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Abstract: In this paper, we derive Fourier series expansions for functions related to sums of finite
products of Chebyshev polynomials of the first kind and of Lucas polynomials. From the Fourier
series expansions, we are able to express those two kinds of sums of finite products of polynomials as
linear combinations of Bernoulli polynomials.
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1. Introduction and Preliminaries

In this paper, we will consider some functions related to sums of finite products of Chebyshev
polynomials of the first kind and of Lucas polynomials, and derive Fourier series expansions for them.
Then, from the Fourier series expansions, we will be able to express those two kinds of sums of finite
products of polynomials as linear combinations of Bernoulli polynomials.

Here, we would like to mention the following example as a motivation for studying these kinds
of sums of finite products of special polynomials. Let us consider

γm(x) =
m−1

∑
k=1

1
k(m− k)

Bk(x)Bm−k(x), (m ≥ 2). (1)

Then, in the same way as we will do in (14) and (17), it is possible to express γm(x) in terms of
Bernoulli polynomials by making use of the Fourier series expansion of γm(< x >) (see (11)). Then,
unlike the known involved proofs, from this expression, we can easily deduce the famous FPZ-identity
(Faber-Pandharipande-Zagier identity) (see [1]) and a variant of the Miki’s identity ([2–5]). Indeed,
from the Fourier series expansion of γm(< x >), we were able to deduce the following polynomial
identity in (2), from which the variant of Miki’s identity and FPZ-identity follow respectively by setting
x = 0 and x = 1

2 in the following:

m−1

∑
k=1

1
2k (2m− 2k)

B2k (x) B2m−2k (x) +
2

2m− 1
B1 (x) B2m−1 (x)

=
1
m

m

∑
k=1

1
2k

(
2m
2k

)
B2kB2m−2k (x) +

1
m

H2m−1B2m (x)

+
2

2m− 1
B1 (x) B2m−1, (m ≥ 2) ,

(2)
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where Hm = ∑m
j=1

1
j are the harmonic numbers.

The reader refers to the Introduction of the paper [6] for some details on this.
Along the same line as the present paper, we obtained Fourier series expansions of sums of

finite products of functions related to some Appell and some non-Appell polynomials and were able
to express those sums of finite products of such polynomials in terms of Bernoulli polynomials as
immediate corollaries. Indeed, they had been done for Appell polynomials like Bernoulli and Euler
polynomials in [7,8], and, for quite a few non-Appell polynomials, namely Genocchi polynomials,
Chebyshev polynomials of the second, third, fourth kinds, and Fibonacci, Legendre and Laguerre
polynomials in [9–12]. Here, we let the reader refer to [13,14] as general references on orthogonal
polynomials and to [15–17] as some recent papers on Lucas polynomials. As to some related results,
we recommend the reader to look at the papers [7,8,12,18–22].

Chebyshev polynomials of the first kind have important applications in approximation theory.
Indeed, their roots are used as nodes in polynomial interpolation and the resulting interpolation
polynomial gives us a good polynomial approximation to a continuous function under the maximum
norm. On the other hand, Lucas polynomials are useful in generating irreducible polynomials of high
degree so that they have some applications in coding and cryptography. In addition, Lucas numbers are
used in the areas relevant to operational research, statistics and computational mathematics, and allow
us to find very large prime numbers in low complexity.

The Chebyshev polynomials Tn(x) of the first kind and the Lucas polynomials Ln(x) are
respectively given by the recurrence relations as follows (see [13,14,16]):

Tn+2(x) = 2xTn+1(x)− Tn(x), (n ≥ 0), T0(x) = 1, T1(x) = x, (3)

Ln+2(x) = xLn+1(x) + Ln(x), (n ≥ 0), L0(x) = 2, L1(x) = x. (4)

From (3) and (4), we can easily derive the generating functions for Tn(x) and Ln(x) as follows:

F(t, x) =
1− xt

1− 2xt + t2 =
∞

∑
n=0

Tn(x)tn, (5)

G(t, x) =
2− xt

1− xt− t2 =
∞

∑
n=0

Ln(x)tn. (6)

The Tn(x) and Ln(x) are explicitly given as in the following:

Tn(x) =
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
(2x)n−2l , (n ≥ 1), (7)

Ln(x) = n
[ n

2 ]

∑
l=0

1
n− l

(
n− l

l

)
xn−2l , (n ≥ 1). (8)

It is well known or easily checked from (7) and (8) that the two polynomials are related by

Ln(x) = 2i−nTn

(
ix
2

)
, i =

√
−1. (9)

In terms of the generating function, the Bernoulli polynomials Bn(x) are given by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
. (10)
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For any real number x, the fractional part of x is denoted by

< x >= x− [x] ∈ [0, 1), (11)

where [x] indicates the greatest integer ≤ x. For any integers m, r, with m ≥ 2, r ≥ 1, we let

αm,r(x) =
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x),

(12)

where the first and second inner sums run, respectively, over all nonnegative integers i1, · · · , ir+1, with
i1 + · · ·+ ir+1 = m− l, and with i1 + · · ·+ ir+1 = m− l − 2.

Then, we will consider the functions αm,r(< x >), and derive their Fourier series expansions.
From these Fourier series expansions, as a corollary, we can express αm,r(x) as a linear combination
of Bernoulli polynomials. Indeed, Theorems 1 and 2 are our results for the Fourier expansions of
αm,r(< x >), and Theorem 3 is those for the expressions of αm,r(x) in terms of Bernoulli polynomials.

Theorem 1. For any integers m, r with m ≥ 2, r ≥ 1, we let

∆m,r =
m + r

r!

[m−1
2 ]

∑
l=0

(−1)l

m + r− l

(
m + r− l

l

)
(m + r− 2l)r2m−2l . (13)

Assume that ∆m,r = 0, for some integers m, r. Then, we have the following:

(a)

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >)

=
1
2r

∆m+1,r−1 −
∞

∑
n=−∞,n 6=0

(
1
2r

m

∑
j=1

2j(r + j− 1)j

(2πin)j ∆m−j+1,r+j−1

)
e2πinx,

for all x ∈ R. Here, the convergence is uniform.
(b)

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >)

=
1
2r

m

∑
j=0,j 6=1

2j
(

r + j− 1
j

)
∆m−j+1,r+j−1Bj(< x >),

for all x ∈ R. Here, (x)r are the falling factorial polynomials defined by

(x)r = x(x− 1) · · · (x− r + 1), (r ≥ 1), (x)0 = 1.
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Theorem 2. For any integers m, r with m ≥ 2, r ≥ 1, let ∆m,r be as in (13). Assume that ∆m,r 6= 0, for some
positive integers m, r. Then, we have the following:

(a)

1
2r

∆m+1,r−1

−
∞

∑
n=−∞,n 6=0

( 1
2r

m

∑
j=1

2j(r + j− 1)j

(2πin)j ∆m−j+1,r+j−1

)
e2πinx

=



∑m
l=0 ∑i1+···+ir+1=m−l (

r+l
r ) < x >l Ti1(< x >) · · · Tir+1(< x >)

−∑m−2
l=0 ∑i1+···+ir+1=m−l−2 (

r+l
r ) < x >l Ti1(< x >) · · · Tir+1(< x >),

for x ∈ R−Z,
1
2 ∆m,r, for x ∈ Z, and m odd,

(−1)
m
2 m+r

m
2 +r (

m
2 +r

r ) + 1
2 ∆m,r, for x ∈ Z, and m even.

(b)

1
2r

m

∑
j=0

2j
(

r + j− 1
j

)
∆m−j+1,r+j−1Bj(< x >)

=
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >),

for all x ∈ R−Z;

1
2r

m

∑
j=0,j 6=1

2j
(

r + j− 1
j

)
∆m−j+1,r+j−1Bj(< x >)

=


1
2r ∆m,r, for x ∈ Z, and m odd,

(−1)
m
2 m+r

m
2 +r (

m
2 +r

r ) + 1
2 ∆m,r, for x ∈ Z, and m even.

Theorem 3. For any integers m, r with m ≥ 2, r ≥ 1, we let ∆m,r be as in (13). Then, we have the identity

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

=
1
2r

m

∑
j=0

2j
(

r + j− 1
r− 1

)
∆m−j+1,r+j−1Bj(x).

(14)

In addition, for any integers m, r with m ≥ 2, r ≥ 1, we put

βm,r(x) =
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x),

(15)
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where the first and second inner sums are over all nonnegative integers i1, · · · , ir+1, with i1 + · · ·+
ir+1 = m− l, and with i1 + · · ·+ ir+1 = m− l − 2, respectively.

Then, we will derive the Fourier series expansions of the functions βm,r(< x >), and express
βm,r(x) in terms of Bernoulli polynomials, as an easy corollary to these Fourier series expansions.

In detail, Theorem 4 is our results for the Fourier series expansions of the functions βm,r(< x >),
and Theorem 5 is those for the expressions of βm,r(x) in terms of Bernoulli polynomials.

Theorem 4. For any integers m, r with m ≥ 2, r ≥ 1, we let

Ωm,r =
2r+1(m + r)

r!

[m−1
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
(m + r− 2l)r. (16)

Then, we have the following:

(a)

2
r

Ωm+1,r−1 −
∞

∑
n=−∞,n 6=0

(
2
r

m

∑
j=1

(
1

2πin

)j (r + j− 1)j

2j Ωm−j+1,r+j−1

)
e2πinx

=



∑m
l=0 ∑i1+···+ir+1=m−l (

r+l
r )
(
<x>

2
)l Li1(< x >) · · · Lir+1(< x >) ,

+∑m−2
l=0 ∑i1+···+ir+1=m−l−2 (

r+l
r )
(
<x>

2
)l Li1(< x >) · · · Lir+1(< x >),

for x ∈ R−Z,
1
2 Ωm,r, for x ∈ Z, and m odd,
1
2 Ωm,r + 2r+1 m+r

m
2 +r (

m
2 +r

r ), for x ∈ Z, and m even.

(b)

2
r

m

∑
j=0

(
r + j− 1

j

)
1
2j Ωm−j+1,r+j−1Bj(< x >)

=
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)(< x >

2

)l
Li1(< x >) · · · Lir+1(< x >)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)(< x >

2

)l
Li1(< x >) · · · Lir+1(< x >),

for x ∈ R−Z;

2
r

m

∑
j=0,j 6=1

(
r + j− 1

j

)
1
2j Ωm−j+1,r+j−1Bj(< x >)

=


1
2 Ωm,r, for x ∈ Z, and m odd,
1
2 Ωm,r + 2r+1 m+r

m
2 +r (

m
2 +r

r ), for x ∈ Z, and m even.
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Theorem 5. For any integers m, r with m ≥ 2, r ≥ 1, let Ωm,r be as in (16). Then, we have the identity

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

=
2
r

m

∑
j=0

(
r + j− 1

r− 1

)
1
2j Ωm−j+1,r+j−1Bj(x).

(17)

2. Fourier Series Expansions for Functions Related to the Chebyshev Polynomials of the
First Kind

We will start with the next result, which plays a crucial role to our discussion in this section.

Lemma 1. Let m, r be integers with m ≥ 2, r ≥ 1. Then, we have the identity

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

=
1

2r−1r!
T(r)

m+r(x),

(18)

where the first and second inner sums on the left-hand side are respectively over all nonnegative integers
i1, · · · , ir+1, with i1 + · · ·+ ir+1 = m− l, and with i1 + · · ·+ ir+1 = m− l − 2.

Proof. By differentiating (5) r times, we have

∂r

∂xr F(t, x) = (t− t3)(2t)r−1r!(1− 2xt + t2)−(r+1), (r ≥ 1), (19)

∂r

∂xr F(t, x) =
∞

∑
m=r

T(r)
m (x)tm =

∞

∑
m=0

T(r)
m+r(x)tm+r. (20)

Equations (19) and (20) give us(
1

1− 2xt + t2

)r+1
=

1
2r−1r!(1− t2)

∞

∑
m=0

T(r)
m+r(x)tm. (21)

On the other hand, using (5) and (21), we observe that

m

∑
l=0

∑
i1+···+ir+1=l

Ti1(x) · · · Tir+1(x)tl

=
( ∞

∑
l=0

Tl(x)tl
)r+1

= (1− xt)r+1
(

1
1− 2xt + t2

)r+1

= (1− xt)r+1(1− t2)−1 1
2r−1r!

∞

∑
m=0

T(r)
m+r(x)tm.

(22)
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From (22), we obtain

1
2r−1r!

∞

∑
m=0

T(r)
m+r(x)tm

= (1− t2)(1− xt)−(r+1)
∞

∑
l=0

∑
i1+···+ir+1=l

Ti1(x) · · · Tir+1(x)tl

= (1− t2)
∞

∑
j=0

(
r + j

j

)
xjtj

∞

∑
l=0

∑
i1+···+ir+1=l

Ti1(x) · · · Tir+1(x)tl

=
( ∞

∑
j=0

(
r + j

j

)
xjtj −

∞

∑
j=2

(
r + j− 2

j− 2

)
xj−2tj

)
×

∞

∑
l=0

∑
i1+···+ir+1=l

Ti1(x) · · · Tir+1(x)

=
∞

∑
m=0

m

∑
l=0

(
r + m− l

m− l

)
xm−l ∑

i1+···+ir+1=l
Ti1(x) · · · Tir+1(x)tm

−
∞

∑
m=2

m−2

∑
l=0

(
r + m− l − 2

m− l − 2

)
xm−l−2 ∑

i1+···+ir+1=l
Ti1(x) · · · Tir+1(x)tm

=
∞

∑
m=0

m

∑
l=0

(
r + l

l

)
xl ∑

i1+···+ir+1=m−l
Ti1(x) · · · Tir+1(x)tm

−
∞

∑
m=2

m−2

∑
l=0

(
r + l

l

)
xl ∑

i1+···+ir+1=m−l−2
Ti1(x) · · · Tir+1(x)tm.

(23)

By comparing both sides of (23) for m ≥ 2, we get the desired result.

Remark 1. Note that, from (23) with m = 0, 1, 2, we have

T(r)
r (x) = 2r−1r!, (24)

T(r)
r+1(x) = 2r(r + 1)!x, (25)

T(r)
r+2(x) = 2r−1(r + 2)!

(
2x2 − 1

r + 1

)
. (26)

From (7), we note that the rth derivative of Tn(x) is given by

T(r)
n (x) =

n
2

[ n−r
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
2n−2l(n− 2l)rxn−2l−r. (27)

Then, combining (18) and (27), we obtain

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

l

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

=
2m(m + r)

r!

[m
2 ]

∑
l=0

(
−1

4

)l 1
m + r− l

(
m + r− l

l

)
(m + r− 2l)rxm−2l .

(28)
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As in (12), we let

αm,r(x) =
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

l

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x),

(29)

where m ≥ 2, and r ≥ 1. Now, we will consider the function

αm,r(< x >) =
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
< x >l Ti1(< x >) · · · Tir+1(< x >),

(30)

which is defined on R and periodic with period 1.
The Fourier series of αm,r(< x >) is

∞

∑
n=−∞

A(m,r)
n e2πinx, (31)

where

A(m,r)
n =

∫ 1

0
αm,r(< x >)e−2πinxdx

=
∫ 1

0
αm,r(x)e−2πinxdx.

(32)

For m ≥ 2, r ≥ 1, let us put

∆m,r = αm,r(1)− αm,r(0), (33)

where we note that

αm,r(0) =

0, if m is odd,

(−1)
m
2 m+r

m
2 +r (

m
2 +r

r ), if m is even.
(34)

From (28), (33) and (34), we obtain

∆m,r =
m + r

r!

[m−1
2 ]

∑
l=0

(−1)l

m + r− l

(
m + r− l

l

)
(m + r− 2l)r2m−2l . (35)

It is immediate to see from (18) that

d
dx

αm,r(x) =
1

2r−1r!
T(r+1)

m+r (x)

= 2(r + 1)αm−1,r+1(x).
(36)

In turn, (36) yields the following:

d
dx

(
αm+1,r−1(x)

2r

)
= αm,r(x), (37)
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∫ 1

0
αm,r(x)dx =

1
2r

∆m+1,r−1, (38)

αm,r(0) = αm,r(1)⇐⇒ ∆m,r = 0. (39)

We are now going to determine the Fourier coefficients A(m,r)
n .

Case 1: n 6= 0.

A(m,r)
n =

∫ 1

0
αm,r(x)e−2πinxdx

= − 1
2πin

[
αm,r(x)e−2πinx]1

0 +
1

2πin

∫ 1

0

(
d

dx
αm,r(x)

)
e−2πinxdx

=
2(r + 1)

2πin

∫ 1

0
αm−1,r+1(x)e−2πinxdx− 1

2πin
∆m,r

=
2(r + 1)

2πin
A(m−1,r+1)

n − 1
2πin

∆m,r.

Thus, we have shown the following recursive relation:

A(m,r)
n =

2(r + 1)
2πin

A(m−1,r+1)
n − 1

2πin
∆m,r, (40)

which in turn gives the following expression

A(m,r)
n = − 1

2r

m

∑
j=1

2j(r + j− 1)j

(2πin)j ∆m−j+1,r+j−1. (41)

Case 2: n = 0.

A(m,r)
0 =

∫ 1

0
αm,r(x)dx =

1
2r

∆m+1,r−1. (42)

To proceed further, we recall the following facts about Bernoulli function:

(a) for m ≥ 2,

Bm(< x >) = −m!
∞

∑
n=−∞,n 6=0

e2πinx

(2πin)m , (43)

(b) for m = 1,

−
∞

∑
n=−∞,n 6=0

e2πinx

2πin
=

{
B1(< x >), for x ∈ R−Z,

0, for x ∈ Z.
(44)
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From (41)–(44), we get the next Fourier series expansion of αm,r(< x >)

1
2r

∆m+1,r−1 −
∞

∑
n=−∞,n 6=0

(
1
2r

m

∑
j=1

2j(r + j− 1)j

(2πin)j ∆m−j+1,r+j−1

)
e2πinx

=
1
2r

∆m+1,r−1 +
1
2r

m

∑
j=1

2j
(

r + j− 1
j

)
∆m−j+1,r+j−1

(
−j!

∞

∑
n=−∞,n 6=0

e2πinx

(2πin)j

)

=
1
2r

m

∑
j=0,j 6=1

2j
(

r + j− 1
j

)
∆m−j+1,r+j−1Bj(< x >)

+ ∆m,r ×
{

B1(< x >), for x ∈ R−Z,

0, for x ∈ Z.

(45)

Evidently, the function αm,r(< x >), (m ≥ 2, r ≥ 1) is piecewise C∞. Moreover, αm,r(< x >) is
continuous for those integers m, r with ∆m,r = 0, and discontinuous with jump discontinuities at integers for
those integers m, r with ∆m,r 6= 0. Hence, for ∆m,r = 0, the Fourier series of αm,r(< x >) converges uniformly
to αm,r(< x >); for ∆m,r 6= 0, the Fourier series of αm,r(< x >) converges pointwise to αm,r(< x >), for
x ∈ R−Z, and converges to

1
2
(αm,r(0) + αm,r(1)) = αm,r(0) +

1
2

∆m,r, (46)

for x ∈ Z. Now, from (45), (46), and these observations, we have Theorems 1 and 2 in Section 1. We remark here
that Theorem 3 in Section 1 follows immediately from (b) of Theorems 1 and 2. Before closing this section, we
will illustrate the identity (14), for m = 2, r = 1 and also for m = 3, r = 1. For this, we first note that

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, (47)

B0(x) = 1, B1(x) = x− 1
2

, B2(x) = x2 − x +
1
6

, B3(x) = x3 − 3
2

x2 +
1
2

x. (48)

By (35), we have

∆3,0 = 2, ∆2,1 = 12, ∆1,2 = 6, (49)

∆4,0 = 0, ∆3,1 = 16, ∆2,2 = 24, ∆1,3 = 8. (50)

In addition, from (47), we see that

∑
i+j=3

Ti(x)Tj(x) = 12x3 − 8x, ∑
i+j=2

Ti(x)Tj(x) = 5x2 − 2,

∑
i+j=1

Ti(x)Tj(x) = 2x, ∑
i+j=0

Ti(x)Tj(x) = 1.
(51)

Now, we see from (48)–(51) that the identity in (14) for m = 2, r = 1 and that, for m = 3, r = 1
correspond respectively to

∑
i+j=2

Ti(x)Tj(x) + 2x ∑
i+j=1

Ti(x)Tj(x) + 3x2 ∑
i+j=0

Ti(x)Tj(x)− ∑
i+j=0

Ti(x)Tj(x)

= B0(x) + 12B1(x) + 12B2(x) = 12x2 − 3,
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∑
i+j=3

Ti(x)Tj(x) + 2x ∑
i+j=2

Ti(x)Tj(x) + 3x2 ∑
i+j=1

Ti(x)Tj(x)

+ 4x3 ∑
i+j=0

Ti(x)Tj(x)− ∑
i+j=1

Ti(x)Tj(x)− 2x ∑
i+j=0

Ti(x)Tj(x)

= 16B1(x) + 48B2(x) + 32B3(x) = 32x3 − 16x.

3. Fourier Series Expansions for Functions Related to the Lucas Polynomials

The proof for the next lemma will be omitted, as this can be shown just as in the case of Lemma 1.

Lemma 2. Let m, r be integers with m ≥ 2, r ≥ 1. The following identity holds true:

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

=
2r+1

r!
L(r)

m+r(x),

(52)

where the first and second inner sums on the left-hand side are respectively over all nonnegative integers
i1, · · · , ir+1, with i1 + · · ·+ ir+1 = m− l, and with i1 + · · ·+ ir+1 = m− l − 2.

Remark 2. The identity in (52) follows from

2r+1

r!

∞

∑
m=0

L(r)
m+r(x)tm

=
∞

∑
m=0

m

∑
l=0

(
r + l

r

)( x
2

)l
∑

i1+···+ir+1=m−l
Li1(x) · · · Lir+1(x)tm

+
∞

∑
m=2

m−2

∑
l=0

(
r + l

r

)( x
2

)l
∑

i1+···+ir+1=m−l−2
Li1(x) · · · Lir+1(x)tm.

(53)

With m = 0, 1, 2 in (53), we obtain

L(r)
r (x) = r!, (54)

L(r)
r+1(x) = (r + 1)!x, (55)

L(r)
r+2(x) =

(r + 1)!
2

{(
r + 1 +

1
2r

)
x2 +

1
2r−1

}
. (56)

We see from (8) that the rth derivative of Ln(x) is given by

L(r)
n (x) = n

[ n−r
2 ]

∑
l=0

1
n− l

(
n− l

l

)
(n− 2l)rxn−2l−r. (57)
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Then, combining (52) and (57), we have

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

=
2r+1(m + r)

r!

[m
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
(m + r− 2l)rxm−2l .

(58)

For m ≥ 2, and r ≥ 1, as in (15), we let

βm,r(x) =
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)( x
2

)l
Li1(x) · · · Lir+1(x).

(59)

Now, we will consider the function

βm,r(< x >) =
m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)(< x >

2

)l
Li1(< x >) · · · Lir+1(< x >)

+
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)(< x >

2

)l
Li1(< x >) · · · Lir+1(< x >),

(60)

which is defined on R and periodic with period 1. The Fourier series of βm,r(< x >) is

∞

∑
n=−∞

B(m,r)
n e2πinx, (61)

where

B(m,r)
n =

∫ 1

0
βm,r(< x >)e−2πinxdx

=
∫ 1

0
βm,r(x)e−2πinxdx.

(62)

For m ≥ 2, and r ≥ 1, we put

Ωm,r = βm,r(1)− βm,r(0). (63)

Then, from (58) and (63), we see that

Ωm,r =
2r+1(m + r)

r!

[m−1
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
(m + r− 2l)r, (64)

where we observe that

βm,r(0) =

0, if m is odd,

2r+1 m+r
m
2 +r (

m
2 +r

r ), if m is even.
(65)
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The following can be easily derived from (52):

d
dx

βm,r(x) =
2r+1

r!
L(r+1)

m+r (x) =
(

r + 1
2

)
βm−1,r+1(x), (66)

d
dx

(
2
r

βm+1,r−1(x)
)
= βm,r(x), (67)

∫ 1

0
βm,r(x)dx =

2
r

Ωm+1,r−1, (68)

βm,r(0) = βm,r(1)⇐⇒ Ωm,r = 0. (69)

We are now ready to determine the Fourier coefficients B(m,r)
n .

Case 1: n 6= 0.

B(m,r)
n =

∫ 1

0
βm,r(x)e−2πinxdx

= − 1
2πin

[
βm,r(x)e−2πinx

]1

0
+

1
2πin

∫ 1

0

(
d

dx
βm,r(x)

)
e−2πinxdx

=
1

2πin
r + 1

2

∫ 1

0
βm−1,r+1(x)e−2πinxdx− 1

2πin
Ωm,r

=
1

2πin
r + 1

2
B(m−1,r+1)

n − 1
2πin

Ωm,r.

(70)

Thus, we have derived the following recurrence relation:

B(m,r)
n =

1
2πin

r + 1
2

B(m−1,r+1)
n − 1

2πin
Ωm,r, (71)

from which we readily have

B(m,r)
n = −2

r

m

∑
j=1

(
1

2πin

)j (r + j− 1)j

2j Ωm−j+1,r+j−1. (72)

Case 2: n = 0.

B(m,r)
0 =

∫ 1

0
βm,r(x)dx =

2
r

Ωm+1,r−1. (73)

Then, from (72), (73), (43), and (44), we obtain the following Fourier series expansion of βm,r(< x >),
which is given by

2
r

Ωm+1,r−1 −
∞

∑
n=−∞,n 6=0

(
2
r

m

∑
j=1

(
1

2πin

)j (r + j− 1)j

2j Ωm−j+1,r+j−1

)
e2πinx

=
2
r

Ωm+1,r−1 +
2
r

m

∑
j=1

(
r + j− 1

j

)
1
2j Ωm−j+1,r+j−1

(
−j!

∞

∑
n=−∞,n 6=0

e2πinx

(2πin)j

)

=
2
r

m

∑
j=0,j 6=1

(
r + j− 1

j

)
1
2j Ωm−j+1,r+j−1Bj(< x >)

+ Ωm,r ×
{

B1(< x >), for x ∈ R−Z,

0, for x ∈ Z.

(74)
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Note here that Ωm,r > 0, for any m ≥ 2, r ≥ 1. Thus, βm,r(< x >) is piecewise C∞, and discontinuous
with jump discontinuities at integers. Thus, the Fourier series of βm,r(< x >) converges pointwise to
βm,r(< x >), for x ∈ R−Z, and converges to

1
2
(βm,r(0) + βm,r(1)) = βm,r(0) +

1
2

Ωm,r (75)

for x ∈ Z.
This observation together with (74) and (75) yields Theorem 4 in Section 1. Here, we observe that Theorem 5

in Section 1 follows from (b) of Theorem 4.
From (9), we can easily deduce that

2r+1i−mαm,r

( ix
2

)
= βm,r(x). (76)

In turn, by Theorems 3 and 5, (76) yields the following theorem.

Theorem 6. For any integers m, r with m ≥ 2, r ≥ 1, we let

Ωm,r =
2r+1(m + r)

r!

[m−1
2 ]

∑
l=0

1
m + r− l

(
m + r− l

l

)
(m + r− 2l)r.

Let m, r be integers with m ≥ 2, r ≥ 1. Then, we have the following identity:

2r−1
m

∑
j=0

2j
(

r + j− 1
j

)
∆m−j+1,r+j−1Bj

(
ix
2

)

= im
m

∑
j=0

(
r + j− 1

j

)
1
2j Ωm−j+1,r+j−1Bj(x),

where ∆m,r and Ωm,r are respectively as in (35) and (64).

4. Conclusions

In general, the connection problem is concerned with determining the coefficients cnm(k) in the
representation of the product of two polynomials rn(x) and sm(x) as linear combinations of an arbitrary
polynomial sequence {pk(x)}k≥0:

rn(x)sm(x) =
n+m

∑
k=0

cnm(k)pk(x). (77)

As a generalization of this and motivated by the example in (1), we considered the problem of
representing sums of finite products of Chebyshev polynomials of the first kind and those of Lucas
polynomials in terms of Bernoulli polynomials. We accomplished this by deriving the Fourier series
expansions of the functions related to those two kinds of sums of finite products of polynomials. Finally,
we remark here that it is certainly possible to represent such sums of finite products of polynomials by
some orthogonal polynomials, which is our ongoing project.
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