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Abstract: The aim of the present paper is twofold. First, to give the main ideas behind quantum
computing and quantum information, a field based on quantum-mechanical phenomena. Therefore,
a short review is devoted to (i) quantum bits or qubits (and more generally qudits), the analogues of
the usual bits 0 and 1 of the classical information theory, and to (ii) two characteristics of quantum
mechanics, namely, linearity, which manifests itself through the superposition of qubits and the action
of unitary operators on qubits, and entanglement of certain multi-qubit states, a resource that is specific
to quantum mechanics. A, second, focus is on some mathematical problems related to the so-called
mutually unbiased bases used in quantum computing and quantum information processing. In this
direction, the construction of mutually unbiased bases is presented via two distinct approaches:
one based on the group SU(2) and the other on Galois fields and Galois rings.

Keywords: linearity; superposition; entanglement; mutually unbiased bases; SU(2); Galois fields;
Galois rings

1. Introduction

In the present days, there is a growing interest for the field of quantum information and quantum
computing. Such a field emerged at the beginning of the 1980s when Feynman and other scientists asked
the question: is it possible to simulate the behaviour of a quantum system by using a classical computer?
Then, the question evolved towards how to use quantum systems to do computations. This led to the
idea of a quantum computer based on quantum physics with the hope to solve problems that would be
intractable or difficult to solve with a classical computer. A fact in favour of a quantum computer is the
law by Moore according to which the size of electronic and spintronic devices for a classical computer
should approach 10 nm in 2020, the scale where quantum effects become important. The field of
quantum information and quantum computing is at the crossroads of experimental and theoretical
quantum physical sciences (physics and chemistry), discrete mathematics and informatics with the
aim of building a quantum computer. We note in passing that physics, mathematics, informatics and
engineering have already greatly benefited from the enormous amount of works achieved along the
line of quantum information and quantum computing.

The unit of classical information is the bit (possible values 0 and 1). In a quantum computer,
classical bits (0 and 1) are replaced by quantum bits or qubits (that interpolate in some sense between 0
and 1). The most general qubit is a normalized vector |¢) in the two-dimensional Hilbert space C?

lp) =al0) +b|1), |a*+|b]*=1 a€C, beC (1)

where |0) and |1) are the elements of an orthonormal basis in CZ. The result of a measurement of |) is
not deterministic since it gives |0) or |1) with the probability |a|? or |b|?, respectively. The consideration
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of N qubits leads to work in the 2N-dimensional Hilbert space C2". Note that the notion of qubit,
corresponding to C?, is a particular case of the one of qudit, corresponding to C? (d not necessarily
in the form 2V). A system of N qudits is associated with the Hilbert space C?" . In this connection,
the techniques developed for finite-dimensional Hilbert spaces are of paramount importance in
quantum computation and quantum computing.

From a formal point of view, a quantum computer is a system producing qubits, the state of which
can be controlled and manipulated via unitary transformations. These transformations correspond
to the product of elementary unitary operators called quantum gates (the analogues of the logic gates
of a classical computer) acting on one, two or more qubits. Measurement of the qubits out-coming
from a quantum circuit of quantum gates yields the result of a (quantum) computation. In other words,
a realization of quantum information processing can be performed by preparing a quantum system in
a quantum state, then submitting this state to unitary transformations and, finally, reading the outcome
from a measurement.

The two basic characteristics of quantum mechanics used in a quantum computer are linearity
(principle of superposition of quantum states) and entanglement. The superposition principle gives
resources: the quantum computer can be in several states at the same time. This leads to a massive
quantum parallelism with a speed up of computations (for N qubits, 2N computations can be achieved
in parallel through the use of quantum algorithms). Entanglement, i.e., the fact that certain quantum
systems made of two or more sub-systems behave as an indissociable entity, is at the root of quantum
computing and quantum teleportation. In quantum mechanics, each measurement on a quantum system
perturbs the system and the superposition principle makes impossible to duplicate a quantum state
(no-cloning theorem). The two latter points and the use of the so-called mutually unbiased bases (MUBs),
to be defined in Section 3, are the basic ingredients of quantum cryptography (illustrated by the BB84
protocol, the first protocol of quantum cryptography).

The aim of this paper is to present to a community of computer engineers and mathematicians
the basic grounds of quantum information and quantum computing as well as some mathematical
aspects and related open problems.

This paper is organized as follows. Section 2 deals with the general framework of quantum
information and quantum computing (i.e., information and computing based on quantum physics):
some of the concepts and ideas evoked above are further described. In Section 3, we address some
mathematical aspects of quantum information; in particular, we review some of the methods for
constructing mutually unbiased bases (more precisely, methods based on the group SU(2) and on
Galois rings and Galois fields). Sections 2 and 3 are mainly based on References [1,2], respectively.
References [3-77] constitute an incomplete list (in chronological order) of original works of relevance
for an in-depth study of Sections 2 and 3. Finally, the reader will find in Reference [78] some calculations
with the help of the Python language illustrating the derivation of mutually unbiased bases according
to the methods described in Section 3.

2. The General Framework of Quantum Information and Quantum Computing

2.1. Quantum Mechanics in a Few Words

Classical physics does not apply in the microscopic world. It is not appropriate for describing,
explaining and predicting physical and chemical phenomena at the atomic and sub-atomic level.
The convenient theory for quantum systems (i.e., molecules, atoms, nuclei and elementary particles) is
quantum mechanics, an extension of the old quantum theory mainly due to Planck, Einstein, Bohr and
Sommerfeld (the word quantum comes from the fact that the energy exchanges between light and
matter occur in a quantized form). Quantum mechanics, which is often used in conjunction with
some other theories like relativity and quantum field theory, can be presented in two equivalent ways:
wave mechanics initiated by de Broglie and Schrédinger and matrix mechanics pioneered by Heisenberg,
Born and Jordan. It is not our purpose to list in detail the postulates of quantum mechanics. We shall
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restrict ourselves with four aspects of the Copenhagen interpretation which are indispensable in
quantum information and quantum computing.

In both presentations of quantum mechanics, the state of a closed quantum system is described by
a vector (in matrix mechanics) or a wave function (in wave mechanics), noted |¢) in both cases,
belonging to a finite or infinite Hilbert space H.

In quantum information and quantum computing, the space H is finite-dimensional (isomorphic
to C? for qubits or C* for qudits) and the (normalized) vector |¢), defined up to a phase factor,
can be the result (arising from an evolution or transformation of a vector |¢’))

) = Uly')

of the action of a unitary operator U (or quantum gate) on |¢’). (We are not concerned here
with dynamical systems for which the time evolution of ¢ in the wave picture is given by the
Schrodinger equation, in the non-relativistic case, or the Dirac equation, in the relativistic case,
two linear equations.)

In quantum information and quantum computing, |¢) is given by a linear combination of the
eigenvectors of an observable in the matrix formulation. An observable A is associated with
a measurable physical quantity (energy, position, impulsion, spin, etc.). It is represented by a
self-adjoint operator A acting on the space H. The possible outcomes of a measurement of an
observable A are the real eigenvalues of the operator A. Measurement in quantum mechanics
exhibits a probabilistic nature. More precisely, if (in the case of the finite-dimensional Hilbert

space H = C%)

d—1

) = Z cnl@n), cn €C (2)

n=0

where the ¢, given by
Algi) = Ailgi), i=0,1,---,d—1
are the orthormalized eigenvectors of A, then a measurement of A will give A; with the probability

lexl? = Koxlw)

where (¢|ip) stands for the inner product of |¢) by |¢x) (we suppose that the spectrum of A
is non-degenerate). Hence, before measurement, the quantum system is in several states being
a linear combination of the states |¢,) and, after measurement, the quantum system is in a
well-defined state |¢;). Measurement leads to a reduction of the wave packet or wave function
collapse. In terms of measurement of qudits, what precedes can be formulated as follows. Let
|y) as given by Equation (2) be a qudit describing a quantum system before measurement. A
measurement of ) in a basis {¢;) :i=0,1,--- ,d — 1} of C? yields the state

ly) | elw)
Wlonter )~ Tado '
with the probability
p(i) = [(¢len)

Observe that the factor (@;|{)|(¢;|)| ! is a simple phase factor without importance. By way of
example, in the case of C?, measurement of the qubit |¢p) = a|0) + b|1) in the basis {|0), [1)} of C?
yields |0) or |1) (up to unimportant phase factors) with the probabilities |a|? or |b|?, respectively.
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e A postulate of quantum mechanics of considerable interest in quantum information and quantum
computing concerns the description of a system composed of several sub-systems. The state
vector for the system is build from tensors products of the state vectors of the various sub-systems.
This may lead to entangled vector states for the composite system. Entanglement constitutes
another important resource for quantum information and quantum computing besides the
linearity and the non deterministic nature of quantum mechanics. As an example, suppose
we have a system of qubits made of two two-level sub-systems. The Hilbert space for the
system is H = C* ~ C? ® C2?, where the first and second C? corresponds to the first and second
sub-systems, respectively. By the tensor product, we can take

{10)1 ®10)2, [0)1 ®[1)2, [1)1 ®[0)2, [1)1 @ [1)2}

as a basis for C*, where the indices 1 and 2 refer to the first and the second qubits, respectively.
Two kinds of states can be considered in C*, namely separable or non entangled states as

1
[$s) = 1001 ® 5(|0)2 + V3[1),)
and non separable or entangled states as

) = = (101 © 12+ (1)1 210)2)

For the non entangled state |¢5), measurement of the qubit 1 yields |0); with the probability
1 while measurement of the qubit 2 leads either to |0), with the probability 1 or to |1), with the
probability % ; therefore, the result of a measurement for one qubit does not depend on the result of a
measurement for the other qubit. The situation turns out to be entirely different for the entangled state
|ns): @ measurement of the first qubit leads either to |0); with the probability J or to |1); with the
probability % ; once one of the two results has been obtained, we immediately know what would be the
result if we perform a measurement on the second qubit; it is thus unnecessary to make a measurement
on the second qubit and this may be sum up as follows:

result of a measurement of qubit1 = state of qubit 2 (without measurement)
0)1 = [1)2
0)2

[y
~
—_

I

and conversely

result of a measurement of qubit2 = state of qubit 1 (without measurement)
L2 = [0h
02 = [11

Entanglement may also occur for more than two qubits. For entangled states, there are strong
correlations between the results of measurements of the qubits. This effect is essential for quantum
information and quantum computing.

Unfortunately, “something is rotten in the state of Denmark” (where the Copenhagen
interpretation developed). In fact, entanglement is also an inconvenience: entanglement of qubits with
their environment leads to errors. This is known as the effect of decoherence an important drawback
for the building of a quantum computer. One way to fight against errors due to decoherence and other
effects of noise is to develop quantum error-correcting codes.
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2.2. Qubits and Qudits

2.2.1. Qubits

Let
By = {[0), [1)}
be an orthonormal basis called the computational basis of the Hilbert space C?. Any normalized
(to unity) vector |¢), see Equation (1), in C? is called a quantum bit or qubit. From the quantum
mechanical point of view, a qubit describes a state of a two-level quantum system. In the absence of
measurement (and decoherence), the state |i) is a superposition of |0) and |1). A measurement of
the state |¢p) yields either |0) (with the probability |a|?) or |1) (with the probability |b|?). Therefore,
the superposition of the states |0) and |1) is lost after the measurement. In matrix form, we take

0= (5) w-() w-()

From a group-theoretical point of view, |0) and |1) can be considered as the basis vectors for the
fundamental irreducible representation (%) of SU(2), in the chain SU(2) D U(1), with

0 =l3.5) =13 -3) ©

in the notations of quantum angular momentum theory.
The state |¢p) can be associated with a point (x,y, z,t) of the sphere S® in R* according to

€2 = % & a|0) +b[1) > (x,1,2,t)

with a = x + iy and b = z + it. In fact, the point (x,y, z, ) can be visualized as a point (1,6, ¢) of the
sphere 52 in R3, referred to as the Bloch sphere, since ¢ can be re-written as

|1p>:cosg|0>+ei¢sing\1>, 0<6<m 0<¢<2m 4)
up to a global multiplicative phase factor. The application

3 582 (x,y,z,t) — (1,0, 9)

corresponds to the first Hopf fibration S s—1> S? of compact fibre S'. Any qubit as given by Equation (4)
can be represented by a point on the Bloch sphere. Table 1 gives the correspondence between some
remarkable qubits |¢) and points on the Bloch sphere. Any unitary transformation acting on a qubit
|§) corresponds to a rotation around an axis passing through the centre of the Bloch sphere.

Table 1. Correspondence between qubits [¢) = cos §[0) + e!?sin §|1) and points (¢ = sinf cos ¢,
1 = sin#sin ¢, { = cos 0) of the Bloch sphere S? in R3.

¥ 10) 1) 70 +11)  5(0)=11))  5(10) +i[1))  J5(l0) —i[1))
(€n.2) (001) (0,0,-1) (1,0,0) (=1,0,0) (0,1,0) (0,-1,0)

Note that the sets

[0+ o)~ 1) [0 il (o) — 1) -
Bo—{ e } Bl—{ o, B } B, = {[0), 1)} 5)
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appearing in Table 1 are three orthonormal bases of the space C?. In addition, the vectors in By, B; and
B, are eigenvectors of the Pauli matrices ¢y, 02 and o3 (defined in Equation (9) below), respectively.
The bases By, By and Bj constitute the simplest example of the so-called MUBs to be studied in
Section 3.

2.2.2. Qudits

The generalisation from the two-dimensional Hilbert space C? to the d-dimensional Hilbert space
C (d > 2) is immediate. Given an orthonormal basis (called the computational basis)

By={ln):n=0,1,---,d—1} ®)
of C, any normalized vector
-1 d—1
|lp>:2cn|7’l>r Z‘Cn|2:1, CZEC, i:(—)ll/,d—l
n=0 n=0

is called a qudit. From the point of view of quantum mechanics, the states 1) can be realized as
generalized angular momentum states with

In) =ljym), n=j—m, d=2j+1 @)
where for fixed j, the index m takes the values —j, —j+1,- - -, j. This yields the correspondence
0) =17, H=1ji-1, -, l[d=1)=I,—j)

between qudits and angular momentum states. (Let us recall that the angular momentum state |j, m) is a
common eigenstate of the square J? of a generalized angular momentum and of the z-component J, of
the angular momentum.) Therefore, |¢) can be re-written

j
9)= Y diulim)
m=—j

in the angular momentum basis {|j,m) : m = —j,—j+1,---,j}. For instance, a qutrit |¢) can
be written
[¥) = c0l0) +c1[1) +c2[2)

in the ternary basis {|0), |1), |2) } or
|p) = da|1,—1) +d1]1,0) +dp|1,1)

in the balanced basis {|1, —1), [1,0),|1,1) } associated with the angular momentum j = 1.
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2.2.3. Qudits with d = 2N

In the case where d = 2V, the corresponding qudits can be obtained from tensor products.
For example, for d = 4 a basis of C* ~ C? ® C? is

|o>®o>:<§)>®<é>: ,o>®|1>:(3>®<g>:
|1>®o>:<§’>®<})>: ,1>®|1>:(‘13>®<2>:

Then, the most general quartit |i) is made of the superposition of tensor products of two qubits.
In detail, we have

_ o O O O O =~ O

1
0
0
0
0
0
1
0

|p) = al0) @ |0) + b|0) @ |1) +¢|1) ® [0) +d|1) @ |1)

where a,b,¢,d € C (usually, in |i) ® |j) the state |i) refers to the first qubit and |j) to the second).
It is interesting to remark that the vectors |¢) for d = 2, 22 and 23 are associated with the Hopf

1 3
fibrations $3 - §2 (connected to complex numbers), §7 2 g4 (connected to quaternions) and

7
15 2, 8 (connected to octonions). Entanglement for d = 22 and 2% can be discussed in terms of
fibrations on spheres [21]. In the same vein, we may ask the question of the interest for entanglement
of Cayley-Dickson algebras for d = 2N with N > 3 and of fibrations on hyperboloids [13].

2.3. Physical Realizations of Qubits

According to R. Landauer, information is physical so that qubits are realised by quantum systems,
more specifically by two-level quantum systems, the qubits |0) and |1) corresponding to two different
(energy) levels. We shall not be concerned here with the physical realization of qubits (and qudits). It is
enough to say that any two-level quantum system may be considered as a qubit. Therefore, qubits can
be carried out by nuclear spins, ultra-cold trapped ions, neutral atoms and Bose-Einstein condensates,
two different polarizations of a photon, and Josephson tunnel nanojunctions. For instance, in nuclear
magnetic resonance, the nuclear spins of an atom in an organic molecule can be aligned (giving the
state |0)) or anti-aligned (giving the state |1)) with an applied constant magnetic field; in generalized
angular momentum terminology, we have the quantum states given by Equation (3) and corresponding
to the spin j = 1. Similarly, for an ion cooled and trapped by electric fields in a cavity, qubits can be
implemented as electronic states (ground state for |0), excited state for |1)). Vibrational states can also
be used for realizing qubits (zero-phonon state for |0), one-phonon state for |1)).

2.4. Entanglement

2.4.1. Generalities

Entanglement occurs only in quantum physics. It has no analogue in classical physics. The notion
of entanglement goes back to the famous paper by Einstein, Poldosky and Rosen. In quantum physics,
two (or more than two) particles are said to be entangled if the quantum state of each particle depends
of the quantum state(s) of the other(s) or cannot be described independently of the quantum state(s)
of the other(s). In other words, there exist correlations between the physical properties of a system
of entangled particles. More generally, two entangled sub-systems S; and S; are not independent so
that the global system {53, Sp} must be considered as a whole even after separation by an arbitrary
distance. Then, a measurement made on one sub-system gives an information on the other (without
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measurement on the other sub-system). On the contrary, for a non entangled system consisting of
two sub-systems, a measurement on one sub-system does not give in general an information on the
other sub-system.

As an example, let us consider a system consisting of two particles, system having a total spin
equal to 0. If the spin of one particle is measured to be % on a certain axis, then we know (without any
measurement) that the spin on the other particle on the same axis is — 1 because

0=3"2

The two particles are not independent, even after separation. They still behave like an indivisible
system of spin 0.

Entanglement contradicts the principle of locality. There is non locality in the sense that what
happens in some place depends of what happens in another place. Indeed, quantum mechanics is a
non local, non deterministic and linear physical theory.

2.4.2. Entanglement of Qubits

In quantum information, the notion of entanglement occurs for multi-qubit systems. Let us
consider a two-qubit system. There are two possibilities.

e The system is non entangled (or separable); it is then described by a state |ys) € C? ® C? such that
[¢s) = (|0) +DI1)) © (c|0) +d[1))
which can be re-written as
|ps) = ac|0) ® |0) +ad|0) @ [1) + bc|1) ® |0) + bd|1) ® |1)

where a|0) + b|1) and ¢|0) + d|1) refer to the first and second qubit, respectively.
e  The system is entangled (or non separable); it is then described by a state |¢,5) € C* such that

[§s) = A|0) @ 0) + B|0) © [1) + C[1) @ |0) + D[1) ® [1)
cannot be written as the tensor product of two qubits in C2.
It is clear that a necessary and sufficient condition for an arbitrary two-qubit state
[§) = «[0) ©0) + Bl0) @ [1) +7[1) @ [0) +6[1) @ [1)

of C* to be non entangled is
xd—By=0
Therefore, if 6 — By # 0, then the state is entangled. The degree of entanglement of an arbitrary

normalized two-qubit state |¢p) is characterized by the concurrence defined by

C=lad—By|l, 0<C< (8)

NI~

Non entangled states correspond to C = 0, maximally entangled states to C = 1. (A maximally
entangled state is such that the density operator for each qubit is half the identity operator;
it corresponds to a maximum value of the entropy.) Equation (8) can be straightforwardly generalized
to the case

d—1d—1
lp) =) Y aijliy @ j)

i=0 j=0
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of two qudits for which the concurrence C is defined as

C= det(ﬁli]'), 0<C<L

Sh
_2u

in agreement with Equation (8) for d = 2.

Example 1. Let us consider the four states (® stands for the addition modulo 2)
1
B) = 75

called Bell states (in reference to the work on the so-called Bell inequalities) or EPR pairs (in reference to the
paper by Einstein, Poldosky and Rosen). As a particular case

0@y + (=D ) elyel), xy=01

|Bo1) = \2

where the first qubit (qubit 1) and the second one (qubit 2) are clearly emphasized in order to avoid confusion.
The result of a measurement of the qubit 1 gives

(10)1 ® [1)2 4 1)1 ®]0)2)

o cither |0); (with the probability 1) so that the qubit 2 is a priori (without measurement) in the state |1)»
e or|1)q (with the probability % ) so that the qubit 2 is a priori (without measurement) in the state |0)

but no measurement can lead to both qubits 1 and 2 in the same state (|0) or |1)). The result of a measurement of
the qubit 1 provides information on the qubit 2 and reciprocally. It is then unnecessary to make a measurement
of one qubit once the result of the measurement of the other is known. Similar conclusions can be obtained
for the three other Bell states Boo, B1o and B11. The four Bell states are maximally entangled (they correspond
toC = J).
In passing note that
|Bxy) = (=1)*[(01)¥(03)*] © 00| Boo)

where oy, 01 and o3 are three of the four Pauli matrices

S froy (o (1o __. (0o o
0*011 1*10/ 3*0_1/ 2*13*10

Thus, any Bell state |B.,) can be obtained from |Boo).

Example 2. Let us consider the separable state

1 1
—(]0) +2]1)) = —=(a|0) ®{0) +24|0) ® |1) + b|1) ® |0) +2b|1) ® |1
\/E(H 1) \@(HH 10) @[1) +b[1) @10) +2b[1) @ [1))
tensor product of two normalized qubits. A measurement of the first qubit gives either |0) with the probability
|a|> = |\if5|2 + |%|2 or |1) with the probability |b|*> = |\%|2 + \\2/—%|2 while a measurement of the second
2

y) = (a0) +b]1)) ®

qubit gives either |0) with the probability 1 = |%|2 + |%|2 or |1) with the probability § = |%|2 + |\27bg
Therefore, a measurement on one qubit does not provide information on the other qubit (the state |() corresponds
toC =0).

It is important to realize that entanglement of qubits (as in Example 1) and more generally of
qudits has no analogue for classical bits. To be clear, the bits in 00 or 01 or 10 or 11 are not correlated.
This is not the case for the quantum bits in any of the Bell states By.
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2.5. Quantum Gates

2.5.1. One-Qubit Gates

In a classical computer, bits are handled with the help of logic gates (there exist seven basic
logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR). A quantum computer processes qubits
arranged in registers. It is equipped with quantum gates which perform unitary transformations
on qubits. Quantum gates can be represented by unitary matrices. Table 2 gives some examples of
quantum gates [G] for one-qubit systems together with their matrix representations G. The actions of
the one-qubit gates of Table 2 on the qubit |x) (with x = 0 or 1) are given by

|x) = [1] = |x), |x) = [NOT] — |[x& 1)
|x) = [Se] = €*|x), |x) = [H] = %(|0> +(=1)*1)) = %ﬁ(lxéBU + (=1)%|x))

(as an example, the quantum circuit |x) — [Sg] — €'*|x) is described by the action Sg|x) = el*|x)).
Therefore, by linearity

a|0) 4 b|1) — [NOT] — b|0) +a|1)
al0) +b|1) — [Sg] — a|0) + e¥b|1)
a|0) +b|1) — [H] — %(ﬂ+b)\0> + %(n —b)|1)
al0) 4+ b|1) — [H] — [H] — a|0) + b[1)

(the last circuit reflects that H2 = I). Note that the most general qubit can be obtained from the
sequence [H| — [Sy] — [H] — [S% +¢] of one-qubit gates since

|0) = [H] = [Spe] — [H] = [Sz ] — cos6]0) +e'?sin6|1)

or
Sz, oHS2H|0) = cos6]0) +el?sin6|1)

up to the phase factor e'’.
Table 2. Four basic quantum gates for one-qubit systems; the gates [I] and [NOT] also denoted [X] are

associated with the Pauli matrices oy or I and 07 or oy, respectively; the two other Pauli matrices oy or
0y and 03 or 0, define two further one-qubit gates denoted as [Y] and [Z], respectively.

Gate [G] Identity Gate [I] Not Gate [NOT] Phase Gate [Sy] Hadamard Gate [H]
. (1 0 _ (0 1 (1 0 _ 1 (1 1
matrix form G I= (O 1) NOT = (1 0) Sg = (0 ew) H= 7 (1 _1)

2.5.2. Multi-Qubit Gates

Quantum gates for two-qubit systems are important. For example, let us mention the
controlled-NOT gate [Cnor] defined via

[x) @ |y) = [Cnor] = [x) @y & x)

or in operator form
Crorlx) @ y) = [x) @y © x)
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where the first input qubit |x) and the second input qubit |y) are called control qubit and target qubit,
respectively. Here, the corresponding quantum circuit has two inputs (|x) and |y)) and two outputs
(|x) and |y @ x)). In matrix form, we have the permutation matrix

1 0 0O
cor=14 9 0 1
0 010
Clearly, (Cnor)?* = I. Note that
Cnorlx) @ 10) = [x) ® [x) (10)

where x = 0 or 1; however, this result does not mean that an arbitrary state |¢) = a|0) + b|1) can be
cloned by using the gate [Cnot] since we generally have (see Section 2.6)

Cnorl¥) ®0) # ) @ [¢)
to be compared with Equation (10). Note also that
[x) @ ly) = [HeI] = [Cnot] = |Bxy)
or

Bxy) = Cnor(H® I)[x) @ |y)

that shows the interest of the gate [Cnot] for producing Bell states (i.e., entangled states) from non
entangled states. (By [H ® I], we mean that the quantum gates [H] and [I] act on |x) and |y), respectively.
Hence, H ® I stands for the direct product of the matrices H and I.)

More generally, the quantum gate [Uy| is defined through

[X) @ [y) = [Uf = [x) @ |y @ f(x))

or in an equivalent way
Uslx) @ |y) = [x) @ [y & f(x))
where f stands for the function f : {0,1} — {0,1}. Clearly, (Uf)2 =1L
Another important two-qubit gate is the controlled phase gate [CPy] such that

%) @ ly) — [CPq] — |x) @ ™|y)

or
CPylx) ® |y) = |x) @ ™|y
with
100 O
010 0
CPy =
1o 01 o
0 0 0 e

Note that

[Cnor] = I®H] = [CPz] — [CPg] — [I® H]

%

so that the gate [CNor] can be obtained from the gates [I ® H] and [CP%].
There exist other two-qubit gates. Moreover, use is also made of n-qubit gates (n > 2).

The advantage of the quantum gates over the classical logic gates is that all the quantum gates
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are reversible or invertible due to the unitary property of the matrices representing quantum gates;
this is not always the case for classical logic gates.

The preceding examples are sufficient for illustrating how works the algorithm set up by Deutsch
and Jozsa [1].

2.5.3. Quantum Computing Algorithms

The Deutsch-Jozsa algorithm addresses the following problem: to find with only one measurement
if the function

f:{0,1}®" = {0,1}

is constant or balanced (f is balanced means either f(0) = 0and f(1) =1 or f(0) =1and f(1) =0;
f is constant means f(0) = f(1) = 0 or 1). The classical algorithm requires 2"~ ! + 1 evaluations of f
whereas only one measurement is necessary in order to get the answer. For n = 1, the proof based on
the quantum circuit [H® H| — [Ug] — [H® I] of two-qubit gates is as follows. It is easy to show that

0)®]1) = H®H] = [Uf] - HRI] — |x) ® |y)

alternatively
[x) @ly) = (Ho Uy(H® H)[0) @ 1)
where
) @ly) = +0)® \2(|0> —|1)) if f is constant
ly) = £1)® i(|0> —|1)) if f is balanced

V2

Then, the result of a single measurement of the first output qubit can be

|0) = fis constant
or
|1) = f isbalanced

Therefore, a single measurement (instead of two in the classical case) is sufficient for getting the
answer. The Deutsch-Jozsa algorithm is of little interest. However, it shows the superiority of the
quantum approach on the classical one (namely, only one measurement instead of 2"~! + 1 evaluations
in the general case where f : {0,1}®" — {0,1}).

Let us briefly mention two other historical algorithms, viz, the Shor algorithm and the Grover
algorithm [1]. The Shor algorithm concerns the search of the period of a periodic function and is
used for the factorization of a composite integer into prime factors. It constitutes an alternative to the
classical RSA code. The Grover algorithm makes it possible to find an item in an unstructured data
basis consisting of # entries; the quantum speed up for this algorithm is n — /n (O(n) researches for
the classical case and O(y/n) for the quantum case). The two preceding algorithms are based on the
massive quantum parallelism. They formally show the superiority of a (still hypothetical) quantum
computer on a classical one. The present evolution is towards quantum cryptography.

2.6. No-Cloning Theorem

We may ask the question: does there exist a unitary operator (or quantum gate) U such that

Ulp) ®[0) = [p) @ |y) (11)
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where |¢) = a|0) + b|1) is an arbitrary qubit. As a consequence of the linearity of quantum mechanics,
the answer is no: it is not possible to clone an arbitrary qubit |¢) [8]. This result can be proved in the
following way. Suppose that there exists U such that Equation (11) is true. Then, by linearity

Ulp) ®0) = U(al0) +b[1)) ©0)
U(al0) ©[0) +b[1) © |0))
= al|0) ® |0) +bU|1) ® |0)
= a|0) ®|0) +b|1) ® 1)

(12)

On another side, we have

Ulp)®[0) = [p) @)
= (al0) +b[1)) ® (a|0) + b[1)) (13)
= 4%0) ® |0) +ab(|0) @ [1) + |1) ®[0)) + b?|1) @ [1)

Compeatibility between Equations (12) and (13) yields
i*=a(=a=0,1), P»=b(= b=0,1), ab=0(= a=0o0rb=0)

The sole solutions are (2 = 1, b = 0) and (a2 = 0, b = 1) in agreement with Equation (10). There are
no solution in the general case. This proves the no-cloning theorem (a theorem that does not have an
analogue in classic