Article

Resistance Distance in H-Join of Graphs $G_{1}, G_{2}, \ldots, G_{k}$

Li Zhang ${ }^{1}$, Jing Zhao ${ }^{1}$, Jia-Bao Liu ${ }^{\text {1,* }}$ (D) and Micheal Arockiaraj ${ }^{2}$
1 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China; zhang12@mail.ustc.edu.cn (L.Z.); zhaojing94823@163.com (J.Z.)
2 Department of Mathematics, Loyola College, Chennai 600034, India; marockiaraj@gmail.com
* Correspondence: liujiabaoad@163.com

Received: 11 October 2018 ; Accepted: 21 November 2018; Published: 26 November 2018

Abstract

In view of the wide application of resistance distance, the computation of resistance distance in various graphs becomes one of the main topics. In this paper, we aim to compute resistance distance in H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$. Recall that H is an arbitrary graph with $V(H)=\{1,2, \ldots, k\}$, and $G_{1}, G_{2}, \ldots, G_{k}$ are disjoint graphs. Then, the H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$, denoted by $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, is a graph formed by taking $G_{1}, G_{2}, \ldots, G_{k}$ and joining every vertex of G_{i} to every vertex of G_{j} whenever i is adjacent to j in H. Here, we first give the Laplacian matrix of $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, and then give a $\{1\}$-inverse $L\left(\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}\right)^{\{1\}}$ or group inverse $L\left(\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}\right)^{\#}$ of $L\left(\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}\right)$. It is well know that, there exists a relationship between resistance distance and entries of $\{1\}$-inverse or group inverse. Therefore, we can easily obtain resistance distance in $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$. In addition, some applications are presented in this paper.

Keywords: graph; Laplacian matrix; resistance distance; group inverse

1. Introduction

Throughout this paper, " G is a graph" always means that " G is a simple and undirected graph". Moreover, we denote a graph G by $G=(V(G), E(G))$, where $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the vertex set and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is the edge set of G. Associated with a graph G, some matrices characterize the structure of G, such as the adjacency matrix $A(G)$, which is an $n \times n$ matrix with entry $a_{i j}=1$ if v_{i} and v_{j} are adjacent in G, and $a_{i j}=0$ otherwise, the diagonal matrix $D(G)$ with diagonal entries $d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \ldots, d_{G}\left(v_{n}\right)$ and the Laplacian matrix $L(G)$, which is $D(G)-A(G)$. Let I_{n} denote the unit matrix of order $n, \mathbf{1}_{n}$ be the all-one column vector of dimension n and $J_{n \times m}$ be the all-one $n \times m$-matrix. For more detail, one can refer to [1,2] for the definitions and notions in the paper.

It is rather clear that, from some given graphs, a big graph arises by the help of graph operations, such as the Cartesian product, the Kronecker product, the corona graph, the neighborhood corona graph and subdivision-vertex join and subdivision-edge join of graphs (see [3-7]). Furthermore, following [8], from an arbitrary graph H of order k and graphs $G_{1}, G_{2}, \ldots, G_{k}$, we obtain a new graph called H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$, which is denoted by $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, for detail:

Definition 1. Let H be an arbitrary graph with $V(H)=\{1,2, \ldots, k\}$, and $G_{1}, G_{2}, \ldots, G_{k}$ be disjoint graphs of orders $n_{1}, n_{2}, \ldots, n_{k}$. The H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$, which is denoted by $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, is a graph formed by taking $G_{1}, G_{2}, \ldots, G_{k}$ and joining every vertex of G_{i} to every vertex of G_{j} whenever i is adjacent to j in H. Particularly, $\bigvee_{H}\left\{G_{1}, G_{1}, \ldots, G_{1}\right\}$ is denoted by $H \odot G_{1}$.

Example 1. Let P_{n} and C_{n} be a path and a cycle with n vertices. Then, $\bigvee_{P_{3}}\left\{P_{3}, P_{1}, P_{2}\right\}, P_{3} \odot P_{2}$ and $C_{3} \odot P_{3}$ are as follows (Figures 1 and 2).

Figure 1. $\bigvee_{P_{3}}\left\{P_{3}, P_{1}, P_{2}\right\}$ and $P_{3} \odot P_{2}$.

C_{3}

Figure 2. $C_{3} \odot P_{3}$.

As we know, the length of a shortest path between vertices v_{i} and v_{j}, which is denoted by $d_{i j}$, is the conventional distance. However, it does not apply to some practical situations, such as electrical network. Thus, based on electrical network theory, Klein and Randić introduced a new distance called resistance distance ([9]). The resistance distance between vertices v_{i} and v_{j} is denoted by $r_{i j}$, and, in fact, $r_{i j}$ is the effective electrical resistance between v_{i} and v_{j} if every edge of G is replaced by a unit resistor. In view of its practical application, resistance distance was widely explored by many authors. One of the main topics in the study of resistance distance is to determine it in various graphs. For example, from [10], one would know that how $r_{i j}$ can be computed from the Laplacian matrix of the graph; in [11], authors gave the resistance distance between any two vertices of a wheel and a fan; in [3], authors obtained formulae for resistance distance in subdivision-vertex join and subdivision-edge join of graphs; recently, in [12], authors gave the resistance distance in corona and the neighborhood corona graphs of two disjoint graphs. Except for the above, one can refer to [13-20] for more information.

Motivated by the study of resistance distance and graph operations, a natural question arises: what is the resistance distance in $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$? In fact, this paper focuses on this question, gives resistance distance in H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$ and finally presents some applications.

2. Preliminaries

Recall that, for a matrix M, a $\{1\}$-inverse of M, which is always denoted by $M^{\{1\}}$, is a matrix X such that $M X M=M$. For a square matrix M, the group inverse of M, which is denoted by $M^{\#}$, is the unique matrix X such that the following hold: $(1) M X M=M ;(2) X M X=X ;(3) M X=X M$. It is well-known that $M^{\#}$ exists if and only if $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)$. Therefore, $A^{\#}$ exists and it is a $\{1\}$-inverse of A, whenever A is a real symmetric. In fact, assume that A is a real symmetric matrix and U is an orthogonal matrix (i.e., $U U^{T}=U^{T} U=I$), such that $A=U^{T} \operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\} U$, where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are eigenvalues of A. Then, $A^{\#}=U^{T} \operatorname{diag}\left\{f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \cdots, f\left(\lambda_{n}\right)\right\} U$, where

$$
f\left(\lambda_{i}\right)=\left\{\begin{array}{cl}
1 / \lambda_{i}, & \text { if } \lambda_{i} \neq 0 \\
0, & \text { if } \lambda_{i}=0
\end{array}\right.
$$

Note that the Laplacian matrix $L(G)$ of a graph G is real symmetric. Thus, $L(G)^{\#}$ exists. For more detail about the group inverse of the Laplacian matrix of a graph, see [21].

Lemma 1 ([3,22]). Let $L=\left(\begin{array}{ll}L_{1} & L_{2} \\ L_{2}^{T} & L_{3}\end{array}\right)$ be the Laplacian matrix of a connected graph. Assume that L_{1} is nonsingular. Denote $S=L_{3}-L_{2}^{T} L_{1}^{-1} L_{2}$. Then,
(1) $\left(\begin{array}{cc}L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1} & -L_{1}^{-1} L_{2} S^{\#} \\ -S^{\#} L_{2}^{T} L_{1}^{-1} & S^{\#}\end{array}\right)$ is a symmetric $\{1\}$-inverse of L.
(2) If each column vector of L_{2} is $\mathbf{1}$ or a zero vector, then $\left(\begin{array}{cc}L_{1}^{-1} & 0 \\ 0 & S^{\#}\end{array}\right)$ is a symmetric $\{1\}$-inverse of L.

In order to compute the inverse of a matrix, the next lemma is useful.
Lemma 2 ([3]). Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ be a nonsingular matrix. If A and D are nonsingular, then

$$
M^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right)
$$

where $S=D-C A^{-1} B$ is the Schur complement of A in M.
One of the important applications of group inverse $L(G)^{\#}$ or $\{1\}$-inverse $L(G)^{\{1\}}$ is based on the following fact, which gives the formulae for resistance distance.

Lemma 3 ([3]). Let G be a connected graph and $(L(G))_{i j}$ be the (i, j)-entry of the Laplacian matrix $L(G)$. Then,

$$
\begin{aligned}
r_{i j}(G) & =\left(L(G)^{\{1\}}\right)_{i i}+\left(L(G)^{\{1\}}\right)_{j j}-\left(L(G)^{\{1\}}\right)_{i j}-\left(L(G)^{\{1\}}\right)_{j i} \\
& =\left(L(G)^{\#}\right)_{i i}+\left(L(G)^{\#}\right)_{j j}-2\left(L(G)^{\#}\right)_{i j} .
\end{aligned}
$$

3. Main Results

Now, we turn to compute resistance distance in H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$. Denote $G=$ $\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$. Keeping Lemma 3 in mind, we only need to compute the group inverse $L(G)^{\#}$ or a $\{1\}$-inverse $L(G)^{\{1\}}$.

First, we give the Laplacian matrix $L(G)$ of G.

Theorem 1. Let H be an arbitrary graph with $V(H)=\{1,2, \ldots, k\}$, and G_{i} be the disjoint graph of order n_{i} $(i=1,2, \ldots, k)$. Assume that the adjacency matrix of H is $A(H)=\left(a_{i j}\right)_{k}$ and

$$
A(H)\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{T}=\left(m_{1}, m_{2}, \ldots, m_{k}\right)^{T}
$$

Denote $G=\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, and label the n_{i} vertices of G_{i} with

$$
V\left(G_{i}\right)=\left\{v_{i}^{n_{1}+\cdots+n_{i-1}+1}, v_{i}^{n_{1}+\cdots+n_{i-1}+2}, \ldots, v_{i}^{n_{1}+\cdots+n_{i-1}+n_{i}}\right\} .
$$

Then, $V(G)=\left\{v_{1}^{1}, \ldots, v_{1}^{n_{1}}, \ldots, v_{i}^{n_{1}+\cdots+n_{i-1}+1}, \ldots, v_{i}^{n_{1}+\cdots+n_{i-1}+n_{i}}, \ldots, v_{k}^{n_{1}+\cdots+n_{k-1}+1}, \ldots, v_{k}^{n_{1}+\cdots+n_{k-1}+n_{k}}\right\}$, and the Laplacian matrix $L(G)$ of G is

$$
\left(\begin{array}{cccc}
L\left(G_{1}\right)+m_{1} I_{n_{1}} & 0 & \cdots & 0 \\
0 & L\left(G_{2}\right)+m_{2} I_{n_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & L\left(G_{k}\right)+m_{k} I_{n_{k}}
\end{array}\right)-\left(\begin{array}{cccc}
a_{11} J_{n_{1} \times n_{1}} & a_{12} J_{n_{1} \times n_{2}} & \cdots & a_{1 k} J_{n_{1} \times n_{k}} \\
a_{21} J_{n_{2} \times n_{1}} & a_{22} J_{n_{2} \times n_{2}} & \cdots & a_{2 k} J_{n_{2} \times n_{k}} \\
\vdots & \vdots & & \vdots \\
a_{k 1} J_{n_{k} \times n_{1}} & a_{k 2} J n_{n_{k} \times n_{2}} & \cdots & a_{k k} J_{n_{k} \times n_{k}}
\end{array}\right)
$$

Proof. Clearly, all of the diagonal matrix $D(G)$, the adjacency matrix $A(G)$ and the Laplacian matrix $L(G)$ are partitioned $k \times k$-matrixes, whose $(i j)$-entry is a $n_{i} \times n_{j}$-matrix. We proceed via the following steps:
(1) The diagonal matrix $D(G)$ of G.

Obviously, the degree increment of $V\left(G_{i}\right)$ depends on the i-th line $\left(a_{i 1} a_{i 2} \cdots a_{i k}\right)$ of $A(H)$. For detail, if $a_{i j}=1, j=1,2, \cdots, k$, then every vertex of G_{j} is joined to every vertex of G_{i}, that is, the increment of each vertex in $V\left(G_{i}\right)$ is $a_{i j} n_{j}$. Otherwise, that is $a_{i j}=0$, the increment is zero, which can also be written by $a_{i j} n_{j}$. In general, the degree increment of each vertex of $V\left(G_{i}\right)$ is

$$
a_{i 1} n_{1}+a_{i 2} n_{2}+\cdots+a_{i k} n_{k}=m_{i}
$$

Consequently, the diagonal matrix of G is

$$
D(G)=\left(\begin{array}{cccc}
D\left(G_{1}\right)+m_{1} I_{n_{1}} & 0 & \cdots & 0 \\
0 & D\left(G_{2}\right)+m_{2} I_{n_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & D\left(G_{k}\right)+m_{k} I_{n_{k}}
\end{array}\right)
$$

(2) The adjacency matrix $A(G)$ of G.

Similarly, the i-th line of the partitioned matrixes $A(G)$ also relies on ($a_{i 1} a_{i 2} \cdots a_{i k}$). Assume that $a_{i j}=1$. Then, every vertex of G_{j} is joined to every vertex of G_{i}. Thus, the $(i j)$-entry of $A(G)$ is $J_{n_{i} \times n_{j}}$, which is $a_{i j} J_{n_{i} \times n_{j}}$. If $a_{i j}=0$, then there is no edge between $V\left(G_{i}\right)$ and $V\left(G_{j}\right)$, that is, the $(i j)$-entry of $A(G)$ is zero. However, in this case, we can also denote it by $a_{i j} J_{n_{i} \times n_{j}}$. Note that the above holds for $i=j$. Therefore, the adjacency matrix of G is

$$
A(G)=\left(\begin{array}{cccc}
A\left(G_{1}\right) & 0 & \cdots & 0 \\
0 & A\left(G_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A\left(G_{k}\right)
\end{array}\right)+\left(\begin{array}{cccc}
a_{11} J_{n_{1} \times n_{1}} & a_{12} J_{n_{1} \times n_{2}} & \cdots & a_{i k} J_{n_{1} \times n_{k}} \\
a_{21} J_{n_{2} \times n_{1}} & a_{22} J_{n_{1} \times n_{2}} & \cdots & a_{2 k} J_{n_{2} \times n_{k}} \\
\vdots & \vdots & & \vdots \\
a_{k 1} J_{n_{k} \times n_{1}} & a_{k 2} J_{n_{k} \times n_{2}} & \cdots & a_{2 k} J_{n_{k} \times n_{k}}
\end{array}\right)
$$

(3) The Laplacian matrix $L(G)$ of G.

With respect to the above results, the Laplacian matrix $L(G)$ of G is the Theorem 1.
According to Theorem 1 and Lemma 1, we finally obtain a symmetric $\{1\}$-inverse of $L(G)$.

Theorem 2. Let H be an arbitrary connected graph with $V(H)=\{1,2, \ldots, k\}$, and G_{i} be disjoint connected graph of order $n_{i}(i=1,2, \ldots, k)$. Assume that $A(H)=\left(a_{i j}\right)_{k}$ and $A(H)\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{T}=$ $\left(m_{1}, m_{2}, \ldots, m_{k}\right)^{T}$. Denote $G=\bigvee_{H}\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$. Then, the following matrix

$$
\left(\begin{array}{cc}
L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1} & -L_{1}^{-1} L_{2} S^{\#} \\
-S^{\#} L_{2}^{T} L_{1}^{-1} & S^{\#}
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of $L(G)$, where

$$
\begin{aligned}
L_{1} & =L\left(G_{1}\right)+m_{1} I_{n_{1}} ; \\
L_{2} & =-\left(a_{12} J_{n_{1} \times n_{2}} a_{13} J_{n_{1} \times n_{3}} \cdots a_{1 k} J_{n_{1} \times n_{k}}\right) ; \\
L_{3} & =\operatorname{diag}\left\{L\left(G_{2}\right)+m_{2} I_{n_{2}}, \ldots, L\left(G_{k}\right)+m_{k} I_{n_{k}}\right\}-\left(a_{i j} J_{n_{i} \times n_{j}}\right)_{i, j=2,3, \ldots, k} \\
S & =L_{3}-L_{2}^{T} L_{1}^{-1} L_{2} \\
& =\operatorname{diag}\left\{L\left(G_{2}\right)+m_{2} I_{n_{2}}, \ldots, L\left(G_{k}\right)+m_{k} I_{n_{k}}\right\}-\left(\left(a_{i j}+a_{i 1} a_{1 j} s\right) J_{n_{i} \times n_{j}}\right)_{i, j=2,3, \ldots, k} \\
& =L_{3}-\left(\left(a_{i 1} a_{1 j} s\right) J_{n_{i} \times n_{j}}\right)_{i, j=2,3, \ldots, k} \\
& =L_{3}-s B B^{T} .
\end{aligned}
$$

$$
\text { Here, } s=\mathbf{1}_{n_{1}}^{T} L_{1}^{-1} \mathbf{1}_{n_{1}} \text { and } B^{T}=\left(a_{12} \mathbf{1}_{n_{2}}^{T} a_{13} \mathbf{1}_{n_{3}}^{T} \cdots a_{1 k} \mathbf{1}_{n_{k}}^{T}\right)
$$

Proof. Note that all of H and $G_{1}, G_{2}, \ldots, G_{k}$ are connected. Thus, it is easy to show that G is connected. By Theorem 1, we have the Laplacian matrix $L(G)$ of G. In order to give a $\{1\}$-inverse of $L(G)$ with the help of Lemma 1, we further divide $L(G)$ into blocks $L(G)=\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{T} & L_{3}\end{array}\right)$, where

$$
\begin{aligned}
& L_{1}=L\left(G_{1}\right)+m_{1} I_{n_{1}}-a_{11} J_{n_{1} \times n_{1}}=L\left(G_{1}\right)+m_{1} I_{n_{1}} ; \\
& L_{2}=-\left(a_{12} J_{n_{1} \times n_{2}} a_{13} J_{n_{1} \times n_{3}} \cdots a_{1 k} J_{n_{1} \times n_{k}}\right) \\
& L_{3}=\left(\begin{array}{ccc}
L\left(G_{2}\right)+m_{2} I_{n_{2}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & L\left(G_{k}\right)+m_{k} I_{n_{k}}
\end{array}\right)-\left(\begin{array}{ccc}
a_{22} J_{n_{2} \times n_{2}} & \cdots & a_{2 k} J_{n_{2} \times n_{k}} \\
\vdots & & \vdots \\
a_{k 2} J_{n_{k} \times n_{2}} & \cdots & a_{k k} J_{n_{k} \times n_{k}}
\end{array}\right) .
\end{aligned}
$$

Note that $L_{2}^{T}=\left(\begin{array}{c}-a_{12} J_{n_{2} \times n_{1}} \\ -a_{13} J_{n_{3} \times n_{1}} \\ \vdots \\ -a_{1 k} J_{n_{k} \times n_{1}}\end{array}\right)$. Thus, we have

$$
\begin{aligned}
L_{2}^{T} L_{1}^{-1} L_{2} & =\left(\begin{array}{c}
a_{12} J_{n_{2} \times n_{1}} \\
a_{13} J_{n_{3} \times n_{1}} \\
\ddots \\
a_{1 k} J_{n_{k} \times n_{1}}
\end{array}\right) L_{1}^{-1}\left(a_{12} J_{n_{1} \times n_{2}} a_{13} J_{n_{1} \times n_{3}} \cdots a_{1 k} J_{n_{1} \times n_{k}}\right) \\
& =\left(\begin{array}{ccc}
a_{12} a_{12} J_{n_{2} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{2}} & \cdots & a_{12} a_{1 k} J_{n_{2} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{k}} \\
a_{13} a_{12} J_{n_{3} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{2}} & \cdots & a_{13} a_{1 k} J_{n_{3} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{k}} \\
\vdots & & \vdots \\
a_{1 k} a_{12} J_{n_{k} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{2}} & \cdots & a_{1 k} a_{1 k} J_{n_{k} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{k}}
\end{array}\right) .
\end{aligned}
$$

Since $J_{n_{i} \times n_{1}} L_{1}^{-1} J_{n_{1} \times n_{j}}=s J_{n_{i} \times n_{j}}$, where $s=\mathbf{1}_{n_{1}}^{T} L_{1}^{-1} \mathbf{1}_{n_{1}} \in \mathbb{R}$, we have

$$
\begin{aligned}
L_{2}^{T} L_{1}^{-1} L_{2} & =s\left(\begin{array}{ccc}
a_{12} a_{12} J_{n_{2} \times n_{2}} & \cdots & a_{12} a_{1 k} J_{n_{2} \times n_{k}} \\
a_{13} a_{12} J_{n_{3} \times n_{2}} & \cdots & a_{13} a_{1 k} J_{n_{3} \times n_{k}} \\
\vdots & & \vdots \\
a_{1 k} a_{12} J_{n_{k} \times n_{2}} & \cdots & a_{1 k} a_{1 k} J_{n_{k} \times n_{k}}
\end{array}\right) \\
& =s\left(\begin{array}{c}
a_{12} \mathbf{1}_{n_{2}} \\
a_{13} \mathbf{1}_{n_{3}} \\
\vdots \\
a_{1 k} \mathbf{1}_{n_{k}}
\end{array}\right)\left(a_{12} \mathbf{1}_{n_{2}}^{T} a_{13} \mathbf{1}_{n_{3}}^{T} \ldots a_{1 k} \mathbf{1}_{n_{k}}^{T}\right) .
\end{aligned}
$$

Assume that B is a column vector of dimension $n_{2}+n_{3}+\cdots+n_{k}$ satisfying

$$
B^{T}=\left(a_{12} \mathbf{1}_{n_{2}}^{T} a_{13} \mathbf{1}_{n_{3}}^{T} \ldots a_{1 k} \mathbf{1}_{n_{k}}^{T}\right)
$$

Therefore, $S=L_{3}-L_{2}^{T} L_{1}^{-1} L_{2}$ has three forms:

$$
\begin{aligned}
S & =\operatorname{diag}\left\{L\left(G_{2}\right)+m_{2} I_{n_{2}}, \ldots, L\left(G_{k}\right)+m_{k} I_{n_{k}}\right\}-\left(\left(a_{i j}+a_{i 1} a_{1 j} s\right) J_{n_{i} \times n_{j}}\right)_{i, j=2,3, \ldots, k} \\
& =L_{3}-s\left(a_{i 1} a_{1 j} J_{n_{i} \times n_{j}}\right)_{i, j=2,3, \ldots, k} \\
& =L_{3}-s B B^{T} .
\end{aligned}
$$

By Lemma 1, we know that Theorem 2 holds.
Recall that the Kronecker product $A \otimes B$ ([23]) of two matrices $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{p \times q}$ is an $m p \times n q$-matrix obtained from A by replacing every element $a_{i j}$ by $a_{i j} B$. As an application of Theorem 2, we easily obtain a symmetric $\{1\}$-inverse of $L(H \odot G)$.

Corollary 1. Let H be an arbitrary connected graph with k vertices and G be a connected graph with n vertices. Assume that $A(H)=\left(\begin{array}{cc}0_{1 \times 1} & H_{2} \\ H_{2}^{T} & H_{3}\end{array}\right)$ and $n A(H) \mathbf{1}_{n}=n D(H) \mathbf{1}_{n}=\left(m_{1}, m_{2}, \ldots, m_{k}\right)^{T}$. Then, the following matrix

$$
\left(\begin{array}{cc}
L_{1}^{-1}+L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1} & -L_{1}^{-1} L_{2} S^{\#} \\
-S^{\#} L_{2}^{T} L_{1}^{-1} & S^{\#}
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of $L(H \odot G)$, where

$$
\begin{aligned}
L_{1} & =L(G)+m_{1} I_{n} ; \\
L_{2} & =-H_{2} \otimes J_{n \times n} ; \\
L_{3} & =I_{k-1} \otimes L(G)+\operatorname{diag}\left\{m_{2}, \ldots, m_{k}\right\} \otimes I_{n}-H_{3} \otimes J_{n \times n} ; \\
S & =L_{3}-L_{2}^{T} L_{1}^{-1} L_{2} \\
& =L_{3}-s\left(H_{2}^{T} \otimes \mathbf{1}_{n}\right)\left(H_{2} \otimes \mathbf{1}_{n}^{T}\right) \\
& =L_{3}-s\left(H_{2}^{T} H_{2}\right) \otimes J_{n \times n} .
\end{aligned}
$$

Here, $s=\mathbf{1}_{n}^{T} L_{1}^{-1} \mathbf{1}_{n}$.

4. Some Applications

Now, we give a specific application of formation mentioned in the Section 2. Let A be a real symmetric such that $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n-1}, 0$ are eigenvalues of A and 0 is a simple eigenvalue. Assume that
A is a real symmetric and U is an orthogonal matrix such that $A=U^{T} \operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n-1}, 0\right\} U$. Then, $A^{\#}=U^{T} \operatorname{diag}\left\{\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \cdots, \frac{1}{\lambda_{n-1}}, 0\right\} U$.

Example 2. Compute resistance distance in $G=\bigvee_{P_{3}}\left\{P_{3}, P_{1}, P_{2}\right\}$ (see Figure 1).
Step 1. We label the vertices $P_{3}=\left\{v_{1}^{1}, v_{1}^{2}, v_{1}^{3}\right\}, P_{1}=\left\{v_{2}^{4}\right\}, P_{2}=\left\{v_{3}^{5}, v_{3}^{6}\right\}$. Then,

$$
V(G)=\left\{v_{1}^{1}, v_{1}^{2}, v_{1}^{3}, v_{2}^{4}, v_{3}^{5}, v_{3}^{6}\right\} .
$$

Note that $A\left(P_{3}\right)\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}1 \\ 5 \\ 1\end{array}\right)$. Thus, the Laplacian matrix of G is $L(G)=\left(\begin{array}{ccc}L\left(P_{3}\right)+I_{3} & 0 & 0 \\ 0 & L\left(P_{1}\right)+5 I_{1} & 0 \\ 0 & 0 & L\left(P_{2}\right)+I_{2}\end{array}\right)-\left(\begin{array}{ccc}0_{3 \times 3} & J_{3 \times 1} & 0_{3 \times 2} \\ J_{1 \times 3} & 0_{1 \times 1} & J_{1 \times 2} \\ 0_{2 \times 3} & J_{2 \times 1} & 0_{2 \times 2}\end{array}\right)=\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{T} & L_{3}\end{array}\right)$,
where $L_{1}=L\left(P_{3}\right)+I_{3}=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2\end{array}\right), L_{2}=-\left(J_{3 \times 1} 0_{3 \times 2}\right)=\left(\begin{array}{ccc}-1 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$ and

$$
L_{3}=\left(\begin{array}{cc}
L\left(P_{1}\right)+5 I_{1} & -J_{1 \times 2} \\
-J_{2 \times 1} & L\left(P_{2}\right)+I_{2}
\end{array}\right)=\left(\begin{array}{ccc}
5 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

Step 2. $L_{1}^{-1}=\frac{1}{8}\left(\begin{array}{lll}5 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 5\end{array}\right)$ and so $s=\mathbf{1}_{3}^{T} L_{1}^{-1} \mathbf{1}_{3}=3$. By Theorem 2, $B=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $S=\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$. By the formula at the beginning of this section, $S^{\#}=\frac{1}{9}\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$. Furthermore, $-L_{1}^{-1} L_{2} S^{\#}=\frac{1}{9}\left(\begin{array}{ccc}2 & -1 & -1 \\ 2 & -1 & -1 \\ 2 & -1 & -1\end{array}\right)$ and $L_{1}^{-1} L_{2} S^{\#} L_{2}^{T} L_{1}^{-1}=\frac{2}{9} J_{3 \times 3}$.

Step 3. By Lemma 1 or Theorem 2,

$$
\left(\begin{array}{cc}
\frac{1}{8}\left(\begin{array}{ccc}
5 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 5
\end{array}\right)+\frac{2}{9} J_{3 \times 3} & \frac{1}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
2 & -1 & -1 \\
2 & -1 & -1
\end{array}\right) \\
\frac{1}{9}\left(\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right) & \frac{1}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
\end{array}\right) \text { is a }
$$

$\{1\}$-inverse of $L(G)$.

Step 4. In view of Lemma 3, the matrix whose (i, j)-entry is the resistance distance $r_{i j}$ between vertices v^{i} and v^{j} is

$$
\left(\begin{array}{cccccc}
0 & \frac{5}{8} & 1 & \frac{5}{8} & \frac{31}{24} & \frac{31}{24} \\
\frac{5}{8} & 0 & \frac{5}{8} & \frac{1}{2} & \frac{7}{6} & \frac{7}{6} \\
1 & \frac{5}{8} & 0 & \overline{5} & \frac{31}{24} & \frac{31}{24} \\
\frac{5}{8} & \frac{1}{2} & \frac{5}{8} & 0 & \frac{2}{3} & \frac{2}{3} \\
\frac{31}{24} & \overline{6} & \frac{31}{24} & \frac{2}{3} & 0 & \frac{2}{3} \\
\frac{31}{24} & \overline{6} & \frac{31}{24} & \frac{2}{3} & \frac{2}{3} & 0
\end{array}\right)
$$

Example 3. Assume that $G=P_{3} \odot P_{2}$ (see Figure 1). Then, the Laplacian matrix of G is

$$
L(G)=\left(\begin{array}{ccc}
L\left(P_{2}\right)+2 I_{2} & 0 & 0 \\
0 & L\left(P_{2}\right)+4 I_{2} & 0 \\
0 & 0 & L\left(P_{2}\right)+2 I_{2}
\end{array}\right)-\left(\begin{array}{ccc}
0_{2 \times 2} & J_{2 \times 2} & 0_{2 \times 2} \\
J_{2 \times 2} & 0_{2 \times 2} & J_{2 \times 2} \\
0_{2 \times 2} & J_{2 \times 2} & 0_{2 \times 2}
\end{array}\right)
$$

Theorem 2, we have that the matrix

$$
\left(\begin{array}{cc}
\frac{1}{16}\left(\begin{array}{cc}
7 & 3 \\
3 & 7
\end{array}\right) & \frac{1}{16}\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) \\
\frac{1}{16}\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
-1 & -1 \\
-1 & -1
\end{array}\right) & \frac{1}{48}\left(\begin{array}{cccc}
7 & -1 & -3 & -3 \\
-1 & 7 & -3 & -3 \\
-3 & -3 & 9 & -3 \\
-3 & -3 & -3 & 9
\end{array}\right)
\end{array}\right)
$$

a $\{1\}$-inverse of $L(G)$.
Thus, the matrix whose (i, j)-entry is $r_{i j}$ is

$$
\left(\begin{array}{cccccc}
0 & \frac{1}{2} & \frac{11}{24} & \frac{11}{24} & \frac{3}{4} & \frac{3}{4} \\
\frac{1}{2} & 0 & \frac{11}{24} & \frac{11}{24} & \frac{3}{4} & \frac{3}{4} \\
\frac{11}{24} & \frac{11}{24} & 0 & \frac{1}{3} & \frac{11}{24} & \frac{11}{24} \\
\frac{11}{24} & \frac{11}{24} & \frac{1}{3} & 0 & \frac{11}{24} & \frac{11}{24} \\
\frac{3}{4} & \frac{3}{4} & \frac{11}{24} & \frac{11}{24} & 0 & \frac{1}{2} \\
\frac{3}{4} & \frac{3}{4} & \frac{11}{24} & \frac{11}{24} & \frac{1}{2} & 0
\end{array}\right) .
$$

Example 4. Assume that $G=C_{3} \odot P_{3}$ (see Figure 2). Then, the Laplacian matrix of G is

$$
L(G)=\left(\begin{array}{ccc}
L\left(P_{3}\right)+6 I_{3} & 0 & 0 \\
0 & L\left(P_{3}\right)+6 I_{3} & 0 \\
0 & 0 & L\left(P_{3}\right)+6 I_{3}
\end{array}\right)-\left(\begin{array}{ccc}
0_{3 \times 3} & J_{3 \times 3} & J_{3 \times 3} \\
J_{3 \times 3} & 0_{3 \times 3} & J_{3 \times 3} \\
J_{3 \times 3} & J_{3 \times 3} & 0_{3 \times 3}
\end{array}\right)
$$

Based on Theorem 2, the matrix $\left(\begin{array}{ccc}A & \frac{1}{27} J_{3 \times 3} & 0_{3 \times 3} \\ \frac{1}{27} J_{3 \times 3} & B & 0_{3 \times 3} \\ 0_{3 \times 3} & 0_{3 \times 3} & S^{\#}\end{array}\right)$ is a $\{1\}$-inverse of $L(G)$, where

$$
A=B=\left(\begin{array}{ccc}
\frac{31}{189} & \frac{1}{27} & \frac{4}{189} \\
\frac{1}{27} & \frac{4}{27} & \frac{1}{27} \\
\frac{4}{189} & \frac{1}{27} & \frac{31}{189}
\end{array}\right), S^{\#}=\left(\begin{array}{ccc}
\frac{17}{189} & \frac{-1}{27} & \frac{-10}{189} \\
\frac{-1}{27} & \frac{2}{27} & \frac{-1}{27} \\
\frac{-10}{189} & \frac{-1}{27} & \frac{17}{189}
\end{array}\right)
$$

Thus, the matrix whose (i, j)-entry is $r_{i j}$ is

$$
\left(\begin{array}{ccccccccc}
0 & \frac{5}{21} & \frac{2}{7} & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} \\
\frac{5}{21} & 0 & \frac{5}{21} & \frac{5}{21} & \frac{2}{9} & \frac{5}{21} & \frac{5}{21} & \frac{2}{9} & \frac{5}{21} \\
\frac{2}{7} & \frac{5}{21} & 0 & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} \\
\frac{16}{63} & \frac{5}{21} & \frac{16}{63} & 0 & \frac{5}{21} & \frac{2}{7} & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} \\
\frac{5}{21} & \frac{2}{9} & \frac{5}{21} & \frac{5}{21} & 0 & \frac{5}{21} & \frac{5}{21} & \frac{2}{9} & \frac{5}{21} \\
\frac{16}{63} & \frac{5}{21} & \frac{16}{63} & \frac{2}{7} & \frac{5}{21} & 0 & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} \\
\frac{16}{63} & \frac{5}{21} & \frac{16}{63} & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} & 0 & \frac{5}{21} & \frac{2}{7} \\
\frac{5}{21} & \frac{2}{9} & \frac{5}{21} & \frac{5}{21} & \frac{2}{9} & \frac{5}{21} & \frac{5}{21} & 0 & \frac{5}{21} \\
\frac{16}{63} & \frac{5}{21} & \frac{16}{63} & \frac{16}{63} & \frac{5}{21} & \frac{16}{63} & \frac{2}{7} & \frac{5}{21} & 0
\end{array}\right)
$$

5. Conclusions

This paper focuses on resistance distance in H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$. Let G be H-join of graphs $G_{1}, G_{2}, \ldots, G_{k}$. Here we first give the Laplacian matrix $L(G)$ of G. Then we compute a symmetric $\{1\}$-inverse of $L(G)$. Note that there exists a relationship between resistance distance and entries of $\{1\}$-inverse. So we can easily obtain resistance distance in G.

Author Contributions: Funding Acquisition, L.Z. and J.-B.L.; Methodology, J.-B.L. and L.Z.; Supervision, M.A.; Writing-Original Draft, L.Z. and J.Z.; All authors read and approved the final manuscript.

Funding: This work was supported by the Start-Up Scientific Research Foundation of Anhui Jianzhu University (2017QD20), the National Natural Science Foundation of China (11601006), the China Postdoctoral Science

Foundation (2017M621579), the Postdoctoral Science Foundation of Jiangsu Province (1701081B), the Project of Anhui Jianzhu University (2016QD116 and 2017dc03) and the Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving.
Acknowledgments: The authors are grateful to the anonymous reviewers and the editor for the valuable comments and suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bapat, R.B. Graphs and Matrices; Universitext; Springer-Hindustan Book Agency: London, UK; New Delhi, India, 2010.
2. Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan Press: New York, NY, USA, 1976.
3. Bu, C.J.; Yan, B.; Zhang, X.Q.; Zhou, J. Resistance distance in subdivision-vertex join and subdivision-edge of graphs. Linear Algebra Appl. 2014, 458, 454-462. [CrossRef]
4. Gopalapillai, I. The spectrum of neghborhood corona of graphs. Kragujevac J. Math. 2011, 35, 493-500.
5. Liu, X.G.; Lu, P.L. Spectra of the subdivision-vertex and subdivision neighborhood coronae. Linear Algebra Appl. 2013, 438, 3547-3559. [CrossRef]
6. McLeman, C.; McNicholas, E. Spectra of coronae. Linear Algebra Appl. 2011, 435, 998-1007. [CrossRef]
7. Wang, S.L.; Zhou, B. The signless Laplacian spectra of the corona and edge corona of two graphs. Linear Multilinear Algebra 2013, 61, 197-204. [CrossRef]
8. Cardoso, D. M.; De Freitas, M. A. A.; Martins, E. A.; Robbiano, María. Spectra of graphs obtained by a generalization of the join graph operation. Discrete Math. 2013, 313, 733-741. [CrossRef]
9. Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81-95. [CrossRef]
10. Bapat, R.B.; Gutman, I.; Xiao, W. A simple method for computing resistance distance. Z. Naturforschung A 2003, 58, 494-498. [CrossRef]
11. Bapat, R.B.; Gupta, S. Resistance distance in wheels and fans. Indian J. Pure Appl. Math. 2010, 41, 1-13. [CrossRef]
12. Cao, J.; Liu, J.B.; Wang, S. Resistance distance in corona and neighborhood corona networks based on Laplacian generalized inverse approach. J. Algebra Appl. 2018. [CrossRef]
13. Liu, J.B.; Pan, X.F. Minimizing Kirchhoffindex among graphs with a given vertex bipartiteness. Appl. Math. Comput. 2016, 291, 84-88.
14. Feng, L.; Yu, G.; Xu, K.; Jiang, Z. A note on the Kirchhoff index of bicyclic graphs. Ars Comb. 2014, 114, 33-40.
15. Sun, L.Z.; Wang, W.Z.; Zhou, J.; Bu, C.J. Some results on resistance distance and resistance matrices. Linear Multilinear Algebra 2015, 63, 523-533. [CrossRef]
16. Wang, C.; Liu, J.B.; Wang, S. Sharp upper bounds for mulitiplicative Zagreb indices of bipartite graphs with given diameter. Discret. Appl. Math. 2017, 227, 156-165. [CrossRef]
17. Liu, J.B.; Pan, X.F.; Yu, L.; Li, D. Complete characterization of bicyclic graphs with minimal Kirchhoff index. Discret. Appl. Math. 2016, 200, 95-107. [CrossRef]
18. Liu, J.B.; Wang, W.R.; Zhang, Y.M.; Pan, X.F. On degree resistance distance of cacti. Discret. Appl. Math. 2016, 203, 217-225. [CrossRef]
19. Liu, J.B.; Cao, J. The resistance distance of electrical networks based on Laplacian generalized inverse. Neurocomputing 2015, 167, 306-313. [CrossRef]
20. Liu, J.B.; Pan, X.F.; Hu, F.T. The $\{1\}$-inverse of the Laplacian of subdivision-vertex and subdivision-edge coronae with applications. Linar Multilinear Algebra 2017, 65, 178-191. [CrossRef]
21. Kirkland, S. The Group Inverse of the Laplacian Matrix of a Graph. In Combinatorial Matrix Theory; Advanced Courses in Mathematics-CRM Barcelona; Birkhäuser: Cham, Switzerland, 2018. [CrossRef]
22. Zhou, J.; Sun, L.Z.; Wang, W.Z.; Bu, C.J. Line star sets for Laplacian eigenvalues. Linear Algebra Appl. 2014, 440, 164-176. [CrossRef]
23. Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991.
