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1. Introduction and Main Results

The Catalan numbers Cn for n ≥ 0 constitute a sequence that is one of the most fascinating
sequences in combinatorial number theory with over fifty significant combinatorial interpretations.
For details, please refer to monographs [1,2] and closely related references therein.

The Catalan numbers Cn have a generating function

2
1 +
√

1− 4x
=

1−
√

1− 4x
2x

=
∞

∑
n=0

Cnxn = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + · · · .

Two explicit formulas for Cn with n ≥ 0 read that

Cn =
(2n)!

n!(n + 1)!
=

4nΓ(n + 1/2)√
π Γ(n + 2)

, (1)

where
Γ(z) =

∫ ∞

0
tz−1e−t d t, <(z) > 0

is the classical Euler gamma function. In [1,3,4], it was mentioned that there exists an
asymptotic expansion

Cx =
4xΓ(x + 1/2)√

π Γ(x + 2)
∼ 4x
√

π

(
1

x3/2 −
9
8

1
x5/2 +

145
128

1
x7/2 + · · ·

)
, x → ∞. (2)

In the newly published papers [5–10], there are some new results on the Catalan numbers Cn

and others.
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In [11], an alternative and analytical generalization of the Catalan numbers Cn and the Catalan
function Cx was introduced as

C(a, b; z) =
Γ(b)
Γ(a)

(
b
a

)z Γ(z + a)
Γ(z + b)

, <(a),<(b) > 0, <(z) ≥ 0. (3)

For uniqueness and convenience of referring to the quantity C(a, b; x), we call C(a, b; x) the Catalan–Qi
function and, when taking x = n ≥ 0, call C(a, b; n) the Catalan–Qi numbers. Comparing with the
second formula in (1) and the first equality in (2), it is clear that

C
(

1
2

, 2; x
)
= Cx, x ≥ 0. (4)

By the definition (3), we easily see that

C(a, b; x)C(b, c; x) = C(a, c; x), a, b, c > 0, x ≥ 0.

In the papers [11–23], the authors discovered many analytic properties, including the monotonicity,
a general expression of the asymptotic expansion (2), Schur-convexity, a generalization of the
expansion (2), minimality, (logarithmically) complete monotonicity, product inequalities, a generating
function, logarithmic convexity, exponential representations, determinantal inequalities, series
identities, integral representations, and connections with the Bessel polynomials and the Bell
polynomials of the second kind, of the Catalan numbers and function Cn and Cx and the Catalan–Qi
function C(a, b; x).

In combinatorial mathematics and statistics, the Fuss–Catalan numbers An(p, r) are defined in [24]
as numbers of the form

An(p, r) =
r

np + r

(
np + r

n

)
= r

Γ(np + r)
Γ(n + 1)Γ(n(p− 1) + r + 1)

. (5)

Comparing with the first formula in (1), it is obvious that

An(2, 1) = Cn, n ≥ 0. (6)

A generalization of the Catalan numbers Cn was defined in [25–27] by

pdn =
1
n

(
pn

n− 1

)
=

1
(p− 1)n + 1

(
pn
n

)
for n ≥ 1. The usual Catalan numbers Cn = 2dn are a special case with p = 2. It is immediate that

An−1(p, p) = pdn

for n ≥ 1. There exists some literature such as [28–38] devoted to the investigation of the Fuss–Catalan
numbers An(p, r).

Considering the relations (4) and (6), one may ask a question: what is the relation between the
Catalan–Qi numbers C(a, b; n) and the Fuss–Catalan numbers An(p, r)? This question is answered by
Theorem 1 below.

Theorem 1. For n, r ≥ 0 and p > 1, we have

An(p, r) = rn ∏
p
k=1 C

( k+r−1
p , 1; n

)
∏

p−1
k=1 C

( k+r
p−1 , 1; n

) . (7)
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For n, p ∈ N and r ≥ 0, we have

An(p, r) =
r

nB(n(p− 1) + 1, n)
(np)r−1

[n(p− 1) + 1]r
C(np, n(p− 1) + 1; r), (8)

where B(x, y) denotes the classical beta function. For r + 1 > n > 0 and p ≥ 0, we have

An(p, r) =
1

nB(n, r− n + 1)

(
r

r− n + 1

)np

C(r, r− n + 1; np). (9)

When r + 1 > n ≥ 1 and p ≥ 0, we have

An(p, r) =
1
n
[B(r + 1− n, n)]p−1

[B(r, n)]p
n−1

∏
k=0

C
(

r + k
n

,
r− n + k + 1

n
; p
)

. (10)

For n ≥ 2, r + 1 > n, and p ∈ N, we have

An(p, r) = rp1/2B(n− 1, 2)
[B(r + 1− n, n− 1)]n−1

[B(r + 1− n + p, n− 1)]n

p−1

∏
k=0

C
(

r + k
p

,
r + k + 1− n

p
; n
)

. (11)

Recall from ([39], pp. 372–373) and ([40], p. 108, Definition 4) that a sequence {µn}0≤n≤∞ is said
to be completely monotonic if its elements are non-negative and its successive differences alternate
sign, that is,

(−1)k∆kµn ≥ 0, n, k ≥ 0,

where

∆kµn =
k

∑
m=0

(−1)m
(

k
m

)
µn+k−m.

Further recall from ([40], p. 163, Definition 14a) that a completely monotonic sequence {an}n≥0 is
minimal if it ceases to be completely monotonic when a0 is decreased.

Applying the identity (7) and several analytic properties of the Catalan–Qi function
C(a, b; x), we find several analytic properties, including monotonicity, logarithmic convexity,
complete monotonicity, and minimality, of the Fuss–Catalan sequence {An(p, r)}n≥0 and related ones.

Theorem 2. When p ≥ r > 0,

1. the sequence {An(p, r)}n≥0,

An(p, r) =


1, n = 0,

1
n
√

An(p, r)
, n ∈ N,

(12)

is logarithmically convex, completely monotonic, and minimal;
2. the sequence of the Fuss–Catalan numbers {An(p, r)}n≥0 is increasing and logarithmically convex.

Finally, by applying a double inequality of the beta function in the papers [41] and ([42], pp. 78–81,
Section 3), we derive a double inequality for the Fuss–Catalan numbers An(p, r).

Theorem 3. For n ≥ 2 and p, r ∈ N, we have

An(p, r) ≥ r[n(p− 1) + r + 1]
n

. (13)
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When m , min{D(n− 1)D(n(p− 1) + r + 1), bA(n− 1)[n(p− 1) + r + 1]} < 1 for n ≥ 2 and p, r ∈ N,
we have

An(p, r) ≤ r[n(p− 1) + r + 1]
n(1−m)

,

where

D(x) =
x− 1√
2x− 1

and bA = max
x≥1

[
1
x2 −

Γ2(x)
Γ(2x)

]
= 0.08731 . . . (14)

for x ≥ 1.

2. Lemmas

In order to prove Theorems 2 and 3, we need the following notion and lemmas.
Recall from [43–45] that an infinitely differentiable and positive function f is said to be

logarithmically completely monotonic on an interval I if 0 ≤ (−1)k[ln f (x)](k) < ∞ holds on I
for all k ∈ N.

Lemma 1 ([18], Theorem 6). The function

C±1(a, b; x) =

{
1, x = 0

[C(a, b; x)]±1/x, x > 0

is logarithmically completely monotonic on [0, ∞) if and only if a ≷ b.

Lemma 2 ([18], Theorem 7). Let a, b > 0 and x ≥ 0. Then

1. the unique zero x0 of the equation
ψ(x + b)− ψ(x + a)

ln b− ln a
= 1

satisfies x0 ∈
(
0, 1

2
)
, where ψ is the logarithmic derivative of the gamma function Γ;

2. when b > a, the function C(a, b; x) is decreasing in x ∈ [0, x0), increasing in x ∈ (x0, ∞),
and logarithmically convex in x ∈ [0, ∞);

3. when b < a, the function C(a, b; x) is increasing in x ∈ [0, x0), decreasing in x ∈ (x0, ∞),
and logarithmically concave in x ∈ [0, ∞).

Lemma 3 ([41] and [42] pp. 78–81, Section 3). For x, y > 1, we have

0 ≤ 1
xy
− B(x, y) ≤ min

{
D(x)D(y)

xy
, bA

}
, (15)

where D(x) and bA are defined as in (14).

3. Proofs of Theorems 1–3

We now start out to prove our theorems.

Proof of Theorem 1. By virtue of the Gauss multiplication formula

Γ(nz) =
nnz−1/2

(2π)(n−1)/2

n−1

∏
k=0

Γ
(

z +
k
n

)
(16)

from ([46], p. 256, 6.1.20), the Fuss–Catalan numbers An(p, r) defined by the second expression in (5)
can also be rewritten as
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An(p, r) =
rΓ(p(n + r/p))

Γ(n + 1)Γ((p− 1)(n + (r + 1)/(p− 1)))

=
r pnp+r−1/2

(2π)(p−1)/2 ∏
p−1
k=0 Γ

(
n + k+r

p
)

Γ(n + 1) (p−1)n(p−1)+r+1/2

(2π)(p−2)/2 ∏
p−2
k=0 Γ

(
n + k+r+1

p−1
)

=
1√
2π

(
p

p− 1

)r r
[p(p− 1)]1/2

[
pp

(p− 1)p−1

]n Γ(1)
Γ
( r

p
)( 1

r/p

)n Γ
(
n + r

p
)

Γ(n + 1)

×
p−1

∏
k=1

Γ
( k+r

p−1
)

Γ
( k+r

p
) ( k+r

p−1
k+r

p

)n Γ
(
n + k+r

p
)

Γ
(
n + k+r

p−1
) Γ
( r

p
)

Γ(1)

p−1

∏
k=1

Γ
( k+r

p
)

Γ
( k+r

p−1
)( r/p

1

)n p−1

∏
k=1

( k+r
p

k+r
p−1

)n

=
1√
2π

(
p

p− 1

)r rn+1

[p(p− 1)]1/2

Γ
( r

p
)

Γ(1)

p−1

∏
k=1

Γ
( k+r

p
)

Γ
( k+r

p−1
)C
(

r
p

, 1; n
) p−1

∏
k=1

C
(

k + r
p

,
k + r
p− 1

; n
)

=
1√
2π

(
p

p− 1

)r 1
[p(p− 1)]1/2

∏
p−1
k=0 Γ

( r
p + k

p
)

∏
p−2
k=0 Γ

( r+1
p−1 + k

p−1
) rn+1C

(
r
p

, 1; n
) p−1

∏
k=1

C
(

k + r
p

,
k + r
p− 1

; n
)

= rnC
(

r
p

, 1; n
) p−1

∏
k=1

C
(

k + r
p

,
k + r
p− 1

; n
)

.

Further making use of

C(a, b; x) =
1

C(b, a; x)
, a, b > 0, x ≥ 0,

We can rearrange the above result as

An(p, r) = rnC
(

r
p

, 1; n
) p−1

∏
k=1

[
C
(

k + r
p

, 1; n
)

C
(

1,
k + r
p− 1

; n
)]

= rnC
(

r
p

, 1; n
) p−1

∏
k=1

C
( k+r

p , 1; n
)

C
( k+r

p−1 , 1; n
)

= rnC
(

r
p

, 1; n
)∏

p−1
k=1 C

( k+r
p , 1; n

)
∏

p−1
k=1 C

( k+r
p−1 , 1; n

) = rn ∏
p−1
k=0 C

( k+r
p , 1; n

)
∏

p−1
k=1 C

( k+r
p−1 , 1; n

) = rn ∏
p
k=1 C

( k+r−1
p , 1; n

)
∏

p−1
k=1 C

( k+r
p−1 , 1; n

) .

The identity (7) thus follows.
It is straightforward that

An(p, r) =
r

Γ(n + 1)
Γ(r + np)

Γ(r + np− n + 1)

=
r

Γ(n + 1)
Γ(np)

Γ(np− n + 1)

(
np

np− n + 1

)r

C(np, np− n + 1; r)

=
rΓ(n)

npΓ(n + 1)
Γ(np + 1)

Γ(np− n + 1)Γ(n)

(
np

np− n + 1

)r

C(np, np− n + 1; r)

=
r

nB(np− n + 1, n)
(np)r−1

(np− n + 1)r C(np, np− n + 1; r)
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and, interchanging the role of r and np,

An(p, r) =
r

Γ(n + 1)
Γ(np + r)

Γ(np + r− n + 1)

=
r

Γ(n + 1)
Γ(r)

Γ(r− n + 1)

(
r

r− n + 1

)np

C(r, r− n + 1; np)

=
1
n

Γ(r + 1)
Γ(n)Γ(r− n + 1)

(
r

r− n + 1

)np

C(r, r− n + 1; np)

=
1

nB(n, r− n + 1)

(
r

r− n + 1

)np

C(r, r− n + 1; np).

Therefore, the identities (8) and (9) follow.
By the Gauss multiplication formula (16) again, when r + 1 > n, the Fuss–Catalan numbers

An(p, r) defined by the second expression in (5) can be rearranged as

An(p, r) =
r

Γ(n + 1)

nnp+r−1/2

(2π)(n−1)/2 ∏n−1
k=0 Γ

(
p + r

n + k
n
)

nn(p−1)+r+1/2

(2π)(n−1)/2 ∏n−1
k=0 Γ

(
p + r−n+1

n + k
n
)

=
nn−1r

Γ(n + 1)

n−1

∏
k=0

Γ
( r+k

n
)

Γ
( r−n+k+1

n
)( r + k

r− n + k + 1

)p n−1

∏
k=0

Γ
( r−n+k+1

n
)

Γ
( r+k

n
) (

r− n + k + 1
r + k

)p Γ
(

p + r+k
n
)

Γ
(

p + r−n+k+1
n

)
=

nn−1r
Γ(n + 1)

(2π)(n−1)/2

nr−1/2 Γ(r)
(2π)(n−1)/2

nr−n+1/2 Γ(r− n + 1)

[
Γ(r + n)Γ(r + 1− n)

Γ(r)Γ(r + 1)

]p n−1

∏
k=0

C
(

r + k
n

,
r− n + k + 1

n
; p
)

=
Γ(n)

Γ(n + 1)

[
Γ(r + n)
Γ(r)Γ(n)

]p[Γ(r + 1− n)Γ(n)
Γ(r + 1)

]p−1 n−1

∏
k=0

C
(

r + k
n

,
r− n + k + 1

n
; p
)

=
1
n
[B(r + 1− n, n)]p−1

[B(r, n)]p
n−1

∏
k=0

C
(

r + k
n

,
r− n + k + 1

n
; p
)

.

The identity (10) is thus proved.
Similarly, by virtue of (16) once again, we have

An(p, r) =
rpn−1

Γ(n + 1)

p−1

∏
k=0

Γ
(
n + r+k

p
)

Γ
(
n + r+k+1−n

p
)

=
rpn−1

Γ(n + 1)

p−1

∏
k=0

Γ
( r

p + k
p
)

Γ
( r+1−n

p + k
p
)( r + k

r + k + 1− n

)n p−1

∏
k=0

C
(

r + k
p

,
r + k + 1− n

p
; n
)

=
rpn−1

Γ(n + 1)

∏
p−1
k=0 Γ

( r
p + k

p
)

∏
p−1
k=0 Γ

( r+1−n
p + k

p
)
(

p−1

∏
k=0

r + k
r + k + 1− n

)n p−1

∏
k=0

C
(

r + k
p

,
r + k + 1− n

p
; n
)

=
rpn−1

Γ(n + 1)
pr+1−nΓ(r)

pr−1/2Γ(r + 1− n)

[
Γ(r + p)

Γ(r)
Γ(r + 1− n)

Γ(r + 1− n + p)

]n p−1

∏
k=0

C
(

r + k
p

,
r + k + 1− n

p
; n
)

= rp1/2B(n− 1, 2)
[B(r + 1− n, n− 1)]n−1

[B(r + 1− n + p, n− 1)]n

p−1

∏
k=0

C
(

r + k
p

,
r + k + 1− n

p
; n
)

.

The identity (11) is demonstrated. The proof of Theorem 1 is complete.
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Proof of Theorem 2. We call (see related chapters [39] Chapter XIII, [45] Chapter 1, and [40]
Chapter IV) a positive function f defined on an interval I completely monotonic if all of its derivatives
satisfy 0 ≤ (−1)k f (k)(x) < ∞ for all k ≥ 0 on I. The inclusions

S \ {0} ⊂ L[(0, ∞)] and L[I] ⊂ C[I] (17)

were found in [44,47,48], where S , L[I], and C[I] represent the class of Stieltjes transforms on
(0, ∞), the class of logarithmically completely monotonic functions I, and the class of completely
monotonic functions on I, respectively. This was mentioned in the monograph [45] and admitted in
mathematical community.

By Lemma 1, since r
p < 1 and k+r

p < k+r
p−1 for all p > 1, p > r > 0, and 1 ≤ k ≤ p− 1, the functions

1
C(r/p, 1; x)

and
1

C((k + r)/p, (k + r)/(p− 1); x)

are logarithmically completely monotonic on [0, ∞). It is easy to see that the product of finitely many
logarithmically completely monotonic functions is still logarithmically completely monotonic. Hence,
the function

1

rC(r/p, 1; x)∏
p−1
k=1 C((k + r)/p, (k + r)/(p− 1); x)

(18)

is logarithmically completely monotonic on the interval [0, ∞). Consequently, by the definition
of logarithmically completely monotonic functions, the sequence (12) is decreasing and
logarithmically convex.

Further, by virtue of the first inclusion in (17) and the logarithmically complete monotonicity of
the function (18), the function (18) is also completely monotonic on [0, ∞). By Theorem 14b in ([40]
p. 164), we know that a sequence {an}∞

0 is minimal completely monotonic if and only if there exists a
completely monotonic function f (x) on [0, ∞) such that f (n) = an for n ≥ 0. Hence, we arrive at the
complete monotonicity and minimality of the sequence An(p, r) defined by (12).

Similarly, by Lemma 2, the identity (7), and A0(p, r) = 1 for all p > 1 and r > 0, we conclude that
the sequence of the Fuss–Catalan numbers {An(p, r)}n≥0 is increasing and logarithmically convex.
The proof of Theorem 2 is complete.

Proof of Theorem 3. Applying the inequality (15) to

An(p, r) =
r

n(n− 1)
1

B(n− 1, n(p− 1) + r + 1)

results in
r[n(p− 1) + r + 1]

n
≤ An(p, r)

and, when min{D(n− 1)D(n(p− 1) + r + 1), bA(n− 1)[n(p− 1) + r + 1]} < 1,

An(p, r) ≤ r[n(p− 1) + r + 1]
n

1
1−min{D(n− 1)D(n(p− 1) + r + 1), bA(n− 1)[n(p− 1) + r + 1]}

which can be rearranged as (13). The proof of Theorem 3 is complete.

4. Remarks

Finally, we give several remarks on our main results.

Remark 1. The Catalan–Qi function C(a, b; z), the second expression in (5) of the Fuss–Catalan numbers
An(p, r), and all the identities from (7) to (11) in Theorem 1 can be extended to real values, even to complex
values, that the variables a, b, x and n, p, r can take.
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Remark 2. The identity (7) is more beautiful and informative than the others in Theorem 1, because the form of
the identity (7) is simpler, more regular, and with less restrictions to n, p, and r.

Remark 3. Theorem 1 means that the Fuss–Catalan numbers An(p, r) can be represented in terms of the
Catalan–Qi functions C(a, b; x). This fact shows that introducing the Catalan–Qi function C(a, b; x) in [11] is
analytically significant. However, we need the combinatorialists to combinatorially interpret the Catalan–Qi
function C(a, b; x) or its special cases.

Remark 4. By the definition of the classical beta function, we easily see that

Γ(z + a)
Γ(z + b)

=
B(b− a, z + a)

Γ(b− a)
. (19)

We can use the inequality (15) and the formula (19) to bound the Catalan numbers Cn, the Fuss–Catalan
numbers An(p, r), and the Catalan–Qi function C(a, b; x).

There has been an amount of literature on the ratio of two gamma functions, see, for example, the expository
and survey articles [49–55] and plenty of references therein. Applying results in these literature, we can estimate
the Catalan numbers Cn, the Fuss–Catalan numbers An(p, r), and the Catalan–Qi function C(a, b; x) in terms
of inequalities and asymptotic formulas of the gamma function Γ(x). For example, the double inequality

√
b
a
[I(a, b)]a−b exp

[
2m

∑
j=1

B2j

2j(2j− 1)

(
1

a2j−1 −
1

b2j−1

)]
<

Γ(a)
Γ(b)

<

√
b
a
[I(a, b)]a−b exp

[
2m−1

∑
j=1

B2j

2j(2j− 1)

(
1

a2j−1 −
1

b2j−1

)]

for m ∈ N and a, b > 0 was derived in ([18] Theorem 11), where Bi for i ≥ 0 are the classical Bernoulli numbers
generated by

x
ex − 1

=
∞

∑
i=0

Bi
xi

i!
= 1− x

2
+

∞

∑
j=1

B2j
x2j

(2j)!
, |x| < 2π

and

I(α, β) =
1
e

(
ββ

αα

)1/(β−α)

for α, β > 0 with α 6= β stands for the identric mean [56]. One more example is the double inequality

eψ(L(a,b)) <

[
Γ(a)
Γ(b)

]1/(a−b)

< eψ(I(a,b)), a, b > 0, a 6= b

in [57,58], where ψ(x) = Γ′(x)
Γ(x) is the digamma function and

L(a, b) =
b− a

ln b− ln a
, a, b > 0, a 6= b

is called the logarithmic mean [56].
In the papers [59,60], some inequalities for the beta function B(x, y) are reviewed and surveyed. The main

result in ([60], Theorem) states that, for every k ≥ 1 and every point x, y > 0, the quantity (−1)k−1D(k)
x,y(X, Y)

is positive for X, Y > 0 and, if k is even, positive definite in X, Y, where D(k)
x,y(X, Y) denotes the kth differential

of F(x + X, y + Y) in X and Y and

F(x, y) =
Γ(x + 1)Γ(y + 1)

Γ(x + y + 1)
(x + y)x+y

xxyy .
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As said in ([60], p. 1430), this theorem can produce lower and upper bounds for F(x, y) and every bound
for F(x, y) is actually a bound for B(x, y). By inequalities for the beta function B(x, y), we can derive more
inequalities for the Fuss–Catalan numbers An(p, r).

To the best of our knowledge, we do not find any known inequality for the Fuss–Catalan numbers An(p, r)
in published literature. It seems that there are more identities than inequalities in combinatorics.

Remark 5. In order to give a better combinatorial context, we would like to mention three references [2,61,62].
In [61], a collection of combinatorial interpretations for the Fuss–Catalan numbers An(p; 1) is presented. In [2],
a monograph about the Catalan numbers Cn and their generalizations, the Fuss–Catalan numbers An(p, r)
are studied in Additional Problem A14. In ([62], Corollary 3.4), there is a conclusion about the sequence
{An−1(p, p)}n≥0.

Remark 6. This paper is a simplified and corrected version of the preprint [63].

5. Conclusions

In this paper, the authors express the Fuss–Catalan numbers as several forms in terms of the
Catalan–Qi function; find some analytic properties, including the monotonicity, logarithmic convexity,
complete monotonicity, and minimality, of the Fuss–Catalan numbers; and derive a double inequality
for bounding the Fuss–Catalan numbers.
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