 (with n = 0, 1, · · · , d− 1) of the computational basis (6)
can be viewed as the basis vectors |j, m〉 (with m = j, j− 1, · · · ,−j) for the irreducible representation
(j) of SU(2) in the chain SU(2) ⊃ U(1). In the language of group theory (and quantum angular
momentum theory), the vector |j, m〉 is a common eigenvector of the Casimir operator J2 (the square of
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an angular momentum) and of a Cartan generator Jz (the z component of the angular momentum) of
the Lie algebra A1 of the group SU(2). More precisely, we have the eigenvalue equations

J2|j, m〉 = j(j + 1)|j, m〉, Jz|j, m〉 = m|j, m〉

with the orthonormality relations

〈j, m|j, m′〉 = δm,m′ , m, m′ = j, j− 1, · · · ,−j

In other words, the computational basis Bd can be visualized as the basis

B2j+1 = {|j, m〉 : m = j, j− 1, · · · ,−j}

known as the standard basis for the irreducible representation (j) of SU(2) or the angular momentum
basis corresponding to the angular momentum quantum number j, referred to as spin angular
momentum for j = 1

2 .

3.2.2. Nonstandard Bases for SU(2)

As far as the representation theory of SU(2) is concerned, we can replace the complete set {J2, Jz}
by another complete set of two commuting operators. For instance, we may consider the set {J2, va},
where the unitary operator va is defined by

va|j, m〉 =


|j,−j〉 if m = j

ω(j−m)a|j, m + 1〉 if m = j− 1, j− 2, · · · ,−j

where

ω = ei 2π
2j+1

is a primitive (2j + 1)-th root of unity and a is a fixed parameter in the ring Z2j+1. The operator va

takes its origin in a polar decomposition of the two generators E± = J± of the group SU(2). For fixed
a, the common eigenvectors of J2 and va provide an alternative basis to that given by the common
eigenstates of J2 and Jz. This can be made precise by the following result.

Proposition 1. For fixed j and a (with 2j ∈ N∗ and a ∈ Z2j+1), the 2j + 1 common eigenvectors of J2 and va

can be taken in the form

|jα; a〉 = 1√
2j + 1

j

∑
m=−j

ω
1
2 (j+m)(j−m+1)a+(j+m)α|j, m〉

with α = 0, 1, · · · , 2j. The corresponding eigenvalues of va are given by

va|jα; a〉 = ω ja−α|jα; a〉

Then, the spectrum of va is non-degenerate.

The inner product

〈jα; a|jβ; a〉 = δα,β, α, β = 0, 1, · · · , 2j
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shows that for fixed j and a

Ba = {|jα; a〉 : α = 0, 1, · · · , 2j}

is an orthonormal set which provides a nonstandard basis for the irreducible representation (j) of
SU(2). For fixed j, there exists 2j + 1 orthonormal bases Ba since a can take 2j + 1 distinct values
(a = 0, 1, · · · , 2j).

3.2.3. Bases in Quantum Information

We now go back to quantum information. By introducing

|aα〉 = |jα; a〉

together with the change of notations (7), the eigenvectors of va can be written as

|aα〉 = 1√
d

∑
n∈Zd

ω
1
2 (n+1)(d−n−1)a−(n+1)α|n〉

where ω = ei 2π
d . The vector |aα〉 satisfies the eigenvalue equation

va|aα〉 = ω
1
2 (d−1)a−α|aα〉

For fixed d and a, each eigenvector |aα〉 is a linear combination of the qudits |0〉, |1〉, · · · , |d− 1〉
and the basis

Ba = {|aα〉 : α = 0, 1, · · · , d− 1}

is an alternative to the computational basis Bd. For fixed d, we therefore have d + 1 remarkable bases
of the d-dimensional space Cd, namely, Bd and Ba for a = 0, 1, · · · , d− 1.

The operator va can be represented by a d-dimensional unitary matrix Va. The matrix Va, built on
the basis Bd with the ordering 0, 1, · · · , d− 1 for the lines and columns, reads

Va =


0 ωa 0 · · · 0
0 0 ω2a · · · 0
...

...
... · · ·

...
0 0 0 · · · ω(d−1)a

1 0 0 · · · 0


The eigenvectors of Va are

φ(aα) =
1√
d

∑
n∈Zd

ω
1
2 (n+1)(d−n−1)a−(n+1)αφn

with α = 0, 1, · · · , d− 1, where φn with n = 0, 1, · · · , d− 1 are the column vectors

φ0 =


1
0
...
0

 , φ1 =


0
1
...
0

 , · · · , φd−1 =


0
0
...
1


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representing the qudits |0〉, |1〉, · · · , |d − 1〉, respectively. The vectors φ(aα) satisfy the
eigenvalue equation

Vaφ(aα) = ω
1
2 (d−1)a−αφ(aα)

with the orthonormality relation
φ(aα)†φ(aβ) = δα,β

for α, β = 0, 1, · · · , d− 1.
The matrix Va can be diagonalized by means of the d-dimensional matrix Ha of elements

(Ha)nα =
1√
d

ω
1
2 (n+1)(d−n−1)a−(n+1)α

with the lines and columns of Ha arranged from left to right and from top to bottom in the order
n, α = 0, 1, · · · , d− 1. Indeed, by introducing the d× d permutation matrix

P =



1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
... · · ·

...
...

0 0 1 · · · 0 0
0 1 0 · · · 0 0


we can check that

(HaP)†Va(HaP) = ω
1
2 (d−1)a


ω0 0 · · · 0
0 ω1 · · · 0
...

... · · ·
...

0 0 · · · ωd−1


from which we recover the eigenvalues of Va. Note that the complex matrix Ha is a unitary matrix
for which each entry has a modulus equal to 1√

d
. Thus, Ha is a generalized Hadamard matrix.

This establishes a connection between MUBs and Hadamard matrices [35,51,52,60,64,66,73].

3.2.4. MUBs for d = p (p Prime)

Going back to the case where d is arbitrary, we now examine an important property for the couple
(Ba, Bd) and its generalization to couples (Ba, Bb) with b 6= a (a, b = 0, 1, · · · , d− 1). For fixed d and a,
we verify that

|〈n|aα〉| = 1√
d

, n, α = 0, 1, · · · , d− 1

which shows that Ba and Bd are two unbiased bases of the Hilbert space Cd.
Other examples of unbiased bases can be obtained for d = 2 and 3. We easily check that the bases

B0 and B1 for d = 2 are unbiased. Similarly, the bases B0, B1 and B2 for d = 3 are mutually unbiased.
Therefore, by taking into account the computational basis Bd, we end up with d + 1 = 3 MUBs for
d = 2 and d + 1 = 4 MUBs for d = 3. This is in agreement with the general result according to which,
in dimension d, the maximum number d + 1 of MUBs is attained when d is a prime number or a power
of a prime number. The results for d = 2 and 3 can be generalized through the following proposition.
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Proposition 2. For d = p, p a prime number, the bases B0, B1, · · · , Bp form a complete set of p + 1
MUBs. The p2 vectors |aα〉, with a, α = 0, 1, · · · , p − 1, of the bases B0, B1, · · · , Bp−1 are given by a
single formula, namely

|aα〉 = 1
√

p ∑
n∈Fp

ω
1
2 (n+1)(p−n−1)a−(n+1)α|n〉, ω = ei 2π

p (16)

that gives the p basis vectors for each basis Ba. In matrix form, |aα〉 and |n〉 are replaced by φ(aα) and
φn, respectively.

Proof. First, the computational basis Bp is clearly unbiased to any of the p bases B0, B1, · · · , Bp−1.
Second, let us consider

〈aα|bβ〉 = 1
p

p−1

∑
k=0

ei π
p {(a−b)k2+[(b−a)p+2(β−α)]k}

for b 6= a. The inner product 〈aα|bβ〉 can be rewritten by making use of the generalized quadratic
Gauss sum [18]

S(u, v, w) =
|w|−1

∑
k=0

ei π
w (uk2+vk)

where u, v and w are integers such that u and w are co-prime, uw is non-vanishing and uw + v is even.
This leads to

〈aα|bβ〉 = 1
p

S(u, v, w), u = a− b, v = −(a− b)p− 2(α− β), w = p

It can be shown that |S(u, v, w)| = √p. Consequently

|〈aα|bβ〉| = 1
√

p

for b 6= a and α, β = 0, 1, · · · , p− 1. This completes the proof.

In many of the papers dealing with the construction of MUBs for d = p a prime number or d = pm

a power of a prime number, the explicit derivation of the bases requires the diagonalization of a set of
matrices. Equation (16) arises from the diagonalization of a single matrix. It allows to derive in one
step the p(p + 1) vectors (or qupits, i.e., qudits with d = p) of a complete set of p + 1 MUBs in Cp via a
single formula easily encodable on a classical computer.

Note that, for d arbitrary, the inner product 〈aα|bβ〉 can be rewritten as

〈aα|bβ〉 =
(

Ha
† Hb

)
αβ

in terms of the generalized Hadamard matrices Ha and Hb. In the case where d = p is a prime number,
we find that ∣∣∣∣(Ha

† Hb

)
αβ

∣∣∣∣ = |〈aα|bβ〉| = 1
√

p

Therefore, the product Ha
† Hb is another generalized Hadamard matrix [64].

Finally note that the passage, given by Equation (16), from the computational basis Bp = {|n〉 :
n = 0, 1, · · · , p− 1} to the the basis B0 = {|0α〉 : α = 0, 1, · · · , p− 1} corresponds to a discrete Fourier
transform. Similarly, the passage from the basis Bp to the the basis Ba = {|aα〉 : α = 0, 1, · · · , p− 1}
with a = 1, 2, · · · , p− 1 corresponds to a quadratic discrete Fourier transform.
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Example 3. d = 2. In this case, relevant for a spin j = 1
2 or for a qubit, we have ω = eiπ and a, α ∈ F2.

The matrices of the operators va are

V0 =

(
0 1
1 0

)
= σ1, V1 =

(
0 −1
1 0

)
= −iσ2

The d + 1 = 3 MUBs B0, B1 and B2 are the following:

B0 : |00〉 = |0〉+ |1〉√
2

=
1√
2

(
1
1

)
, |01〉 = −|0〉 − |1〉√

2
= − 1√

2

(
1
−1

)

B1 : |10〉 = i
|0〉 − i|1〉√

2
=

i√
2

(
1
−i

)
, |11〉 = −i

|0〉+ i|1〉√
2

= − i√
2

(
1
i

)

B2 : |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

to be compared with Equation (5).

Example 4. d = 3. This case corresponds to an angular momentum j = 1 or to a qutrit. Here, we have
ω = ei 2π

3 and a, α ∈ F3. The matrices of the operators va are

V0 =

0 1 0
0 0 1
1 0 0

 , V1 =

0 ω 0
0 0 ω2

1 0 0

 , V2 =

0 ω2 0
0 0 ω

1 0 0


The d + 1 = 4 MUBs B0, B1, B2 and B3 are the following:

B0 : |00〉 = |0〉+ |1〉+ |2〉√
3

, |01〉 = ω2|0〉+ ω|1〉+ |2〉√
3

, |02〉 = ω|0〉+ ω2|1〉+ |2〉√
3

B1 : |10〉 = ω|0〉+ ω|1〉+ |2〉√
3

, |11〉 = |0〉+ ω2|1〉+ |2〉√
3

, |12〉 = ω2|0〉+ |1〉+ |2〉√
3

B2 : |20〉 = ω2|0〉+ ω2|1〉+ |2〉√
3

, |21〉 = ω|0〉+ |1〉+ |2〉√
3

, |22〉 = |0〉+ ω|1〉+ |2〉√
3

B3 : |0〉, |1〉, |2〉

This can be transcribed in terms of column vectors as follows:

B0 : |00〉 = 1√
3

1
1
1

 , |01〉 = 1√
3

ω2

ω

1

 , |02〉 = 1√
3

 ω

ω2

1


B1 : |10〉 = 1√

3

ω

ω

1

 , |11〉 = 1√
3

 1
ω2

1

 , |12〉 = 1√
3

ω2

1
1


B2 : |20〉 = 1√

3

ω2

ω2

1

 , |21〉 = 1√
3

ω

1
1

 , |22〉 = 1√
3

 1
ω

1


B3 : |0〉 =

1
0
0

 , |1〉 =

0
1
0

 , |2〉 =

0
0
1





Mathematics 2018, 6, 273 23 of 40

To close this section, note that it is not necessary to treat separately the cases p odd and p even:
Equation (16) for |aα〉 is valid both for p even prime (p = 2) and for p odd prime. In the case where p
is odd, there exists a useful alternative formula to Equation (16) as shown in the next section.

3.2.5. MUBs for d = p (p Odd Prime)

In the special case where d = p is an odd prime number, the formula

|aα〉′ = 1
√

p ∑
n∈Fp

ω(an+α)n|n〉, ω = ei 2π
p (17)

provides an alternative to Equation (16). Indeed, it can be shown that

Ba
′ = {|aα〉′ : α = 0, 1, · · · , p− 1}

where a can take any of the values 0, 1, · · · , p− 1 constitutes an orthonormal basis of Cd and that the p
bases Ba

′ (a = 0, 1, · · · , p− 1) form, with the computational basis Bp, a complete set of p + 1 MUBs.
The proof, based on the properties of Gauss sums, is analogous to that given in Section 3.2.4.

It is to be emphasized that for p even prime (p = 2) the bases B0
′, B1

′ and B2 do not form a
complete set of MUBs while the proposition given in Section 3.2.4 is valid for p odd prime and equally
well for p even prime. The interest of Equation (17) is that it can be easily extended in the case where
Fp is replaced by the Galois field GF(pm) with m > 1.

3.2.6. MUBs for d Power of a Prime

We may ask what becomes the proposition in Section 3.2.4 when the prime number p is replaced
by an arbitrary (not prime) number d. In this case, Equation (16), with p replaced by d, does not
provide a complete set of d + 1 MUBs. However, it is easy to verify that the bases B0, B1 and Bd are
three MUBs in Cd, in agreement with the well-known result according to which the number of MUBs
in Cd, with d arbitrary, is greater than or equal to 3.

Equation (16) for Cp can be used for deriving a complete set of pm + 1 MUBs in Cpm
(p prime and

m ≥ 2) by tensor products of order m of vectors in Cp. The general case is very much involved. Hence,
we shall limit ourselves to the case d = 22.

The case d = 4 corresponds to the spin angular momentum j = 3
2 . The four bases Ba for

a = 0, 1, 2, 3 consisting of the vectors |aα〉 calculated for d = 4 from Section 3.2.3 and the computational
basis B4 do not constitute a complete set of d + 1 = 5 MUBs. Nevertheless, it is possible to find
d + 1 = 5 MUBs because d = 22 is the power of a prime number. Indeed, another way to deal with the
search for MUBs in C4 is to consider two systems of qubits associated with the spin angular momenta
j1 = 1

2 ⇔ d1 = p = 2 and j2 = 1
2 ⇔ d2 = p = 2. Then, bases of C4 can be constructed from tensor

products |aα〉 ⊗ |bβ〉 which are eigenvectors of the operator va ⊗ vb, where va corresponds to the first
system of qubits and vb to the second one. Obviously, the set

Bab = {|aα〉 ⊗ |bβ〉 : α, β = 0, 1}

is an orthonormal basis of C4. Four of the five MUBs for d = 22 = 4 can be constructed from the
various bases Bab. It is evident that B00 and B11 are two unbiased bases since the modulus of the inner
product of |1α′〉 ⊗ |1β′〉 by |0α〉 ⊗ |0β〉 is

|〈0α|1α′〉〈0β|1β′〉| = 1√
4
=

1√
d

A similar result holds for the two bases B01 and B10. However, the four bases B00, B11, B01 and
B10 are not mutually unbiased. A possible way to overcome this no-go result is to keep the bases B00
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and B11 intact and to re-organize the vectors inside the bases B01 and B10 in order to obtain four MUBs.
We are thus left with the four bases

W00 ≡ B00, W11 ≡ B11, W01, W10

which together with the computational basis B4 give five MUBs. In detail, we have

W00 = {|0α〉 ⊗ |0β〉 : α, β = 0, 1}
W11 = {|1α〉 ⊗ |1β〉 : α, β = 0, 1}
W01 = {λ|0α〉 ⊗ |1β〉+ µ|0α⊕ 1〉 ⊗ |1β⊕ 1〉 : α, β = 0, 1}
W10 = {λ|1α〉 ⊗ |0β〉+ µ|1α⊕ 1〉 ⊗ |0β⊕ 1〉 : α, β = 0, 1}

where the addition ⊕ should be understood modulo 4; furthermore

λ =
1− i

2
, µ =

1 + i
2

and the vectors of type |aα〉 are given by Equation (16). As a résumé, only two formulas are necessary
for obtaining the d2 = 16 vectors |ab; αβ〉 for the bases Wab, namely

W00, W11 : |aa; αβ〉 = |aα〉 ⊗ |aβ〉
W01, W10 : |aa⊕ 1; αβ〉 = λ|aα〉 ⊗ |a⊕ 1β〉+ µ|aα⊕ 1〉 ⊗ |a⊕ 1β⊕ 1〉

for all a, α, β in F2. A simple development of W00, W11, W01 and W10 gives the following expressions.

The W00 basis:

|00; 00〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|00; 01〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|00; 10〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|00; 11〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

or in column vectors

1
2


1
1
1
1

 ,
1
2


1
−1
1
−1

 ,
1
2


1
1
−1
−1

 ,
1
2


1
−1
−1
1


The W11 basis:

|11; 00〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|11; 01〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|11; 10〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|11; 11〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)
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or in column vectors

1
2


1
i
i
−1

 ,
1
2


1
−i
i
1

 ,
1
2


1
i
−i
1

 ,
1
2


1
−i
−i
−1


The W01 basis:

|01; 00〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|01; 11〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|01; 01〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

|01; 10〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

or in column vectors

1
2


1
1
−i
i

 ,
1
2


1
−1

i
i

 ,
1
2


1
−1
−i
−i

 ,
1
2


1
1
i
−i


The W10 basis:

|10; 00〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|10; 11〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|10; 01〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

|10; 10〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

or in column vectors

1
2


1
−i
1
i

 ,
1
2


1
i
−1

i

 ,
1
2


1
i
1
−i

 ,
1
2


1
−i
−1
−i


The computational basis:

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉

or in column vectors 
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


It is to be noted that the vectors of the bases W00 and W11 are not entangled (i.e., each vector is the

tensor product of two vectors) while the vectors of the bases W01 and W10 are entangled (i.e., each vector
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is not the tensor product of two vectors). In fact, all the state vectors for W01 and W10 are maximally
entangled (the entanglement entropy is maximum for W01 and W10 and vanishes for W00 and W11).

Generalization of the formulas given above for two systems of qubits can be obtained in more
complicated situations (two systems of qupits, three systems of qubits, etc.). The generalization of the
bases W00 and W11 is immediate. The generalization of W01 and W10 can be achieved by taking linear
combinations of vectors such that each linear combination is made of vectors corresponding to the
same eigenvalue of the relevant tensor product of operators of type va.

3.3. Weyl Pairs

3.3.1. Shift and Phase Operators

Let us go back to the case d arbitrary. The matrix Va can be decomposed as

Va = XZa, a = 0, 1, · · · , d− 1

where

X =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
1 0 0 · · · 0

 , Z =


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
... · · ·

...
0 0 0 · · · ωd−1

 , ω = ei 2π
d

The matrices X and Z satisfy

Zφn = ωnφn, n = 0, 1, · · · , d− 1, Xφn = φn−1 mod d =


φd−1, n = 0

φn−1, n = 1, 2, · · · , d− 1

The linear operators corresponding to the matrices X and Z are known in quantum information
as flip or shift and clock or phase operators, respectively. The unitary matrices X and Z ω-commute in
the sense that

XZ−ωZX = Od

In addition, they satisfy

Xd = Zd = Id

where Id and Od are the d-dimensional unity and zero matrices, respectively. The last two equations
show that X and Z constitute a so-called Weyl pair [3].

Note that the Weyl pair (X, Z) can be deduced from the master matrix Va via

X = V0, Z = V0
†V1

which shows a further interest of the matrix Va. Indeed, the matrix Va condensates all that can be done
with the matrices X and Z. This has been seen in Section 3.2.4 with the derivation of a single formula
for the determination from Va of a complete set of p + 1 MUBs when d = p is prime whereas many
other determinations of such a complete set needs repeated use of the matrices X and Z.
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A connection between X and Z can be deduced from the expression of (HaP)†Va(HaP) given in
Section 3.2.3. By taking a = 0, we obtain

(H0P)†X(H0P) = Z ⇔ X = (H0P)Z(H0P)†

where H0 is the matrix of a discrete Fourier transform that allows to pass from the vectors
φn (n = 0, 1, · · · , d− 1) to the vector φ(0, α) according to

φ(0, α) = ∑
n∈Zd

(H0)nα φn = (−1)α 1√
d

∑
n∈Zd

e−i 2π
d nαφn

cf. the expression of φ(a, α) in Section 3.2.3.

3.3.2. Generalized Pauli Matrices

For d arbitrary, let us define the matrices

Uab = XaZb, a, b ∈ Zd

The matrices Uab belong to the unitary group U(d). The d2 matrices Uab are called generalized
Pauli matrices in dimension d. They satisfy the trace relation

tr
(

Uab
†Ua′b′

)
= d δa,a′ δb,b′

Thus, the set {Uab : a, b ∈ Zd} of unitary matrices is an orthogonal set with respect to the
Hilbert-Schmidt inner product. Consequently, the d2 pairwise orthogonal matrices Uab can be used as
a basis of Cd×d.

Example 5. The case d = 2 ⇔ j = 1
2 (⇒ ω = eiπ and a, b = 0, 1) corresponds to the two-dimensional

ordinary Pauli matrices of quantum mechanics. The matrices XaZb are

I2 = X0Z0 =

(
1 0
0 1

)
, X = X1Z0 =

(
0 1
1 0

)
, Z = X0Z1 =

(
1 0
0 −1

)
, Y = X1Z1 =

(
0 −1
1 0

)

so that the matrices X and Z generate the ordinary Pauli matrices. Indeed, we have

I2 = σ0, X = V0 = σ1, Y = XZ = V1 = −iσ2, Z = σ3

in terms of the usual (Hermitian and unitary) Pauli matrices.

Example 6. The case d = 3⇔ j = 1 (⇒ ω = ei 2π
3 and a, b = 0, 1, 2) yields nine three-dimensional matrices.

More precisely, the matrices X and Z generate I3 = X0Z0 and

X = V0, X2, Z, Z2, XZ = V1, X2Z2, XZ2 = V2, X2Z
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In the detail, the matrices XaZb are

X0Z0 =

1 0 0
0 1 0
0 0 1

 , X0Z1 =

1 0 0
0 ω 0
0 0 ω2

 , X0Z2 =

1 0 0
0 ω2 0
0 0 ω


X1Z0 =

0 1 0
0 0 1
1 0 0

 , X1Z1 =

0 ω 0
0 0 ω2

1 0 0

 , X1Z2 =

0 ω2 0
0 0 ω

1 0 0


X2Z0 =

0 0 1
1 0 0
0 1 0

 , X2Z1 =

0 0 ω2

1 0 0
0 ω 0

 , X2Z2 =

0 0 ω

1 0 0
0 ω2 0


They constitute a natural extension in dimension d = 3 of the usual Pauli matrices.

3.3.3. Weyl Pair and Groups

For arbitrary d, the Weyl pair (X = V0, Z = V†
0 V1) is a basic ingredient for generating the Pauli

group Pd in d dimensions and the Lie algebra of the linear group GL(d,C) in d dimensions, groups of
central interest in group theory, quantum mechanics and quantum information.

The Pauli group. For arbitrary d, let us define the matrices

Vabc = ωaUbc = ωaXbZc, a, b, c ∈ Zd, ω = ei 2π
d

The matrices Vabc are unitary and satisfy

tr
(

Vabc
†Va′b′c′

)
= ωa′−a d δb,b′ δc,c′

In addition, we have the following result.

Proposition 3. The set {Vabc : a, b, c ∈ Zd} is a finite group of order d3, denoted Pd, for the internal law
(matrix multiplication)

VabcVa′b′c′ = Va′′b′′c′′ , a′′ = a + a′ − cb′, b′′ = b + b′, c′′ = c + c′

It is a non-commutative (for d ≥ 2) nilpotent group with nilpotency class equal to 3.

The group Pd is called the Pauli group in dimension d. It is of considerable importance in quantum
information, especially for quantum computation and for quantum error-correcting codes. The group
Pd is a sub-group of the unitary group U(d). The normalizer of Pd in U(d) is called Clifford group
(denoted as Cd) in d dimensions. More precisely, Cd is the set {U ∈ U(d) : UPdU† = Pd} endowed
with matrix multiplication. The Pauli group Pd as well as any other invariant sub-group of Cd are
useful for quantum error-correcting codes in the case of N-qubit systems corresponding to d = 2N .

Moreover, the Pauli group is connected to the Heisenberg-Weyl group. In fact, the group Pd
corresponds to a discretization of the Heisenberg-Weyl group HW(R). From an abstract point of view,
the group HW(R) is the set S = {(x, y, z) : x, y, z ∈ R} equipped with the internal law S× S → S
defined via

(x, y, z)(x′, y′, z′) = (x + x′ − zy′, y + y′, z + z′)
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This group is a non-commutative Lie group of order 3. It is non-compact and nilpotent with a
nilpotency class equal to 3. The passage from HW(R) to Pd amounts to replace the infinite field R by
the finite ring Zd so that HW(R) gives HW(Zd) ≡ Pd.

The three generators of HW(R) are

H =
1
i

∂

∂x
, Q =

1
i

∂

∂y
, P =

1
i

(
∂

∂z
− y

∂

∂x

)
They satisfy the commutation relations

[Q, P]− = iH, [P, H]− = 0, [H, Q]− = 0

Therefore, the Lie algebra hw(R) of HW(R) is a three-dimensional nilpotent Lie algebra with
nilpotency class equal to 3. The commutation relations of Q, P and H are reminiscent of the Heisenberg
commutation relations. As a matter of fact, the Heisenberg commutation relations correspond to
an infinite-dimensional irreducible representation by Hermitian matrices of hw(R). The Lie algebra
hw(R) also admits finite-dimensional irreducible representations at the price to abandon the Hermitian
character of the representation matrices.

The linear group. The Weyl pair consisting of the generalized Pauli matrices X and Z in d
dimensions can be used for constructing a basis of the Lie algebra of U(d). More precisely, we have the
two following propositions.

Proposition 4. For arbitrary d, the set {XaZb : a, b ∈ Zd} forms a basis for the Lie algebra gl(d,C) of the
linear group GL(d,C) or for the Lie algebra u(d) of the unitary group U(d). The Lie brackets of gl(d,C) in
such a basis are

[XaZb, XeZ f ]− = ∑
i∈Zd

∑
j∈Zd

(ab, e f ; ij)XiZj

with the structure constants

(ab, e f ; ij) = δi,a+eδj,b+ f

(
ω−be −ω−a f

)
where a, b, e, f , i, j ∈ Zd.

Note that the commutator [Uab, Ue f ]− = UabUe f − Ue f Uab and the anti-commutator
[Uab, Ue f ]+ = UabUe f + Ue f Uab of Uab and Ue f are given by

[Uab, Ue f ]± =
(

ω−be ±ω−a f
)

Uij, i = a + e, j = b + f

Consequently, [Uab, Ue f ]− = 0 if and only if a f − be = 0 (mod d) and [Uab, Ue f ]+ = 0 if and only
if a f − be = 1

2 d (mod d). Therefore, all anti-commutators [Uab, Ue f ]+ are different from 0 if d is an
odd integer.

Proposition 5. For d = p, with p a prime number, the simple Lie algebra sl(p,C) of the special linear group
SL(p,C) or its compact real form su(d) of the special unitary group SU(d) can be decomposed into a sum of
p + 1 Abelian subalgebras of dimension p− 1

sl(p,C) = V0 ⊕ V1 ⊕ · · · ⊕ Vp

where each of the p + 1 subalgebras V0,V1, · · · ,Vp is a Cartan subalgebra generated by a set of p − 1
commuting matrices.
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A similar result holds for d = pm, a power of a prime number [7,12,16,53,64].
The decomposition of sl(p,C), called orthogonal decomposition of sl(p,C), is trivial for p = 2.

In fact, for p = 2 we have the following decomposition

su(2) = σ1 ⊕ σ2 ⊕ σ3

in terms of vector space sum.

3.3.4. MUBs and the Special Linear Group

According to the orthogonal decomposition proposition, in the case where d = p is a prime
number (even or odd), the set {XaZb : a, b ∈ Zp} \ {X0Z0} of cardinality p2 − 1 can be partitioned
into p + 1 subsets containing each p− 1 commuting matrices.

As an example, let us consider the case d = 5. For this case, we are left with the six following sets
of four commuting matrices

V0 = {01, 02, 03, 04}, V1 = {10, 20, 30, 40}, V2 = {11, 22, 33, 44}
V3 = {12, 24, 31, 43}, V4 = {13, 21, 34, 42}, V5 = {14, 23, 32, 41}

where ab is used as an abbreviation of XaZb.
More generally, for d = p with p prime, the p + 1 sets of p− 1 commuting matrices are easily seen

to be

V0 = {X0Za : a = 1, 2, · · · , p− 1}
V1 = {XaZ0 : a = 1, 2, · · · , p− 1}
V2 = {XaZa : a = 1, 2, · · · , p− 1}
V3 = {XaZ2a : a = 1, 2, · · · , p− 1}

...

Vp−1 = {XaZ(p−2)a : a = 1, 2, · · · , p− 1}

Vp = {XaZ(p−1)a : a = 1, 2, · · · , p− 1}

Each of the p + 1 sets V0,V1, · · · ,Vp can be put in a one-to-one correspondence with one basis
of the complete set of p + 1 MUBs. In fact, V0 is associated with the computational basis while
V1,V2, · · · ,Vp are associated with the p remaining MUBs in view of

Va ∈ Va+1 = {XbZab : b = 1, 2, · · · , p− 1}, a = 0, 1, · · · , p− 1

More precisely, we have

Z ∈ V0, X ∈ V1, XZ ∈ V2, · · · , XZp−1 ∈ Vp

The eigenvectors of the p + 1 unitary operators

Z, X, XZ, · · · , XZp−1

generate p + 1 MUBs (one basis is associated with each of the p + 1 operators).

3.4. Galois Field Approach to MUBs

The existence of a complete set of pm + 1 MUBS in Cpm
(p prime and m positive integer) is an

indication of a possible utility of Galois fields and Galois rings for the construction of MUBs in Cpm

(p prime, m ≥ 2). Indeed, the passage from the case d = p to the case d = pm (p prime, m ≥ 2) can be



Mathematics 2018, 6, 273 31 of 40

achieved by considering the Galois field GF(pm) for p odd prime and the Galois ring GR(22, m) for
p = 2 [2,28]. In this section, we shall deal with the construction of a complete set of pm + 1 MUBs in
Cpm

, corresponding to the case of m qupits, via the use of the Galois field GF(pm) for p odd prime and
m greater than 1.

3.4.1. The Computational Basis

We first have to define the computational basis Bpm in the framework of GF(pm), p odd prime
and m ≥ 2. The vectors of the basis Bpm of the Hilbert space Cpm

can be labeled by the elements x of
the Galois field GF(pm). This can be done in two ways according to as the elements x are taken in the
monomial form (x = 0, α` with ` = 1, 2, · · · , pm − 1) or in the polynomial form (x = [x0x1 · · · xm−1]

with x0, x1, · · · , xm−1 ∈ Fp). In both cases, we have

Bpm = {|0〉 or φ0, |1〉 or φ1, · · · , |pm − 1〉 or φpm−1}

in terms of vectors or column vectors. More precisely, this can be achieved as follows.

• In the monomial form, we define the vectors of Bpm via the correspondences

x = 0 7→ |0〉 or φ0, x = α` 7→ |`〉 or φ` with ` = 1, 2, · · · , pm − 1

where α is a primitive element of GF(pm).
• In the polynomial form, we can range the vectors of Bpm in the order 0, 1, · · · , pm − 1 by adopting

the lexicographical order for the elements [x0x1 · · · xm−1].

These notations are reminiscent of those employed for the computational basis

Bp = {|0〉 or φ0, |1〉 or φ1, · · · , |p− 1〉 or φp−1}

corresponding to the limit case m = 1.

3.4.2. Shift and Phase Operators for GF(pm)

The notion of Weyl pair can be extended to any Galois field GF(pm) with p (even or odd) prime
and m ≥ 2. Let x and y be two elements of GF(pm) and φy be the basis column vector of Bpm associated
with y. For fixed x, we define the matrices X̂x (shift operators) and Ẑx (phase operators) via the actions

X̂xφy = φy−x, Ẑxφy = χ(xy)φy = ei 2π
p Tr(xy)

φy

where y is arbitrary. One easily verifies the properties

X̂x+y = X̂xX̂y = X̂yX̂x, Ẑx+y = ẐxẐy = ẐyẐx

and
X̂xẐy − χ(xy)ẐyX̂x = Opm , χ(xy) = ei 2π

p Tr(xy)

In the limit case m = 1 (i.e., for the base field Fp) the matrices

X = X̂1, Z = Ẑ1

corresponding to x = y = 1 satisfy

XZ− ei 2π
p ZX = Op

to be compared with the relations satisfied by the Weyl pair (X, Z) defined in Section 3.3.1.
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3.4.3. Bases in the Frame of GF(pm)

We might use the Weyl pair (Xx, Zy) defined in the framework of GF(pm), see Section 3.4.2,
for determining a complete set of pm + 1 MUBs in Cpm

in a way similar to that used for m = 1 with the
help of the matrix Va for a in Fp. However, it is quicker to start from Equation (17) giving MUBs in Cp

in order to generate a formula for Cpm
giving back Equation (17) in Cp in the limit case m = 1. In this

direction, a possible way to pass from the basis vector

1
√

p ∑
x∈Fp

ei 2π
p (ax+α)x|x〉

of Cp to a basis vector of Cpm
is to replace

ei 2π
p (ax+α)x, a, α, x ∈ Fp

by

χ(ax2 + αx) = ei 2π
p Tr(ax2+αx), a, α, x ∈ GF(pm)

where χ is the canonical additive character of GF(pm). This yields the two following propositions.

Proposition 6. For p odd prime and m ≥ 2, the set

Ba = {|aα〉 : α ∈ GF(pm)}

where
|aα〉 = 1√

pm ∑
x∈GF(pm)

ei 2π
p Tr(ax2+αx)|x〉, a ∈ GF(pm)

constitutes an orthonormal basis of Cpm
.

Proof. See the proof of the next proposition.

Note that for m = 1
Tr(ax2 + αx) = ax2 + αx

so that the vector |aα〉 coincides with the vector |aα〉′ derived in Section 3.2.5. This explains why we
chose to extend Equation (17) valid for Cp to the case Cpm

. Indeed, the same kind of extension applied
to Equation (16) is not possible since Tr[ 1

2 n(p− n)a + nα] does not make sense.

3.4.4. MUBs in the Frame of GF(pm)

Proposition 7. For p odd prime and m ≥ 2, the pm bases Ba, a ranging in GF(pm), constitute with the
computational basis Bpm a complete set of pm + 1 MUBs in Cpm

.

Proof. Let |aα〉 and |bβ〉 two vectors belonging to the bases Ba and Bb, respectively. We have

〈aα|bβ〉 = 1
pm ∑

x∈GF(pm)

ei 2π
p Tr[(b−a)x2+(β−α)x], a, b, α, β ∈ GF(pm)

By using [2,4,18]∣∣∣∣∣∣ ∑
x∈GF(pm)

ei 2π
p Tr(ux2+vx)

∣∣∣∣∣∣ = √pm, u ∈ GF(pm)∗, v ∈ GF(pm)
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(valid for p odd prime), we obtain

|〈aα|bβ〉| =


δα,β if b = a

1√
pm if b 6= a

or in compact form

|〈aα|bβ〉| = δa,bδα,β +
1√
pm (1− δa,b)

which shows that Ba is an orthonormal basis and that the couple (Ba, Bb) with b 6= a is a couple of
unbiased bases. Of course, each basis Ba is unbiased to the computational basis Bpm . We thus end up
with a total of pm + 1 MUBs as desired.

The previous result applies in the limit case m = 1 for which we recover the p + 1 MUBs in Cp.

3.5. Galois Ring Approach to MUBs

In dimension d = 2m, m ≥ 2, the use of the Galois field GF(2m) for constructing a complete set
of 2m + 1 MUBs in C2m

according to the method employed in Section 3.4 for d = pm, p odd prime,
would lead to a no-win situation because gcd(2, 2m) 6= 1 (while gcd(2, pm) = 1 for p odd prime).
For d = 2m, which corresponds to the case of m qubits, we can use the Galois ring GR(22, m), denoted
R4m too, for constructing MUBs in C2m

.

3.5.1. Bases in the Frame of GR(22, m)

We start with the residue class ring

GR(22, m) = Z22 [ξ]/〈Pm(ξ)〉

where Pm(x) is a monic basic irreducible polynomial of degree m (i.e., its restriction Pm(x) = Pm(x)
modulo 2 is irreducible over Z2). The 2m vectors of the computational basis B2m are labeled by the 2m

elements of the Teichmüller set Tm associated with the ring Z22 [ξ]/〈Pm(ξ)〉. Thus

B2m = {|x〉 : x ∈ Tm}

(the set Tm and the ring GR(22, m) contain 2m and 4m elements, respectively).

Proposition 8. For a and α in Tm, let

|aα〉 = 1√
2m ∑

x∈Tm

χ[(a + 2α)x]|x〉 = 1√
2m ∑

x∈Tm

ei 2π
4 Tr(ax+2αx)|x〉 = 1√

2m ∑
x∈Tm

iTr(ax+2αx)|x〉

where χ is an additive character vector of GR(22, m) and the trace takes its values in Z4. For fixed a in Tm,
the set

Ba = {|aα〉 : α ∈ Tm}

constitutes an orthonormal basis of C2m
.

Proof. See the proof of the next proposition. �
Note that for m = 1

Tr(ax + 2αx) = ax + 2αx
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so that
|aα〉 = 1√

2
∑

x∈F2

iax+2αx|x〉 (18)

to be compared with the vector

|aα〉 = 1√
2

∑
x∈F2

ei 2π
2 [ 1

2 ax(2−x)+αx]|1− x〉 = 1√
2

∑
x∈F2

iax(2−x)+2αx|1− x〉 (19)

given by Equation (16). In view of the fact that

iax+2αx = iax(2−x)+2αx

for x = 0 and x = 1, the two vectors |aα〉 in Equations (18) and (19) are the same up to an interchange
of the vectors |0〉 and |1〉.

3.5.2. MUBs in the Frame of GR(22, m)

Proposition 9. The 2m bases Ba, with m ≥ 2 and a ranging in the Teichüller set Tm associated with the Galois
ring GR(22, m), constitute with the computational basis B2m a complete set of 2m + 1 MUBs in C2m

.

Proof. Let |aα〉 and |bβ〉 two vectors belonging to the bases Ba and Bb, respectively. We have

〈aα|bβ〉 = 1
2m ∑

x∈Tm

ei π
2 Tr[(b−a+2β−2α)x]

By using [2,4,18]

∣∣∣∣∣ ∑
x∈Tm

ei π
2 Tr(ux)

∣∣∣∣∣ =


0 if u ∈ 2Tm, u 6= 0

2m if u = 0

√
2m otherwise

we obtain

|〈aα|bβ〉| =


δα,β if b = a

1√
2m if b 6= a

or in compact form

|〈aα|bβ〉| = δa,bδα,β +
1√
2m

(1− δa,b)

which shows that Ba is an orthonormal basis and that the couple (Ba, Bb) with b 6= a is a couple of
unbiased bases. Of course, each basis Ba is unbiased to the computational basis B2m . We thus end up
with a total of 2m + 1 MUBs and we are done.

The previous result applies in the limit case m = 1 for which we can recover the 2 + 1 MUBs
in C2.
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3.5.3. One-Qubit System

For m = 1, the 2m = 2 vectors of the computational basis B2 are labeled with the help of the two
elements of the Teichmüller set T1 = Z2 of the Galois ring GR(22, 1) = Z22 . Thus, the basis B2 is

B2 : |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

The vectors |aα〉 of the basis Ba (a ∈ T1) are given by (see Section 3.5.1)

|aα〉 = 1√
2

1

∑
x=0

i(a+2α)x|x〉, α ∈ T1 = {0, 1}

This yields the two unbiased bases

B0 : |00〉 = |0〉+ |1〉√
2

, |01〉 = |0〉 − |1〉√
2

B1 : |10〉 = |0〉+ i|1〉√
2

, |11〉 = |0〉 − i|1〉√
2

which, together with the computational basis B2, form a complete set of 2 + 1 = 3 MUBs in C2.
Note that the bases B0 and B1 are in agreement (up to phase factors and a rearrangement of the vectors
inside B1) with the bases B0 and B1 derived in Section 3.2.4.

3.5.4. Two-Qubit System

For m = 2, the 2m = 4 vectors of the computational basis B4 are labeled with the help of the four
elements of the Teichmüller set T2 = {0, β1, β2 = 3 + 3β, β3 = 1} of the Galois ring GR(22, 2) (here,
we use β instead of α in order to avoid confusion with the index α in |aα〉). Thus, the basis B4 is

B4 : |0〉 =


1
0
0
0

 , |β1 or 1〉 =


0
1
0
0

 , |β2 or 2〉 =


0
0
1
0

 , |β3 or 3〉 =


0
0
0
1


The vectors |aα〉 of the basis Ba (a = 0, β1 or 1, β2 or 2, β3 or 3) are given by (see Section 3.5.1)

|aα〉 = 1
2 ∑

x∈T2

iTr(ax+2αx)|x〉, α ∈ T2 = {0, β1, β2 = 3 + 3β, β3 = 1}

with
Tr(ax + 2αx) = ax + 2αx + φ(ax + 2αx)

where φ is the generalized Frobenius map GR(22, 2)→ GR(22, 2). The correspondence between the
indexes a, α in |aα〉 and the elements 0, β1, β2, β3 of T2 is as follows

0↔ a or α = 0, β1 ↔ a or α = 1, β2 ↔ a or α = 2, β3 ↔ a or α = 3
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This yields the four unbiased bases

B0 : |00〉 = 1
2


1
1
1
1

 , |01〉 = 1
2


1
−1
1
−1

 , |02〉 = 1
2


1
1
−1
−1

 , |03〉 = 1
2


1
−1
−1
1



B1 : |12〉 = 1
2


1
−i
1
i

 , |11〉 = 1
2


1
i
−1

i

 , |13〉 = 1
2


1
i
1
−i

 , |10〉 = 1
2


1
−i
−1
−i



B2 : |21〉 = 1
2


1
1
−i
i

 , |22〉 = 1
2


1
−1

i
i

 , |20〉 = 1
2


1
−1
−i
−i

 , |23〉 = 1
2


1
1
i
−i



B3 : |33〉 = 1
2


1
i
i
−1

 , |32〉 = 1
2


1
−i
i
1

 , |31〉 = 1
2


1
i
−i
1

 , |30〉 = 1
2


1
−i
−i
−1


We thus end up with 4 + 1 = 5 bases (B0 to B4) which form a complete set of MUBs in C4.

Note that the bases B0, B1, B2 and B3 coincide with the bases W00, W10, W01 and W11 derived from
tensor products, respectively; for the purpose of comparison, the vectors |aα〉 are listed in the same
order for each of the couples (B0, W00), (B1, W10), (B2, W01) and (B3, W11), see Section 3.2.6.

4. Closing Remarks

During the last two decades, quantum information and quantum computing have been the object
of considerable progresses both in theoretical and experimental physical sciences, scientific engineering,
discrete mathematics and quantum informatics. In the present days, there exit several quantum
computer languages and, although quantum devices are mainly developed in academic and private
laboratories, the scientific community has access to some quantum computers (e.g., access to the 5-qubit
quantum computer of the IBM Quantum Experience [79]) and to quantum simulators (e.g., access to
the 41-qubit ATOS Quantum Learning Machine [80]). In the medium term, the accent shall be put,
among others, on (i) the development of new quantum algorithms that outperform classical ones,
(ii) the production of qubits robust to decoherence (with coherence time greater than 500 ms), (iii) the
increase of the lifetime of quantum memories, (iv) the development of quantum networks working
over a few thousands of kilometres (v) the realization of 50–100 qubit computers, and (vi) the test of
quantum supremacy. There is a long way before the realization of a universal quantum computer!

From the side of the mathematical aspects of MUBs, some further developments and a few open
problems should be mentioned. It would be interesting to see if Cayley-Dickson algebras of dimension
d = 2N could be used for providing a geometrical approach to entanglement of N qubits with N > 3.
Furthermore, the problem of the determination of the maximum number N(d) of MUBs in composite
dimension d is still an unsolved problem (except in the case where d is a power of a prime number).
The two conjectures listed in Section 3.1.3 do not very much help, probably because they lead to two
equivalent problems for which the solutions are as difficult to find as those of the initial problem. As far
as the second conjecture is concerned, the recent work [76] on orthogonal decompositions of sl(n, R)
over a finite commutative ring with identity R is very appealing. Finally, even in the simplest case
where d = 6, the maximum number N(6) of MUBs is not known (to the best of the author knowledge).
However, for d = 6 there are numerous numerical evidences that N(6) = 3 [19,37,52,54,59,60,70,71].
The number N(6) = 3 is equal indeed to the number of weak mutually unbiased bases associated
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with the smallest prime divisor of 6 (the recently introduced notion of weak MUBs in dimension d
corresponds to the Definition (14) where

√
d is replaced by

√
f where f is a prime divisor of d [69,75]).

Author Contributions: The author confirms to be the sole contributor of this paper.

Acknowledgments: This paper was presented at the 20th International Workshop on Computer Algebra in
Scientific Computing (CASC 2018). The author wishes to thank Vladimir P. Gerdt (Dubna) for his kind invitation
to give an invited talk at CASC 2018 and Andreas Weber (Bonn) for his encouragement to put the text of the talk
in a form convenient for a community of computer engineers and mathematicians. He is also indebted to Wolfram
Koepf (Kassel) and François Boulier (Lille) for their logistic help during the preparation of this paper. Finally,
the author thanks the Referees for their remarks and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:
Cambridge, UK, 2003.

2. Kibler, M.R. Galois Fields and Galois Rings Made Easy; ISTE Press–Elsevier: London/Oxford, UK, 2017.
3. Weyl, H. The Theory of Groups and Quantum Mechanics; Dover Publications: New York, NY, USA, 1931.
4. Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 204–207. [CrossRef] [PubMed]
5. Schwinger, J. Unitary operator bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570–579. [CrossRef] [PubMed]
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